//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // Copyright (C) Merlok - 2017 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Command: hf list. It shows data from arm buffer. //----------------------------------------------------------------------------- #include "cmdhflist.h" #include #include #include #include #include #include "util.h" #include "ui.h" #include "cliparser/cliparser.h" #include "comms.h" #include "iso14443crc.h" #include "iso15693tools.h" #include "parity.h" #include "protocols.h" #include "crapto1/crapto1.h" #include "mifare/mifarehost.h" #include "mifare/mifaredefault.h" #include "usb_cmd.h" #include "pcsc.h" typedef struct { uint32_t uid; // UID uint32_t nt; // tag challenge uint32_t nt_enc; // encrypted tag challenge uint8_t nt_enc_par; // encrypted tag challenge parity uint32_t nr_enc; // encrypted reader challenge uint32_t ar_enc; // encrypted reader response uint8_t ar_enc_par; // encrypted reader response parity uint32_t at_enc; // encrypted tag response uint8_t at_enc_par; // encrypted tag response parity bool first_auth; // is first authentication uint32_t ks2; // ar ^ ar_enc uint32_t ks3; // at ^ at_enc } TAuthData; enum MifareAuthSeq { masNone, masNt, masNrAr, masAt, masAuthComplete, masFirstData, masData, masError, }; static enum MifareAuthSeq MifareAuthState; static TAuthData AuthData; static void ClearAuthData() { AuthData.uid = 0; AuthData.nt = 0; AuthData.first_auth = true; AuthData.ks2 = 0; AuthData.ks3 = 0; } /** * @brief iso14443A_CRC_check Checks CRC in command or response * @param isResponse * @param data * @param len * @return 0 : CRC-command, CRC not ok * 1 : CRC-command, CRC ok * 2 : Not crc-command */ static uint8_t iso14443A_CRC_check(bool isResponse, uint8_t* data, uint8_t len) { uint8_t b1,b2; if(len <= 2) return 2; if(isResponse & (len < 6)) return 2; ComputeCrc14443(CRC_14443_A, data, len-2, &b1, &b2); if (b1 != data[len-2] || b2 != data[len-1]) { return 0; } else { return 1; } } static uint8_t iso14443_4_CRC_check(uint8_t* data, uint8_t len) { uint8_t b1,b2; if(len <= 2) return 2; ComputeCrc14443(CRC_14443_A, data, len-2, &b1, &b2); if (b1 != data[len-2] || b2 != data[len-1]) { return 0; } else { return 1; } } static uint8_t mifare_CRC_check(bool isResponse, uint8_t* data, uint8_t len) { switch(MifareAuthState) { case masNone: case masError: return iso14443A_CRC_check(isResponse, data, len); default: return 2; } } /** * @brief iso14443B_CRC_check Checks CRC in command or response * @param isResponse * @param data * @param len * @return 0 : CRC-command, CRC not ok * 1 : CRC-command, CRC ok * 2 : Not crc-command */ static uint8_t iso14443B_CRC_check(bool isResponse, uint8_t* data, uint8_t len) { uint8_t b1,b2; if(len <= 2) return 2; ComputeCrc14443(CRC_14443_B, data, len-2, &b1, &b2); if(b1 != data[len-2] || b2 != data[len-1]) { return 0; } else { return 1; } } static uint8_t iso15693_CRC_check(uint8_t* d, uint16_t n) { if (n <= 2) return 2; return (Iso15693Crc(d, n) == ISO15693_CRC_CHECK ? 1 : 0); } /** * @brief iclass_CRC_Ok Checks CRC in command or response * @param isResponse * @param data * @param len * @return 0 : CRC-command, CRC not ok * 1 : CRC-command, CRC ok * 2 : Not crc-command */ uint8_t iclass_CRC_check(bool isResponse, uint8_t* data, uint8_t len) { if(len < 4) return 2;//CRC commands (and responses) are all at least 4 bytes uint8_t b1, b2; if(!isResponse)//Commands to tag { /** These commands should have CRC. Total length leftmost 4 READ 4 READ4 12 UPDATE - unsecured, ends with CRC16 14 UPDATE - secured, ends with signature instead 4 PAGESEL **/ if(len == 4 || len == 12)//Covers three of them { //Don't include the command byte ComputeCrc14443(CRC_ICLASS, (data+1), len-3, &b1, &b2); return b1 == data[len -2] && b2 == data[len-1]; } return 2; }else{ /** These tag responses should have CRC. Total length leftmost 10 READ data[8] crc[2] 34 READ4 data[32]crc[2] 10 UPDATE data[8] crc[2] 10 SELECT csn[8] crc[2] 10 IDENTIFY asnb[8] crc[2] 10 PAGESEL block1[8] crc[2] 10 DETECT csn[8] crc[2] These should not 4 CHECK chip_response[4] 8 READCHECK data[8] 1 ACTALL sof[1] 1 ACT sof[1] In conclusion, without looking at the command; any response of length 10 or 34 should have CRC **/ if(len != 10 && len != 34) return true; ComputeCrc14443(CRC_ICLASS, data, len-2, &b1, &b2); return b1 == data[len -2] && b2 == data[len-1]; } } void annotateIclass(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) { switch(cmd[0]) { case ICLASS_CMD_ACTALL: snprintf(exp, size, "ACTALL"); break; case ICLASS_CMD_READ_OR_IDENTIFY: { if (cmdsize > 1){ snprintf(exp,size,"READ(%d)",cmd[1]); } else { snprintf(exp,size,"IDENTIFY"); } break; } case ICLASS_CMD_SELECT: snprintf(exp,size, "SELECT"); break; case ICLASS_CMD_PAGESEL: snprintf(exp,size, "PAGESEL(%d)", cmd[1]); break; case ICLASS_CMD_READCHECK_KC: snprintf(exp,size, "READCHECK[Kc](%d)", cmd[1]); break; case ICLASS_CMD_READCHECK_KD: snprintf(exp,size, "READCHECK[Kd](%d)", cmd[1]); break; case ICLASS_CMD_CHECK_KC: case ICLASS_CMD_CHECK_KD: snprintf(exp,size, "CHECK"); break; case ICLASS_CMD_DETECT: snprintf(exp,size, "DETECT"); break; case ICLASS_CMD_HALT: snprintf(exp,size, "HALT"); break; case ICLASS_CMD_UPDATE: snprintf(exp,size, "UPDATE(%d)",cmd[1]); break; case ICLASS_CMD_ACT: snprintf(exp,size, "ACT"); break; case ICLASS_CMD_READ4: snprintf(exp,size, "READ4(%d)",cmd[1]); break; default: snprintf(exp,size, "?"); break; } return; } void annotateIso15693(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) { if (cmdsize >= 2) { switch (cmd[1]) { // Mandatory Commands, all Tags must support them: case ISO15693_INVENTORY :snprintf(exp, size, "INVENTORY");return; case ISO15693_STAYQUIET :snprintf(exp, size, "STAY_QUIET");return; // Optional Commands, Tags may support them: case ISO15693_READBLOCK :snprintf(exp, size, "READBLOCK");return; case ISO15693_WRITEBLOCK :snprintf(exp, size, "WRITEBLOCK");return; case ISO15693_LOCKBLOCK :snprintf(exp, size, "LOCKBLOCK");return; case ISO15693_READ_MULTI_BLOCK :snprintf(exp, size, "READ_MULTI_BLOCK");return; case ISO15693_WRITE_MULTI_BLOCK :snprintf(exp, size, "WRITE_MULTI_BLOCK");return; case ISO15693_SELECT :snprintf(exp, size, "SELECT");return; case ISO15693_RESET_TO_READY :snprintf(exp, size, "RESET_TO_READY");return; case ISO15693_WRITE_AFI :snprintf(exp, size, "WRITE_AFI");return; case ISO15693_LOCK_AFI :snprintf(exp, size, "LOCK_AFI");return; case ISO15693_WRITE_DSFID :snprintf(exp, size, "WRITE_DSFID");return; case ISO15693_LOCK_DSFID :snprintf(exp, size, "LOCK_DSFID");return; case ISO15693_GET_SYSTEM_INFO :snprintf(exp, size, "GET_SYSTEM_INFO");return; case ISO15693_READ_MULTI_SECSTATUS :snprintf(exp, size, "READ_MULTI_SECSTATUS");return; default: break; } if (cmd[1] > ISO15693_STAYQUIET && cmd[1] < ISO15693_READBLOCK) snprintf(exp, size, "Mandatory RFU"); else if (cmd[1] > ISO15693_READ_MULTI_SECSTATUS && cmd[1] <= 0x9F) snprintf(exp, size, "Optional RFU"); else if ( cmd[1] >= 0xA0 && cmd[1] <= 0xDF ) snprintf(exp, size, "Custom command"); else if ( cmd[1] >= 0xE0 && cmd[1] <= 0xFF ) snprintf(exp, size, "Proprietary command"); } } void annotateTopaz(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) { switch(cmd[0]) { case TOPAZ_REQA :snprintf(exp, size, "REQA");break; case TOPAZ_WUPA :snprintf(exp, size, "WUPA");break; case TOPAZ_RID :snprintf(exp, size, "RID");break; case TOPAZ_RALL :snprintf(exp, size, "RALL");break; case TOPAZ_READ :snprintf(exp, size, "READ");break; case TOPAZ_WRITE_E :snprintf(exp, size, "WRITE-E");break; case TOPAZ_WRITE_NE :snprintf(exp, size, "WRITE-NE");break; case TOPAZ_RSEG :snprintf(exp, size, "RSEG");break; case TOPAZ_READ8 :snprintf(exp, size, "READ8");break; case TOPAZ_WRITE_E8 :snprintf(exp, size, "WRITE-E8");break; case TOPAZ_WRITE_NE8 :snprintf(exp, size, "WRITE-NE8");break; default: snprintf(exp,size,"?"); break; } } void annotateIso7816(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) { switch ( cmd[1] ){ case ISO7816_READ_BINARY :snprintf(exp, size, "READ BINARY");break; case ISO7816_WRITE_BINARY :snprintf(exp, size, "WRITE BINARY");break; case ISO7816_UPDATE_BINARY :snprintf(exp, size, "UPDATE BINARY");break; case ISO7816_ERASE_BINARY :snprintf(exp, size, "ERASE BINARY");break; case ISO7816_READ_RECORDS :snprintf(exp, size, "READ RECORD(S)");break; case ISO7816_WRITE_RECORD :snprintf(exp, size, "WRITE RECORD");break; case ISO7816_APPEND_RECORD :snprintf(exp, size, "APPEND RECORD");break; case ISO7816_UPDATE_DATA :snprintf(exp, size, "UPDATE DATA");break; case ISO7816_GET_DATA :snprintf(exp, size, "GET DATA");break; case ISO7816_PUT_DATA :snprintf(exp, size, "PUT DATA");break; case ISO7816_SELECT_FILE :snprintf(exp, size, "SELECT FILE");break; case ISO7816_VERIFY :snprintf(exp, size, "VERIFY");break; case ISO7816_INTERNAL_AUTHENTICATE :snprintf(exp, size, "INTERNAL AUTHENTICATE");break; case ISO7816_EXTERNAL_AUTHENTICATE :snprintf(exp, size, "EXTERNAL AUTHENTICATE");break; case ISO7816_GET_CHALLENGE :snprintf(exp, size, "GET CHALLENGE");break; case ISO7816_MANAGE_CHANNEL :snprintf(exp, size, "MANAGE CHANNEL");break; case