//----------------------------------------------------------------------------- // Copyright (C) 2018 iceman // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Proxmark3 RDV40 Smartcard module commands //----------------------------------------------------------------------------- #include "cmdsmartcard.h" #include #include #include "ui.h" #include "cmdparser.h" #include "proxmark3.h" #include "util.h" #include "smartcard.h" #include "comms.h" #include "protocols.h" #include "cmdhw.h" #include "cmdhflist.h" #include "emv/apduinfo.h" // APDUcode description #include "emv/emvcore.h" // decodeTVL #include "crypto/libpcrypto.h" // sha512hash #include "emv/dump.h" // dump_buffer #include "pcsc.h" #define SC_UPGRADE_FILES_DIRECTORY "sc_upgrade_firmware/" static bool UseAlternativeSmartcardReader = false; // default: use PM3 RDV40 Smartcard Slot (if available) static int CmdHelp(const char *Cmd); static int usage_sm_raw(void) { PrintAndLogEx(NORMAL, "Usage: sc raw [h|r|c] d <0A 0B 0C ... hex>"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " r : do not read response"); PrintAndLogEx(NORMAL, " a : active smartcard without select (reset sc module)"); PrintAndLogEx(NORMAL, " s : active smartcard with select (get ATR)"); PrintAndLogEx(NORMAL, " t : executes TLV decoder if it possible"); PrintAndLogEx(NORMAL, " 0 : use protocol T=0"); PrintAndLogEx(NORMAL, " d : bytes to send"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " sc raw s 0 d 00a404000e315041592e5359532e4444463031 - `1PAY.SYS.DDF01` PSE directory with get ATR"); return 0; } static int usage_sm_select(void) { PrintAndLogEx(NORMAL, "Usage: sc select [h|] "); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " : a card reader's name, wildcards allowed, leave empty to pick from available readers"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " sc select : list available card readers and pick"); PrintAndLogEx(NORMAL, " sc select Gemalto* : select a connected Gemalto card reader" ); return 0; } static int usage_sm_reader(void) { PrintAndLogEx(NORMAL, "Usage: sc reader [h|s]"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " s : silent (no messages)"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " sc reader"); return 0; } static int usage_sm_info(void) { PrintAndLogEx(NORMAL, "Usage: s info [h|s]"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " s : silent (no messages)"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " sc info"); return 0; } static int usage_sm_upgrade(void) { PrintAndLogEx(NORMAL, "Upgrade RDV4.0 Smartcard Socket Firmware"); PrintAndLogEx(NORMAL, "Usage: sc upgrade f "); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " f : firmware file name"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " sc upgrade f SIM010.BIN"); return 0; } static int usage_sm_setclock(void) { PrintAndLogEx(NORMAL, "Usage: sc setclock [h] c "); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " c <> : clockspeed (0 = 16mhz, 1=8mhz, 2=4mhz) "); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " sc setclock c 2"); return 0; } static int usage_sm_brute(void) { PrintAndLogEx(NORMAL, "Tries to bruteforce SFI, "); PrintAndLogEx(NORMAL, "Usage: sc brute [h]"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " sc brute"); return 0; } uint8_t GetATRTA1(uint8_t *atr, size_t atrlen) { if (atrlen > 2) { uint8_t T0 = atr[1]; if (T0 & 0x10) return atr[2]; } return 0x11; // default value is 0x11, corresponding to fmax=5 MHz, Fi=372, Di=1. } int DiArray[] = { 0, // b0000 RFU 1, // b0001 2, 4, 8, 16, 32, // b0110 64, // b0111. This was RFU in ISO/IEC 7816-3:1997 and former. Some card readers or drivers may erroneously reject cards using this value 12, 20, 0, // b1010 RFU 0, 0, // ... 