ISO7816_GET_RESPONSE :snprintf(exp, size, "GET RESPONSE");break; case ISO7816_ENVELOPE :snprintf(exp, size, "ENVELOPE");break; case ISO7816_GET_PROCESSING_OPTIONS :snprintf(exp, size, "GET PROCESSING OPTIONS");break; default :snprintf(exp,size,"?"); break; } } void annotateIso14443_4(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) { // S-block if ((cmd[0] & 0xc3) == 0xc2) { switch (cmd[0] & 0x30) { case 0x00 : snprintf(exp, size, "S-block DESELECT"); break; case 0x30 : snprintf(exp, size, "S-block WTX"); break; default : snprintf(exp, size, "S-block (RFU)"); break; } } // R-block (ack) else if ((cmd[0] & 0xe0) == 0xa0) { if ((cmd[0] & 0x10) == 0) snprintf(exp, size, "R-block ACK"); else snprintf(exp, size, "R-block NACK"); } // I-block else { int pos = 1; switch (cmd[0] & 0x0c) { case 0x08: // CID following case 0x04: // NAD following pos = 2; break; case 0x0c: // CID and NAD following pos = 3; break; default: pos = 1; // no CID, no NAD break; } annotateIso7816(exp, size, &cmd[pos], cmdsize-pos); } } /** 06 00 = INITIATE 0E xx = SELECT ID (xx = Chip-ID) 0B = Get UID 08 yy = Read Block (yy = block number) 09 yy dd dd dd dd = Write Block (yy = block number; dd dd dd dd = data to be written) 0C = Reset to Inventory 0F = Completion 0A 11 22 33 44 55 66 = Authenticate (11 22 33 44 55 66 = data to authenticate) **/ void annotateIso14443b(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) { switch(cmd[0]){ case ISO14443B_REQB : snprintf(exp,size,"REQB");break; case ISO14443B_ATTRIB : snprintf(exp,size,"ATTRIB");break; case ISO14443B_HALT : snprintf(exp,size,"HALT");break; case ISO14443B_INITIATE : snprintf(exp,size,"INITIATE");break; case ISO14443B_SELECT : snprintf(exp,size,"SELECT(%d)",cmd[1]);break; case ISO14443B_GET_UID : snprintf(exp,size,"GET UID");break; case ISO14443B_READ_BLK : snprintf(exp,size,"READ_BLK(%d)", cmd[1]);break; case ISO14443B_WRITE_BLK : snprintf(exp,size,"WRITE_BLK(%d)",cmd[1]);break; case ISO14443B_RESET : snprintf(exp,size,"RESET");break; case ISO14443B_COMPLETION : snprintf(exp,size,"COMPLETION");break; case ISO14443B_AUTHENTICATE : snprintf(exp,size,"AUTHENTICATE");break; default : snprintf(exp,size ,"?");break; } } void annotateIso14443a(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) { switch(cmd[0]) { case ISO14443A_CMD_WUPA: snprintf(exp,size,"WUPA"); break; case ISO14443A_CMD_ANTICOLL_OR_SELECT:{ // 93 20 = Anticollision (usage: 9320 - answer: 4bytes UID+1byte UID-bytes-xor) // 93 70 = Select (usage: 9370+5bytes 9320 answer - answer: 1byte SAK) if(cmd[1] == 0x70) { snprintf(exp,size,"SELECT_UID"); break; }else { snprintf(exp,size,"ANTICOLL"); break; } } case ISO14443A_CMD_ANTICOLL_OR_SELECT_2:{ //95 20 = Anticollision of cascade level2 //95 70 = Select of cascade level2 if(cmd[2] == 0x70) { snprintf(exp,size,"SELECT_UID-2"); break; }else { snprintf(exp,size,"ANTICOLL-2"); break; } } case ISO14443A_CMD_REQA: snprintf(exp,size,"REQA"); break; case MIFARE_CMD_READBLOCK: snprintf(exp,size,"READBLOCK(%d)",cmd[1]); break; case MIFARE_CMD_WRITEBLOCK: snprintf(exp,size,"WRITEBLOCK(%d)",cmd[1]); break; case ISO14443A_CMD_HALT: snprintf(exp,size,"HALT"); MifareAuthState = masNone; break; case ISO14443A_CMD_RATS: snprintf(exp,size,"RATS"); break; case MIFARE_CMD_INC: snprintf(exp,size,"INC(%d)",cmd[1]); break; case MIFARE_CMD_DEC: snprintf(exp,size,"DEC(%d)",cmd[1]); break; case MIFARE_CMD_RESTORE: snprintf(exp,size,"RESTORE(%d)",cmd[1]); break; case MIFARE_CMD_TRANSFER: snprintf(exp,size,"TRANSFER(%d)",cmd[1]); break; case MIFARE_AUTH_KEYA: if ( cmdsize > 3) { snprintf(exp,size,"AUTH-A(%d)",cmd[1]); MifareAuthState = masNt; } else { // case MIFARE_ULEV1_VERSION : both 0x60. snprintf(exp,size,"EV1 VERSION"); } break; case MIFARE_AUTH_KEYB: MifareAuthState = masNt; snprintf(exp,size,"AUTH-B(%d)",cmd[1]); break; case MIFARE_MAGICWUPC1: snprintf(exp,size,"MAGIC WUPC1"); break; case MIFARE_MAGICWUPC2: snprintf(exp,size,"MAGIC WUPC2"); break; case MIFARE_MAGICWIPEC: snprintf(exp,size,"MAGIC WIPEC"); break; case MIFARE_ULC_AUTH_1: snprintf(exp,size,"AUTH "); break; case MIFARE_ULC_AUTH_2: snprintf(exp,size,"AUTH_ANSW"); break; case MIFARE_ULEV1_AUTH: if ( cmdsize == 7 ) snprintf(exp,size,"PWD-AUTH KEY: 0x%02x%02x%02x%02x", cmd[1], cmd[2], cmd[3], cmd[4] ); else snprintf(exp,size,"PWD-AUTH"); break; case MIFARE_ULEV1_FASTREAD:{ if ( cmdsize >=3 && cmd[2] <= 0xE6) snprintf(exp,size,"READ RANGE (%d-%d)",cmd[1],cmd[2]); else snprintf(exp,size,"?"); break; } case MIFARE_ULC_WRITE:{ if ( cmd[1] < 0x21 ) snprintf(exp,size,"WRITEBLOCK(%d)",cmd[1]); else snprintf(exp,size,"?"); break; } case MIFARE_ULEV1_READ_CNT:{ if ( cmd[1] < 5 ) snprintf(exp,size,"READ CNT(%d)",cmd[1]); else snprintf(exp,size,"?"); break; } case MIFARE_ULEV1_INCR_CNT:{ if ( cmd[1] < 5 ) snprintf(exp,size,"INCR(%d)",cmd[1]); else snprintf(exp,size,"?"); break; } case MIFARE_ULEV1_READSIG: snprintf(exp,size,"READ_SIG"); break; case MIFARE_ULEV1_CHECKTEAR: snprintf(exp,size,"CHK_TEARING(%d)",cmd[1]); break; case MIFARE_ULEV1_VCSL: snprintf(exp,size,"VCSL"); break; default: snprintf(exp,size,"?"); break; } return; } void annotateMifare(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize, uint8_t* parity, uint8_t paritysize, bool isResponse) { if (!isResponse && cmdsize == 1) { switch(cmd[0]) { case ISO14443A_CMD_WUPA: case ISO14443A_CMD_REQA: MifareAuthState = masNone; break; default: break; } } // get UID if (MifareAuthState == masNone) { if (cmdsize == 9 && cmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && cmd[1] == 0x70) { ClearAuthData(); AuthData.uid = bytes_to_num(&cmd[2], 4); } if (cmdsize == 9 && cmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && cmd[1] == 0x70) { ClearAuthData(); AuthData.uid = bytes_to_num(&cmd[2], 4); } } switch(MifareAuthState) { case masNt: if (cmdsize == 4 && isResponse) { snprintf(exp,size,"AUTH: nt %s", (AuthData.first_auth) ? "" : "(enc)"); MifareAuthState = masNrAr; if (AuthData.first_auth) { AuthData.nt = bytes_to_num(cmd, 4); } else { AuthData.nt_enc = bytes_to_num(cmd, 4); AuthData.nt_enc_par = parity[0]; } return; } else { MifareAuthState = masError; } break; case masNrAr: if (cmdsize == 8 && !isResponse) { snprintf(exp,size,"AUTH: nr ar (enc)"); MifareAuthState = masAt; AuthData.nr_enc = bytes_to_num(cmd, 4); AuthData.ar_enc = bytes_to_num(&cmd[4], 4); AuthData.ar_enc_par = parity[0] << 4; return; } else { MifareAuthState = masError; } break; case masAt: if (cmdsize == 4 && isResponse) { snprintf(exp,size,"AUTH: at (enc)"); MifareAuthState = masAuthComplete; AuthData.at_enc = bytes_to_num(cmd, 4); AuthData.at_enc_par = parity[0]; return; } else { MifareAuthState = masError; } break; default: break; } if (!isResponse && ((MifareAuthState == masNone) || (MifareAuthState == masError))) annotateIso14443a(exp, size, cmd, cmdsize); } static uint64_t GetCrypto1ProbableKey(TAuthData *ad) { struct Crypto1State *revstate = lfsr_recovery64(ad->ks2, ad->ks3); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, ad->nr_enc, 1); lfsr_rollback_word(revstate, ad->uid ^ ad->nt, 0); uint64_t lfsr = 0; crypto1_get_lfsr(revstate, &lfsr); crypto1_destroy(revstate); return lfsr; } static bool NTParityChk(TAuthData *ad, uint32_t ntx) { if ( (oddparity8(ntx >> 8 & 0xff) ^ (ntx & 0x01) ^ ((ad->nt_enc_par >> 5) & 0x01) ^ (ad->nt_enc & 0x01)) || (oddparity8(ntx >> 16 & 0xff) ^ (ntx >> 8 & 0x01) ^ ((ad->nt_enc_par >> 6) & 0x01) ^ (ad->nt_enc >> 8 & 0x01)) || (oddparity8(ntx >> 24 & 0xff) ^ (ntx >> 16 & 0x01) ^ ((ad->nt_enc_par >> 7) & 0x01) ^ (ad->nt_enc >> 16 & 0x01)) ) return false; uint32_t ar = prng_successor(ntx, 64); if ( (oddparity8(ar >> 8 & 0xff) ^ (ar & 0x01) ^ ((ad->ar_enc_par >> 5) & 0x01) ^ (ad->ar_enc & 0x01)) || (oddparity8(ar >> 16 & 0xff) ^ (ar >> 8 & 0x01) ^ ((ad->ar_enc_par >> 6) & 0x01) ^ (ad->ar_enc >> 8 & 0x01)) || (oddparity8(ar >> 24 & 0xff) ^ (ar >> 16 & 0x01) ^ ((ad->ar_enc_par >> 7) & 0x01) ^ (ad->ar_enc >> 16 & 0x01)) ) return false; uint32_t at = prng_successor(ntx, 96); if ( (oddparity8(ar & 0xff) ^ (at >> 24 & 0x01) ^ ((ad->ar_enc_par >> 4) & 0x01) ^ (ad->at_enc >> 24 & 0x01)) || (oddparity8(at >> 8 & 0xff) ^ (at & 0x01) ^ ((ad->at_enc_par >> 5) & 0x01) ^ (ad->at_enc & 0x01)) || (oddparity8(at >> 16 & 0xff) ^ (at >> 8 & 0x01) ^ ((ad->at_enc_par >> 6) & 0x01) ^ (ad->at_enc >> 8 & 0x01)) || (oddparity8(at >> 24 & 0xff) ^ (at >> 16 & 0x01) ^ ((ad->at_enc_par >> 7) & 0x01) ^ (ad->at_enc >> 16 & 0x01)) ) return false; return true; } static bool CheckCrypto1Parity(uint8_t *cmd_enc, uint8_t cmdsize, uint8_t *cmd, uint8_t *parity_enc) { for (int i = 0; i < cmdsize - 1; i++) { if (oddparity8(cmd[i]) ^ (cmd[i + 1] & 0x01) ^ ((parity_enc[i / 8] >> (7 - i % 8)) & 0x01) ^ (cmd_enc[i + 1] & 0x01)) return false; } return true; } static bool NestedCheckKey(uint64_t key, TAuthData *ad, uint8_t *cmd, uint8_t cmdsize, uint8_t *parity) { uint8_t buf[32] = {0}; struct Crypto1State *pcs; AuthData.ks2 = 0; AuthData.ks3 = 0; pcs = crypto1_create(key); uint32_t nt1 = crypto1_word(pcs, ad->nt_enc ^ ad->uid, 1) ^ ad->nt_enc; uint32_t ar = prng_successor(nt1, 64); uint32_t at = prng_successor(nt1, 96); crypto1_word(pcs, ad->nr_enc, 1); // uint32_t nr1 = crypto1_word(pcs, ad->nr_enc, 1) ^ ad->nr_enc; // if needs deciphered nr uint32_t ar1 = crypto1_word(pcs, 0, 0) ^ ad->ar_enc; uint32_t at1 = crypto1_word(pcs, 0, 0) ^ ad->at_enc; if (!