0, 0, 0 // b1111 RFU }; int FiArray[] = { 372, // b0000 Historical note: in ISO/IEC 7816-3:1989, this was assigned to cards with internal clock 372, // b0001 558, // b0010 744, // b0011 1116, // b0100 1488, // b0101 1860, // b0110 0, // b0111 RFU 0, // b1000 RFU 512, // b1001 768, // b1010 1024, // b1011 1536, // b1100 2048, // b1101 0, // b1110 RFU 0 // b1111 RFU }; float FArray[] = { 4, // b0000 Historical note: in ISO/IEC 7816-3:1989, this was assigned to cards with internal clock 5, // b0001 6, // b0010 8, // b0011 12, // b0100 16, // b0101 20, // b0110 0, // b0111 RFU 0, // b1000 RFU 5, // b1001 7.5, // b1010 10, // b1011 15, // b1100 20, // b1101 0, // b1110 RFU 0 // b1111 RFU }; static int GetATRDi(uint8_t *atr, size_t atrlen) { uint8_t TA1 = GetATRTA1(atr, atrlen); return DiArray[TA1 & 0x0f]; // The 4 low-order bits of TA1 (4th MSbit to 1st LSbit) encode Di } static int GetATRFi(uint8_t *atr, size_t atrlen) { uint8_t TA1 = GetATRTA1(atr, atrlen); return FiArray[TA1 >> 4]; // The 4 high-order bits of TA1 (8th MSbit to 5th LSbit) encode fmax and Fi } static float GetATRF(uint8_t *atr, size_t atrlen) { uint8_t TA1 = GetATRTA1(atr, atrlen); return FArray[TA1 >> 4]; // The 4 high-order bits of TA1 (8th MSbit to 5th LSbit) encode fmax and Fi } static int PrintATR(uint8_t *atr, size_t atrlen) { uint8_t T0 = atr[1]; uint8_t K = T0 & 0x0F; uint8_t TD1 = 0, T1len = 0, TD1len = 0, TDilen = 0; bool protocol_T0_present = true; bool protocol_T15_present = false; if (T0 & 0x10) { PrintAndLog("\t- TA1 (Maximum clock frequency, proposed bit duration) [ 0x%02x ]", atr[2 + T1len]); T1len++; } if (T0 & 0x20) { PrintAndLog("\t- TB1 (Deprecated: VPP requirements) [ 0x%02x ]", atr[2 + T1len]); T1len++; } if (T0 & 0x40) { PrintAndLog("\t- TC1 (Extra delay between bytes required by card) [ 0x%02x ]", atr[2 + T1len]); T1len++; } if (T0 & 0x80) { TD1 = atr[2 + T1len]; PrintAndLog("\t- TD1 (First offered transmission protocol, presence of TA2..TD2) [ 0x%02x ] Protocol T%d", TD1, TD1 & 0x0f); protocol_T0_present = false; if ((TD1 & 0x0f) == 0) { protocol_T0_present = true; } if ((TD1 & 0x0f) == 15) { protocol_T15_present = true; } T1len++; if (TD1 & 0x10) { PrintAndLog("\t- TA2 (Specific protocol and parameters to be used after the ATR) [ 0x%02x ]", atr[2 + T1len + TD1len]); TD1len++; } if (TD1 & 0x20) { PrintAndLog("\t- TB2 (Deprecated: VPP precise voltage requirement) [ 0x%02x ]", atr[2 + T1len + TD1len]); TD1len++; } if (TD1 & 0x40) { PrintAndLog("\t- TC2 (Maximum waiting time for protocol T=0) [ 0x%02x ]", atr[2 + T1len + TD1len]); TD1len++; } if (TD1 & 0x80) { uint8_t TDi = atr[2 + T1len + TD1len]; PrintAndLog("\t- TD2 (A supported protocol or more global parameters, presence of TA3..TD3) [ 0x%02x ] Protocol T%d", TDi, TDi & 0x0f); if ((TDi & 0x0f) == 0) { protocol_T0_present = true; } if ((TDi & 0x0f) == 15) { protocol_T15_present = true; } TD1len++; bool nextCycle = true; uint8_t vi = 3; while (nextCycle) { nextCycle = false; if (TDi & 0x10) { PrintAndLog("\t- TA%d: 0x%02x", vi, atr[2 + T1len + TD1len + TDilen]); TDilen++; } if (TDi & 0x20) { PrintAndLog("\t- TB%d: 0x%02x", vi, atr[2 + T1len + TD1len + TDilen]); TDilen++; } if (TDi & 0x40) { PrintAndLog("\t- TC%d: 0x%02x", vi, atr[2 + T1len + TD1len + TDilen]); TDilen++; } if (TDi & 0x80) { TDi = atr[2 + T1len + TD1len + TDilen]; PrintAndLog("\t- TD%d [ 0x%02x ] Protocol T%d", vi, TDi, TDi & 0x0f); TDilen++; nextCycle = true; vi++; } } } } if (!protocol_T0_present || protocol_T15_present) { // there is CRC Check Byte TCK uint8_t vxor = 0; for (int i = 1; i < atrlen; i++) vxor ^= atr[i]; if (vxor) PrintAndLogEx(WARNING, "Check sum error. Must be 0 got 0x%02X", vxor); else PrintAndLogEx(INFO, "Check sum OK."); } if (atr[0] != 0x3b) PrintAndLogEx(WARNING, "Not a direct convention [ 0x%02x ]", atr[0]); uint8_t calen = 2 + T1len + TD1len + TDilen + K; if (atrlen != calen && atrlen != calen + 1) // may be CRC PrintAndLogEx(ERR, "ATR length error. len: %d, T1len: %d, TD1len: %d, TDilen: %d, K: %d", atrlen, T1len, TD1len, TDilen, K); if (K > 0) PrintAndLogEx(INFO, "\nHistorical bytes | len %02d | format %02x", K, atr[2 + T1len + TD1len + TDilen]); if (K > 1) { PrintAndLogEx(INFO, "\tHistorical bytes"); dump_buffer(&atr[2 + T1len + TD1len + TDilen], K, NULL, 1); } return 0; } bool smart_getATR(smart_card_atr_t *card) { if (UseAlternativeSmartcardReader) { return pcscGetATR(card); } else { UsbCommand c = {CMD_SMART_ATR, {0, 0, 0}}; SendCommand(&c); UsbCommand resp; if ( !WaitForResponseTimeout(CMD_ACK, &resp, 2500) ) { return false; } if (resp.arg[0] & 0xff) { return resp.arg[0] & 0xFF; } memcpy(card, (smart_card_atr_t *)resp.d.asBytes, sizeof(smart_card_atr_t)); return true; } } static bool smart_select(bool silent) { smart_card_atr_t card; if (!smart_getATR(&card)) { if (!silent) PrintAndLogEx(WARNING, "smart card select failed"); return false; } if (!silent) { PrintAndLogEx(INFO, "ISO7816-3 ATR : %s", sprint_hex(card.atr, card.atr_len)); } return true; } static void smart_transmit(uint8_t *data, uint32_t data_len, uint32_t flags, uint8_t *response, int *response_len, uint32_t max_response_len) { // PrintAndLogEx(SUCCESS, "C-TPDU>>>> %s", sprint_hex(data, data_len)); if (UseAlternativeSmartcardReader) { *response_len = max_response_len; pcscTransmit(data, data_len, flags, response, response_len); } else { UsbCommand c = {CMD_SMART_RAW, {flags, data_len, 0}}; memcpy(c.d.asBytes, data, data_len); SendCommand(&c); if (!WaitForResponseTimeout(CMD_ACK, &c, 2500)) { PrintAndLogEx(WARNING, "smart card response timeout"); *response_len = -1; return; } *response_len = c.arg[0]; if (*response_len > 0) { memcpy(response, c.d.asBytes, *response_len); } } if (*response_len <= 0) { PrintAndLogEx(WARNING, "smart card response failed"); *response_len = -2; return; } if (*response_len < 2) { // PrintAndLogEx(SUCCESS, "R-TPDU %02X | ", response[0]); return; } // PrintAndLogEx(SUCCESS, "R-TPDU<<<< %s", sprint_hex(response, *response_len)); // PrintAndLogEx(SUCCESS, "R-TPDU SW %02X%02X | %s", response[*response_len-2], response[*response_len-1], GetAPDUCodeDescription(response[*response_len-2], response[*response_len-1])); } static int CmdSmartSelect(const char *Cmd) { const char *readername; if (tolower(param_getchar(Cmd, 0)) == 'h') { return usage_sm_select(); } if (!PM3hasSmartcardSlot() && !pcscCheckForCardReaders()) { PrintAndLogEx(WARNING, "No Smartcard Readers available"); UseAlternativeSmartcardReader = false; return 1; } int bg, en; if (param_getptr(Cmd, &bg, &en, 0)) { UseAlternativeSmartcardReader = pcscSelectAlternativeCardReader(NULL); } else { readername = Cmd + bg; UseAlternativeSmartcardReader = pcscSelectAlternativeCardReader(readername); } return 0; } static int CmdSmartRaw(const char *Cmd) { int hexlen = 0; bool active = false; bool active_select = false; bool useT0 = false; uint8_t cmdp = 0; bool errors = false, reply = true, decodeTLV = false, breakloop = false; uint8_t data[ISO7816_MAX_FRAME_SIZE] = {0x00}; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_sm_raw(); case 'r': reply = false; cmdp++; break; case 'a': active = true; cmdp++; break; case 's': active_select = true; cmdp++; break; case 't': decodeTLV = true; cmdp++; break; case '0': useT0 = true; cmdp++; break; case 'd': { switch (param_gethex_to_eol(Cmd, cmdp+1, data, sizeof(data), &hexlen)) { case 1: PrintAndLogEx(WARNING, "Invalid HEX value."); return 1; case 2: PrintAndLogEx(WARNING, "Too many bytes. Max %d bytes", sizeof(data)); return 1; case 3: PrintAndLogEx(WARNING, "Hex must have even number of digits."); return 1; } cmdp++; breakloop = true; break; } default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } if ( breakloop ) break; } //Validations if (errors || cmdp == 0 ) return usage_sm_raw(); uint32_t flags = 0; uint32_t protocol = 0; if (active || active_select) { flags |= SC_CONNECT; if (active_select) flags |= SC_SELECT; } if (hexlen > 0) { if (useT0) protocol = SC_RAW_T0; else protocol = SC_RAW; } int response_len = 0; uint8_t *response = NULL; if (reply) { response = calloc(ISO7816_MAX_FRAME_SIZE, sizeof(uint8_t)); if ( !response ) return 1; } smart_transmit(data, hexlen, flags|protocol, response, &response_len, ISO7816_MAX_FRAME_SIZE); // reading response from smart card if ( reply ) { if ( response_len < 0 ) { free(response); return 2; } if ( response[0] == 0x6C ) { data[4] = response[1]; smart_transmit(data, hexlen, protocol, response, &response_len, ISO7816_MAX_FRAME_SIZE); data[4] = 0; } if (decodeTLV && response_len > 4) TLVPrintFromBuffer(response, response_len-2); free(response); } return 0; } int ExchangeAPDUSC(uint8_t *APDU, int APDUlen, bool activateCard, bool leaveSignalON, uint8_t *response, int maxresponselen, int *responselen) { uint8_t TPDU[ISO7816_MAX_FRAME_SIZE]; *responselen = 0; if (activateCard) smart_select(false); uint32_t flags = SC_RAW_T0; if (activateCard) { flags |= SC_SELECT | SC_CONNECT; } if (APDUlen == 4) { // Case 1 memcpy(TPDU, APDU, 4); TPDU[4] = 0x00; smart_transmit(TPDU, 5, flags, response, responselen, maxresponselen); } else if (APDUlen == 5) { // Case 2 Short smart_transmit(APDU, 5, flags, response, responselen, maxresponselen); if (response[0] == 0x6C) { // wrong Le uint16_t Le = APDU[4] ? APDU[4] : 256; uint8_t La = response[1]; memcpy(TPDU, APDU, 5); TPDU[4] = La; smart_transmit(TPDU, 5, SC_RAW_T0, response, responselen, maxresponselen); if (Le < La && *responselen >= 0) { response[Le] = response[*responselen-2]; response[Le+1] = response[*responselen-1]; *responselen = Le + 2; } } } else if (APDU[4] != 0 && APDUlen == 5 + APDU[4]) { // Case 3 Short smart_transmit(APDU, APDUlen, flags, response, responselen, maxresponselen); } else if (APDU[4] != 0 && APDUlen == 5 + APDU[4] + 1) { // Case 4 Short smart_transmit(APDU, APDUlen-1, flags, response, responselen, maxresponselen); if (response[0] == 0x90 && response[1] == 0x00) { uint8_t Le = APDU[APDUlen-1]; uint8_t get_response[5] = {0x00, ISO7816_GET_RESPONSE, 0x00, 0x00, Le}; return ExchangeAPDUSC(get_response, 5, false, leaveSignalON, response, maxresponselen, responselen); } } else { // Long Cases not yet implemented PrintAndLogEx(ERR, "Long APDUs not yet implemented"); *responselen = -3; } if (*responselen < 0 ) { return 1; } else { return 0; } } static int CmdSmartUpgrade(const