(ar == ar1 && at == at1 && NTParityChk(ad, nt1))) { crypto1_destroy(pcs); return false; } memcpy(buf, cmd, cmdsize); mf_crypto1_decrypt(pcs, buf, cmdsize, 0); crypto1_destroy(pcs); if (!CheckCrypto1Parity(cmd, cmdsize, buf, parity)) return false; if(!CheckCrc14443(CRC_14443_A, buf, cmdsize)) return false; AuthData.nt = nt1; AuthData.ks2 = AuthData.ar_enc ^ ar; AuthData.ks3 = AuthData.at_enc ^ at; return true; } static bool DecodeMifareData(uint8_t *cmd, uint8_t cmdsize, uint8_t *parity, bool isResponse, uint8_t *mfData, size_t *mfDataLen) { static struct Crypto1State *traceCrypto1; static uint64_t mfLastKey; *mfDataLen = 0; if (MifareAuthState == masAuthComplete) { if (traceCrypto1) { crypto1_destroy(traceCrypto1); traceCrypto1 = NULL; } MifareAuthState = masFirstData; return false; } if (cmdsize > 32) return false; if (MifareAuthState == masFirstData) { if (AuthData.first_auth) { AuthData.ks2 = AuthData.ar_enc ^ prng_successor(AuthData.nt, 64); AuthData.ks3 = AuthData.at_enc ^ prng_successor(AuthData.nt, 96); mfLastKey = GetCrypto1ProbableKey(&AuthData); PrintAndLog(" | * | key | probable key:%012"PRIx64" Prng:%s ks2:%08x ks3:%08x | |", mfLastKey, validate_prng_nonce(AuthData.nt) ? "WEAK": "HARD", AuthData.ks2, AuthData.ks3); AuthData.first_auth = false; traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3); } else { if (traceCrypto1) { crypto1_destroy(traceCrypto1); traceCrypto1 = NULL; } // check last used key if (mfLastKey) { if (NestedCheckKey(mfLastKey, &AuthData, cmd, cmdsize, parity)) { PrintAndLog(" | * | key | last used key:%012"PRIx64" ks2:%08x ks3:%08x | |", mfLastKey, AuthData.ks2, AuthData.ks3); traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3); }; } // check default keys if (!traceCrypto1) { for (int defaultKeyCounter = 0; defaultKeyCounter < MifareDefaultKeysSize; defaultKeyCounter++){ if (NestedCheckKey(MifareDefaultKeys[defaultKeyCounter], &AuthData, cmd, cmdsize, parity)) { PrintAndLog(" | * | key | default key:%012"PRIx64" ks2:%08x ks3:%08x | |", MifareDefaultKeys[defaultKeyCounter], AuthData.ks2, AuthData.ks3); mfLastKey = MifareDefaultKeys[defaultKeyCounter]; traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3); break; }; } } // nested if (!traceCrypto1 && validate_prng_nonce(AuthData.nt)) { uint32_t ntx = prng_successor(AuthData.nt, 90); for (int i = 0; i < 16383; i++) { ntx = prng_successor(ntx, 1); if (NTParityChk(&AuthData, ntx)){ uint32_t ks2 = AuthData.ar_enc ^ prng_successor(ntx, 64); uint32_t ks3 = AuthData.at_enc ^ prng_successor(ntx, 96); struct Crypto1State *pcs = lfsr_recovery64(ks2, ks3); memcpy(mfData, cmd, cmdsize); mf_crypto1_decrypt(pcs, mfData, cmdsize, 0); crypto1_destroy(pcs); if (CheckCrypto1Parity(cmd, cmdsize, mfData, parity) && CheckCrc14443(CRC_14443_A, mfData, cmdsize)) { AuthData.ks2 = ks2; AuthData.ks3 = ks3; AuthData.nt = ntx; mfLastKey = GetCrypto1ProbableKey(&AuthData); PrintAndLog(" | * | key | nested probable key:%012"PRIx64" ks2:%08x ks3:%08x | |", mfLastKey, AuthData.ks2, AuthData.ks3); traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3); break; } } } } //hardnested if (!traceCrypto1) { printf("hardnested not implemented. uid:%x nt:%x ar_enc:%x at_enc:%x\n", AuthData.uid, AuthData.nt, AuthData.ar_enc, AuthData.at_enc); MifareAuthState = masError; /* TOO SLOW( needs to have more strong filter. with this filter - aprox 4 mln tests uint32_t t = msclock(); uint32_t t1 = t; int n = 0; for (uint32_t i = 0; i < 0xFFFFFFFF; i++) { if (NTParityChk(&AuthData, i)){ uint32_t ks2 = AuthData.ar_enc ^ prng_successor(i, 64); uint32_t ks3 = AuthData.at_enc ^ prng_successor(i, 96); struct Crypto1State *pcs = lfsr_recovery64(ks2, ks3); n++; if (!(n % 100000)) { printf("delta=%d n=%d ks2=%x ks3=%x \n", msclock() - t1 , n, ks2, ks3); t1 = msclock(); } } } printf("delta=%d n=%d\n", msclock() - t, n); */ } } MifareAuthState = masData; } if (MifareAuthState == masData && traceCrypto1) { memcpy(mfData, cmd, cmdsize); mf_crypto1_decrypt(traceCrypto1, mfData, cmdsize, 0); *mfDataLen = cmdsize; } return *mfDataLen > 0; } bool is_last_record(uint16_t tracepos, uint8_t *trace, uint16_t traceLen) { return(tracepos + sizeof(uint32_t) + sizeof(uint16_t) + sizeof(uint16_t) >= traceLen); } bool next_record_is_response(uint16_t tracepos, uint8_t *trace) { uint16_t next_records_datalen = *((uint16_t *)(trace + tracepos + sizeof(uint32_t) + sizeof(uint16_t))); return(next_records_datalen & 0x8000); } bool merge_topaz_reader_frames(uint32_t timestamp, uint32_t *duration, uint16_t *tracepos, uint16_t traceLen, uint8_t *trace, uint8_t *frame, uint8_t *topaz_reader_command, uint16_t *data_len) { #define MAX_TOPAZ_READER_CMD_LEN 16 uint32_t last_timestamp = timestamp + *duration; if ((*data_len != 1) || (frame[0] == TOPAZ_WUPA) || (frame[0] == TOPAZ_REQA)) return false; memcpy(topaz_reader_command, frame, *data_len); while (!is_last_record(*tracepos, trace, traceLen) && !next_record_is_response(*tracepos, trace)) { uint32_t next_timestamp = *((uint32_t *)(trace + *tracepos)); *tracepos += sizeof(uint32_t); uint16_t next_duration = *((uint16_t *)(trace + *tracepos)); *tracepos += sizeof(uint16_t); uint16_t next_data_len = *((uint16_t *)(trace + *tracepos)) & 0x7FFF; *tracepos += sizeof(uint16_t); uint8_t *next_frame = (trace + *tracepos); *tracepos += next_data_len; if ((next_data_len == 1) && (*data_len + next_data_len <= MAX_TOPAZ_READER_CMD_LEN)) { memcpy(topaz_reader_command + *data_len, next_frame, next_data_len); *data_len += next_data_len; last_timestamp = next_timestamp + next_duration; } else { // rewind and exit *tracepos = *tracepos - next_data_len - sizeof(uint16_t) - sizeof(uint16_t) - sizeof(uint32_t); break; } uint16_t next_parity_len = (next_data_len-1)/8 + 1; *tracepos += next_parity_len; } *duration = last_timestamp - timestamp; return true; } uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, uint8_t protocol, bool showWaitCycles, bool markCRCBytes, uint32_t *prev_EOT, bool times_in_us) { bool isResponse; uint16_t data_len, parity_len; uint32_t duration; uint8_t topaz_reader_command[9]; uint32_t timestamp, first_timestamp; uint32_t EndOfTransmissionTimestamp = 0; char explanation[30] = {0}; uint8_t mfData[32] = {0}; size_t mfDataLen = 0; if (tracepos + sizeof(uint32_t) + sizeof(uint16_t) + sizeof(uint16_t) > traceLen) return traceLen; first_timestamp = *((uint32_t *)(trace)); timestamp = *((uint32_t *)(trace + tracepos)); tracepos += 4; duration = *((uint16_t *)(trace + tracepos)); tracepos += 2; data_len = *((uint16_t *)(trace + tracepos)); tracepos += 2; if (data_len & 0x8000) { data_len &= 0x7fff; isResponse = true; } else { isResponse = false; } parity_len = (data_len-1)/8 + 1; if (tracepos + data_len + parity_len > traceLen) { return traceLen; } uint8_t *frame = trace + tracepos; tracepos += data_len; uint8_t *parityBytes = trace + tracepos; tracepos += parity_len; if (protocol == TOPAZ && !isResponse) { // topaz reader commands come in 1 or 9 separate frames with 7 or 8 Bits each. // merge them: if (merge_topaz_reader_frames(timestamp, &duration, &tracepos, traceLen, trace, frame, topaz_reader_command, &data_len)) { frame = topaz_reader_command; } } // adjust for different time scales if (protocol == ICLASS || protocol == ISO_15693) { duration *= 32; } //Check the CRC status uint8_t crcStatus = 2; if (data_len > 2) { switch (protocol) { case ICLASS: crcStatus = iclass_CRC_check(isResponse, frame, data_len); break; case ISO_14443B: case TOPAZ: crcStatus = iso14443B_CRC_check(isResponse, frame, data_len); break; case PROTO_MIFARE: crcStatus = mifare_CRC_check(isResponse, frame, data_len); break; case ISO_14443A: crcStatus = iso14443A_CRC_check(isResponse, frame, data_len); break; case ISO_14443_4: crcStatus = iso14443_4_CRC_check(frame, data_len); break; case ISO_15693: crcStatus = iso15693_CRC_check(frame, data_len); break; default: break; } } //0 CRC-command, CRC not ok //1 CRC-command, CRC ok //2 Not crc-command //--- Draw the data column char line[16][110]; for (int j = 0; j < data_len && j/16 < 16; j++) { uint8_t parityBits = parityBytes[j>>3]; if (protocol != ISO_14443B && protocol != ISO_15693 && protocol != ICLASS && protocol != ISO_7816_4 && (isResponse || protocol == ISO_14443A) && (oddparity8(frame[j]) != ((parityBits >> (7-(j&0x0007))) & 0x01))) { snprintf(line[j/16]+(( j % 16) * 4), 110, " %02x!", frame[j]); } else { snprintf(line[j/16]+(( j % 16) * 4), 110, " %02x ", frame[j]); } } if (markCRCBytes) { if (crcStatus == 0 || crcStatus == 1) { //CRC-command char *pos1 = line[(data_len-2)/16]+(((data_len-2) % 16) * 4); (*pos1) = '['; char *pos2 = line[(data_len)/16]+(((data_len) % 16) * 4); sprintf(pos2, "%c", ']'); } } // mark short bytes (less than 8 Bit + Parity) if (protocol == ISO_14443A || protocol == PROTO_MIFARE) { if (duration < 128 * (9 * data_len)) { line[(data_len-1)/16][((data_len-1)%16) * 4 + 