char *Cmd) { PrintAndLogEx(NORMAL, ""); PrintAndLogEx(WARNING, "WARNING - RDV4.0 Smartcard Socket Firmware upgrade."); PrintAndLogEx(WARNING, "A dangerous command, do wrong and you will brick the smart card socket"); PrintAndLogEx(NORMAL, ""); FILE *f; char filename[FILE_PATH_SIZE] = {0}; uint8_t cmdp = 0; bool errors = false; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'f': //File handling and reading if ( param_getstr(Cmd, cmdp+1, filename, FILE_PATH_SIZE) >= FILE_PATH_SIZE ) { PrintAndLogEx(FAILED, "Filename too long"); errors = true; break; } cmdp += 2; break; case 'h': return usage_sm_upgrade(); default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors || cmdp == 0 ) return usage_sm_upgrade(); if (strchr(filename, '\\') || strchr(filename, '/')) { PrintAndLogEx(FAILED, "Filename must not contain \\ or /. Firmware file will be found in client/sc_upgrade_firmware directory."); return 1; } char sc_upgrade_file_path[strlen(get_my_executable_directory()) + strlen(SC_UPGRADE_FILES_DIRECTORY) + strlen(filename) + 1]; strcpy(sc_upgrade_file_path, get_my_executable_directory()); strcat(sc_upgrade_file_path, SC_UPGRADE_FILES_DIRECTORY); strcat(sc_upgrade_file_path, filename); if (strlen(sc_upgrade_file_path) >= FILE_PATH_SIZE ) { PrintAndLogEx(FAILED, "Filename too long"); return 1; } char sha512filename[FILE_PATH_SIZE] = {'\0'}; char *bin_extension = filename; char *dot_position = NULL; while ((dot_position = strchr(bin_extension, '.')) != NULL) { bin_extension = dot_position + 1; } if (!strcmp(bin_extension, "BIN") #ifdef _WIN32 || !strcmp(bin_extension, "bin") #endif ) { memcpy(sha512filename, filename, strlen(filename) - strlen("bin")); strcat(sha512filename, "sha512.txt"); } else { PrintAndLogEx(FAILED, "Filename extension of Firmware Upgrade File must be .BIN"); return 1; } PrintAndLogEx(INFO, "Checking integrity using SHA512 File %s ...", sha512filename); char sc_upgrade_sha512file_path[strlen(get_my_executable_directory()) + strlen(SC_UPGRADE_FILES_DIRECTORY) + strlen(sha512filename) + 1]; strcpy(sc_upgrade_sha512file_path, get_my_executable_directory()); strcat(sc_upgrade_sha512file_path, SC_UPGRADE_FILES_DIRECTORY); strcat(sc_upgrade_sha512file_path, sha512filename); if (strlen(sc_upgrade_sha512file_path) >= FILE_PATH_SIZE ) { PrintAndLogEx(FAILED, "Filename too long"); return 1; } // load firmware file f = fopen(sc_upgrade_file_path, "rb"); if ( !f ){ PrintAndLogEx(FAILED, "Firmware file not found or locked."); return 1; } // get filesize in order to malloc memory fseek(f, 0, SEEK_END); size_t fsize = ftell(f); fseek(f, 0, SEEK_SET); if (fsize < 0) { PrintAndLogEx(FAILED, "Could not determine size of firmware file"); fclose(f); return 1; } uint8_t *dump = calloc(fsize, sizeof(uint8_t)); if (!dump) { PrintAndLogEx(FAILED, "Could not allocate memory for firmware"); fclose(f); return 1; } size_t firmware_size = fread(dump, 1, fsize, f); if (f) fclose(f); // load sha512 file f = fopen(sc_upgrade_sha512file_path, "rb"); if ( !f ){ PrintAndLogEx(FAILED, "SHA-512 file not found or locked."); return 1; } // get filesize in order to malloc memory fseek(f, 0, SEEK_END); fsize = ftell(f); fseek(f, 0, SEEK_SET); if (fsize < 0) { PrintAndLogEx(FAILED, "Could not determine size of SHA-512 file"); fclose(f); return 1; } if (fsize < 128) { PrintAndLogEx(FAILED, "SHA-512 file too short"); fclose(f); return 1; } char hashstring[129]; size_t bytes_read = fread(hashstring, 1, 128, f); hashstring[128] = '\0'; if (f) fclose(f); uint8_t