3] = '\''; } } if (data_len == 0) { if (protocol == ICLASS && duration == 2048) { sprintf(line[0], " "); } else if (protocol == ISO_15693 && duration == 512) { sprintf(line[0], " "); } else { sprintf(line[0], " "); } } //--- Draw the CRC column char *crc = (crcStatus == 0 ? "!crc" : (crcStatus == 1 ? " ok " : " ")); if (protocol == PROTO_MIFARE) annotateMifare(explanation, sizeof(explanation), frame, data_len, parityBytes, parity_len, isResponse); if (!isResponse) { switch(protocol) { case ICLASS: annotateIclass(explanation,sizeof(explanation),frame,data_len); break; case ISO_14443A: annotateIso14443a(explanation,sizeof(explanation),frame,data_len); break; case ISO_14443B: annotateIso14443b(explanation,sizeof(explanation),frame,data_len); break; case TOPAZ: annotateTopaz(explanation,sizeof(explanation),frame,data_len); break; case ISO_15693: annotateIso15693(explanation,sizeof(explanation),frame,data_len); break; case ISO_7816_4: annotateIso7816(explanation, sizeof(explanation), frame, data_len); break; case ISO_14443_4: annotateIso14443_4(explanation, sizeof(explanation), frame, data_len); break; default: break; } } uint32_t previousEndOfTransmissionTimestamp = 0; if (prev_EOT) { if (*prev_EOT) { previousEndOfTransmissionTimestamp = *prev_EOT; } else { previousEndOfTransmissionTimestamp = timestamp; } } EndOfTransmissionTimestamp = timestamp + duration; if (prev_EOT) *prev_EOT = EndOfTransmissionTimestamp; int num_lines = MIN((data_len - 1)/16 + 1, 16); for (int j = 0; j < num_lines ; j++) { if (j == 0) { uint32_t time1 = timestamp - first_timestamp; uint32_t time2 = EndOfTransmissionTimestamp - first_timestamp; if (prev_EOT) { time1 = timestamp - previousEndOfTransmissionTimestamp; time2 = duration; } if (times_in_us) { PrintAndLog(" %10.1f | %10.1f | %s |%-64s | %s| %s", (float)time1/13.56, (float)time2/13.56, isResponse ? "Tag" : "Rdr", line[j], (j == num_lines-1) ? crc : " ", (j == num_lines-1) ? explanation : ""); } else { PrintAndLog(" %10" PRIu32 " | %10" PRIu32 " | %s |%-64s | %s| %s", time1, time2, isResponse ? "Tag" : "Rdr", line[j], (j == num_lines-1) ? crc : " ", (j == num_lines-1) ? explanation : ""); } } else { PrintAndLog(" | | |%-64s | %s| %s", line[j], (j == num_lines-1) ? crc : " ", (j == num_lines-1) ? explanation : ""); } } if (DecodeMifareData(frame, data_len, parityBytes, isResponse, mfData, &mfDataLen)) { memset(explanation, 0x00, sizeof(explanation)); if (!isResponse) { explanation[0] = '>'; annotateIso14443a(&explanation[1], sizeof(explanation) - 1, mfData, mfDataLen); } uint8_t crcc = iso14443A_CRC_check(isResponse, mfData, mfDataLen); PrintAndLog(" | * | dec |%-64s | %-4s| %s", sprint_hex(mfData, mfDataLen), (crcc == 0 ? "!crc" : (crcc == 1 ? " ok " : " ")), (true) ? explanation : ""); }; if (is_last_record(tracepos, trace, traceLen)) return traceLen; if (showWaitCycles && !isResponse && next_record_is_response(tracepos, trace)) { uint32_t next_timestamp = *((uint32_t *)(trace + tracepos)); PrintAndLog(" %10d | %10d | %s | fdt (Frame Delay Time): %d", (EndOfTransmissionTimestamp - first_timestamp), (next_timestamp - first_timestamp), " ", (next_timestamp - EndOfTransmissionTimestamp)); } return tracepos; } int CmdHFList(const char *Cmd) { CLIParserInit("hf list", "\nList or save protocol data.", "examples: hf list 14a -f -- interpret as ISO14443A communication and display Frame Delay Times\n"\ " hf list iclass -- interpret as iClass trace\n"\ " hf list -s myCardTrace.trc -- save trace for later use\n"\ " hf list 14a -l myCardTrace.trc -- load trace and interpret as ISO14443A communication\n"); void* argtable[] = { arg_param_begin, arg_lit0("f", "fdt", "display fdt (frame delay times)"), arg_lit0("r", "relative", "show relative times (gap and duration)"), arg_lit0("c", "crc" , "mark CRC bytes"), arg_lit0("p", "pcsc", "show trace buffer from PCSC card reader instead of PM3"), arg_str0("l", "load", "", "load trace from file"), arg_str0("s", "save", "", "save trace to file"), arg_lit0("u", "us", "display times in microseconds instead of clock cycles"), arg_str0(NULL, NULL, "", "protocol to interpret. Possible values:\n"\ "\traw - just show raw data without annotations (default)\n"\ "\t14a - interpret data as ISO14443A communications\n"\ "\tmf - interpret data as ISO14443A communications and decrypt Mifare Crypto1 stream\n"\ "\t14b - interpret data as ISO14443B communications\n"\ "\t15 - interpret data as ISO15693 communications\n"\ "\ticlass - interpret data as iClass communications\n"\ "\ttopaz - interpret data as Topaz communications\n"\ "\t7816 - interpret data as 7816-4 APDU communications\n"\ "\t14-4 - interpret data as ISO14443-4 communications"), arg_param_end }; if (CLIParserParseString(Cmd, argtable, arg_getsize(argtable), true)){ CLIParserFree(); return 0; } bool showWaitCycles = arg_get_lit(1); bool relative_times = arg_get_lit(2); bool markCRCBytes = arg_get_lit(3); bool PCSCtrace = arg_get_lit(4); bool loadFromFile = arg_get_str_len(5); bool saveToFile = arg_get_str_len(6); bool times_in_us = arg_get_lit(7); uint32_t previous_EOT = 0; uint32_t *prev_EOT = NULL; if (relative_times) { prev_EOT = &previous_EOT; } char load_filename[FILE_PATH_SIZE+1] = {0}; if (loadFromFile) { strncpy(load_filename, arg_get_str(5)->sval[0], FILE_PATH_SIZE); } char save_filename[FILE_PATH_SIZE+1] = {0}; if (saveToFile) { strncpy(save_filename, arg_get_str(6)->sval[0], FILE_PATH_SIZE); } uint8_t protocol = -1; if (arg_get_str_len(8)) { if (strcmp(arg_get_str(8)->sval[0], "iclass") == 0) protocol = ICLASS; else if(strcmp(arg_get_str(8)->sval[0], "14a") == 0) protocol = ISO_14443A; else if(strcmp(arg_get_str(8)->sval[0], "mf") == 0) protocol = PROTO_MIFARE; else if(strcmp(arg_get_str(8)->sval[0], "14b") == 0) protocol = ISO_14443B; else if(strcmp(arg_get_str(8)->sval[0], "topaz") == 0) protocol = TOPAZ; else if(strcmp(arg_get_str(8)->sval[0], "7816") == 0) protocol = ISO_7816_4; else if(strcmp(arg_get_str(8)->sval[0], "14-4") == 0) protocol = ISO_14443_4; else if(strcmp(arg_get_str(8)->sval[0], "15") == 0) protocol = ISO_15693; else if(strcmp(arg_get_str(8)->sval[0], "raw") == 0) protocol = -1;//No crc, no annotations else { PrintAndLog("hf list: invalid argument \"%s\"\nTry 'hf list --help' for more information.", arg_get_str(8)->sval[0]); CLIParserFree(); return 0; } } CLIParserFree(); uint8_t *trace; uint32_t tracepos = 0; uint32_t traceLen = 0; if (loadFromFile) { #define TRACE_CHUNK_SIZE (1<<16) // 64K to start with. Will be enough for BigBuf and some room for future extensions FILE *tracefile = NULL; size_t bytes_read; trace = malloc(TRACE_CHUNK_SIZE); if (trace == NULL) { PrintAndLog("Cannot allocate memory for trace"); return 2; } if ((tracefile = fopen(load_filename,"rb")) == NULL) { PrintAndLog("Could not open file %s", load_filename); free(trace); return 0; } while (!feof(tracefile)) { bytes_read = fread(trace+traceLen, 1, TRACE_CHUNK_SIZE, tracefile); traceLen += bytes_read; if (!feof(tracefile)) { uint8_t *p = realloc(trace, traceLen + TRACE_CHUNK_SIZE); if (p == NULL) { PrintAndLog("Cannot allocate memory for trace"); free(trace); fclose(tracefile); return 2; } trace = p; } } fclose(tracefile); } else if (PCSCtrace) { trace = pcsc_get_trace_addr(); traceLen = pcsc_get_traceLen(); } else { trace = malloc(USB_CMD_DATA_SIZE); // Query for the size of the trace UsbCommand response; if (!(GetFromBigBuf(trace, USB_CMD_DATA_SIZE, 0, &response, 500, false))) { return 1; } traceLen = response.arg[2]; if (traceLen > USB_CMD_DATA_SIZE) { uint8_t *p = realloc(trace, traceLen); if (p == NULL) { PrintAndLog("Cannot allocate memory for trace"); free(trace); return 2; } trace = p; if (!(GetFromBigBuf(trace, traceLen, 0, NULL, 500, false))) { return 1; } } } if (saveToFile) { FILE *tracefile = NULL; if ((tracefile = fopen(save_filename,"wb")) == NULL) { PrintAndLog("Could not create file %s", save_filename); return 1; } fwrite(trace, 1, traceLen, tracefile); PrintAndLog("Recorded Activity (TraceLen = %d bytes) written to file %s", traceLen, save_filename); fclose(tracefile); } else { PrintAndLog("Recorded Activity (TraceLen = %d bytes)", traceLen); PrintAndLog(""); if (relative_times) { PrintAndLog("Gap = time between transfers. Duration = duration of data transfer. Src = Source of transfer"); } else { PrintAndLog("Start = Start of Frame, End = End of Frame. Src = Source of transfer"); } if (times_in_us) { PrintAndLog("All times are in microseconds"); } else { PrintAndLog("All times are in carrier periods (1/13.56Mhz)"); } PrintAndLog(""); if (relative_times) { PrintAndLog(" Gap | Duration | Src | Data (! denotes parity error, ' denotes short bytes) | CRC | Annotation |"); } else { PrintAndLog(" Start | End | Src | Data (! denotes parity error, ' denotes short bytes) | CRC | Annotation |"); } PrintAndLog("------------|------------|-----|-----------------------------------------------------------------|-----|--------------------|"); ClearAuthData(); while(tracepos < traceLen) { tracepos = printTraceLine(tracepos, traceLen, trace, protocol, showWaitCycles, markCRCBytes, prev_EOT, times_in_us); } } free(trace); return 0; }