hash1[64]; if (bytes_read != 128 || param_gethex(hashstring, 0, hash1, 128)) { PrintAndLogEx(FAILED, "Couldn't read SHA-512 file"); return 1; } uint8_t hash2[64]; if (sha512hash(dump, firmware_size, hash2)) { PrintAndLogEx(FAILED, "Couldn't calculate SHA-512 of Firmware"); return 1; } if (memcmp(hash1, hash2, 64)) { PrintAndLogEx(FAILED, "Couldn't verify integrity of Firmware file (wrong SHA-512)"); return 1; } PrintAndLogEx(SUCCESS, "RDV4.0 Smartcard Socket Firmware uploading to PM3"); //Send to device uint32_t index = 0; uint32_t bytes_sent = 0; uint32_t bytes_remaining = firmware_size; while (bytes_remaining > 0){ uint32_t bytes_in_packet = MIN(USB_CMD_DATA_SIZE, bytes_remaining); UsbCommand c = {CMD_SMART_UPLOAD, {index + bytes_sent, bytes_in_packet, 0}}; // Fill usb bytes with 0xFF memset(c.d.asBytes, 0xFF, USB_CMD_DATA_SIZE); memcpy(c.d.asBytes, dump + bytes_sent, bytes_in_packet); clearCommandBuffer(); SendCommand(&c); if ( !WaitForResponseTimeout(CMD_ACK, NULL, 2000) ) { PrintAndLogEx(WARNING, "timeout while waiting for reply."); free(dump); return 1; } bytes_remaining -= bytes_in_packet; bytes_sent += bytes_in_packet; printf("."); fflush(stdout); } free(dump); printf("\n"); PrintAndLogEx(SUCCESS, "RDV4.0 Smartcard Socket Firmware updating, don\'t turn off your PM3!"); // trigger the firmware upgrade UsbCommand c = {CMD_SMART_UPGRADE, {firmware_size, 0, 0}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if ( !WaitForResponseTimeout(CMD_ACK, &resp, 2500) ) { PrintAndLogEx(WARNING, "timeout while waiting for reply."); return 1; } if ( (resp.arg[0] & 0xFF ) ) PrintAndLogEx(SUCCESS, "RDV4.0 Smartcard Socket Firmware upgraded successful"); else PrintAndLogEx(FAILED, "RDV4.0 Smartcard Socket Firmware Upgrade failed"); return 0; } static int CmdSmartInfo(const char *Cmd){ uint8_t cmdp = 0; bool errors = false, silent = false; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_sm_info(); case 's': silent = true; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } cmdp++; } //Validations if (errors ) return usage_sm_info(); smart_card_atr_t card; if (!smart_getATR(&card)) { if (!silent) PrintAndLogEx(WARNING, "smart card select failed"); return 1; } if (!card.atr_len) { if (!silent) PrintAndLogEx(ERR, "can't get ATR from a smart card"); return 1; } // print header PrintAndLogEx(INFO, "--- Smartcard Information ---------"); PrintAndLogEx(INFO, "-------------------------------------------------------------"); PrintAndLogEx(INFO, "ISO7618-3 ATR : %s", sprint_hex(card.atr, card.atr_len)); PrintAndLogEx(INFO, "\nhttp://smartcard-atr.appspot.com/parse?ATR=%s", sprint_hex_inrow(card.atr, card.atr_len) ); // print ATR PrintAndLogEx(NORMAL, ""); PrintAndLogEx(INFO, "ATR"); PrintATR(card.atr, card.atr_len); // print D/F (brom byte TA1 or defaults) PrintAndLogEx(NORMAL, ""); PrintAndLogEx(INFO, "D/F (TA1)"); int Di = GetATRDi(card.atr, card.atr_len); int Fi = GetATRFi(card.atr, card.atr_len); float F = GetATRF(card.atr, card.atr_len); if (GetATRTA1(card.atr, card.atr_len) == 0x11) PrintAndLogEx(INFO, "Using default values..."); PrintAndLogEx(NORMAL, "\t- Di=%d", Di); PrintAndLogEx(NORMAL, "\t- Fi=%d", Fi); PrintAndLogEx(NORMAL, "\t- F=%.1f MHz", F); if (Di && Fi) { PrintAndLogEx(NORMAL, "\t- Cycles/ETU=%d", Fi/Di); PrintAndLogEx(NORMAL, "\t- %.1f bits/sec at 4MHz", (float)4000000 / (Fi/Di)); PrintAndLogEx(NORMAL, "\t- %.1f bits/sec at Fmax=%.1fMHz", (F * 1000000) / (Fi/Di), F); } else { PrintAndLogEx(WARNING, "\t- Di or Fi is RFU."); }; return 0; } int CmdSmartReader(const char *Cmd){ uint8_t cmdp = 0; bool errors = false, silent = false; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_sm_reader(); case 's': silent = true; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } cmdp++; } //Validations if (errors ) return usage_sm_reader(); smart_card_atr_t card; if (!smart_getATR(&card)) { if (!silent) PrintAndLogEx(WARNING, "smart card select failed"); return 1; } PrintAndLogEx(INFO, "ISO7816-3 ATR : %s", sprint_hex(card.atr, card.atr_len)); return 0; } static int CmdSmartSetClock(const char *Cmd){ uint8_t cmdp = 0; bool errors = false; uint8_t clock = 0; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_sm_setclock(); case 'c': clock = param_get8ex(Cmd, cmdp+1, 2, 10); if ( clock > 2) errors = true; cmdp += 2; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors || cmdp == 0) return usage_sm_setclock(); UsbCommand c = {CMD_SMART_SETCLOCK, {clock, 0, 0}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if ( !WaitForResponseTimeout(CMD_ACK, &resp, 2500) ) { PrintAndLogEx(WARNING, "smart card select failed"); return 1; } uint8_t isok = resp.arg[0] & 0xFF; if (!isok) { PrintAndLogEx(WARNING, "smart card set clock failed"); return 1; } switch (clock) { case 0: PrintAndLogEx(SUCCESS, "Clock changed to 16mhz giving 10800 baudrate"); break; case 1: PrintAndLogEx(SUCCESS, "Clock changed to 8mhz giving 21600 baudrate"); break; case 2: PrintAndLogEx(SUCCESS, "Clock changed to 4mhz giving 86400 baudrate"); break; default: break; } return 0; } static int CmdSmartList(const char *Cmd) { if (UseAlternativeSmartcardReader) { CmdHFList("7816 p"); } else { CmdHFList("7816"); } return 0; } static int CmdSmartBruteforceSFI(const char *Cmd) { char ctmp = tolower(param_getchar(Cmd, 0)); if (ctmp == 'h') return usage_sm_brute(); uint8_t data[5] = {0x00, 0xB2, 0x00, 0x00, 0x00}; PrintAndLogEx(INFO, "Selecting card"); if ( !smart_select(false) ) { return 1; } PrintAndLogEx(INFO, "Selecting PSE aid"); CmdSmartRaw("s 0 t d 00a404000e325041592e5359532e4444463031"); CmdSmartRaw("0 t d 00a4040007a000000004101000"); // mastercard // CmdSmartRaw("0 t d 00a4040007a0000000031010"); // visa PrintAndLogEx(INFO, "starting"); int response_len = 0; uint8_t* response = malloc(ISO7816_MAX_FRAME_SIZE); if (!response) return 1; for (uint8_t i=1; i < 4; i++) { for (int p1=1; p1 < 5; p1++) { data[2] = p1; data[3] = (i << 3) + 4; smart_transmit(data, sizeof(data), SC_RAW_T0, response, &response_len, ISO7816_MAX_FRAME_SIZE); if ( response[0] == 0x6C ) { data[4] = response[1]; smart_transmit(data, sizeof(data), SC_RAW_T0, response, &response_len, ISO7816_MAX_FRAME_SIZE); // TLV decoder if (response_len > 4) TLVPrintFromBuffer(response+1, response_len-3); data[4] = 0; } memset(response, 0x00, ISO7816_MAX_FRAME_SIZE); } } free(response); return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"select", CmdSmartSelect, 1, "Select the Smartcard Reader to use"}, {"list", CmdSmartList, 1, "List ISO 7816 history"}, {"info", CmdSmartInfo, 1, "Tag information"}, {"reader", CmdSmartReader, 1, "Act like an IS07816 reader"}, {"raw", CmdSmartRaw, 1, "Send raw hex data to tag"}, {"upgrade", CmdSmartUpgrade, 0, "Upgrade firmware"}, {"setclock", CmdSmartSetClock, 1, "Set clock speed"}, {"brute", CmdSmartBruteforceSFI, 1, "Bruteforce SFI"}, {NULL, NULL, 0, NULL} }; int CmdSmartcard(const char *Cmd) { clearCommandBuffer(); CmdsParse(CommandTable, Cmd); return 0; } static int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }