//----------------------------------------------------------------------------- // Gerhard de Koning Gans - May 2008 // Hagen Fritsch - June 2010 // Gerhard de Koning Gans - May 2011 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation // piwi - 2019 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Routines to support iClass. //----------------------------------------------------------------------------- // Contribution made during a security research at Radboud University Nijmegen // // Please feel free to contribute and extend iClass support!! //----------------------------------------------------------------------------- #include "iclass.h" #include "proxmark3.h" #include "apps.h" #include "util.h" #include "string.h" #include "printf.h" #include "common.h" #include "usb_cdc.h" #include "iso14443a.h" #include "iso15693.h" // Needed for CRC in emulation mode; // same construction as in ISO 14443; // different initial value (CRC_ICLASS) #include "iso14443crc.h" #include "iso15693tools.h" #include "protocols.h" #include "optimized_cipher.h" #include "fpgaloader.h" // iCLASS has a slightly different timing compared to ISO15693. According to the picopass data sheet the tag response is expected 330us after // the reader command. This is measured from end of reader EOF to first modulation of the tag's SOF which starts with a 56,64us unmodulated period. // 330us = 140 ssp_clk cycles @ 423,75kHz when simulating. // 56,64us = 24 ssp_clk_cycles #define DELAY_ICLASS_VCD_TO_VICC_SIM (140 - 24) // times in ssp_clk_cycles @ 3,3625MHz when acting as reader #define DELAY_ICLASS_VICC_TO_VCD_READER DELAY_ISO15693_VICC_TO_VCD_READER // times in samples @ 212kHz when acting as reader #define ICLASS_READER_TIMEOUT_ACTALL 330 // 1558us, nominal 330us + 7slots*160us = 1450us #define ICLASS_READER_TIMEOUT_UPDATE 3390 // 16000us, nominal 4-15ms #define ICLASS_READER_TIMEOUT_OTHERS 80 // 380us, nominal 330us #define ICLASS_BUFFER_SIZE 34 // we expect max 34 bytes as tag answer (response to READ4) //============================================================================= // A `sniffer' for iClass communication // Both sides of communication! //============================================================================= void SnoopIClass(uint8_t jam_search_len, uint8_t *jam_search_string) { SnoopIso15693(jam_search_len, jam_search_string); } void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) { int i; for (i = 0; i < 8; i++) { rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5); } } // Encode SOF only static void CodeIClassTagSOF() { ToSendReset(); ToSend[++ToSendMax] = 0x1D; ToSendMax++; } static void AppendCrc(uint8_t *data, int len) { ComputeCrc14443(CRC_ICLASS, data, len, data+len, data+len+1); } /** * @brief Does the actual simulation */ int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) { // free eventually allocated BigBuf memory BigBuf_free_keep_EM(); uint16_t page_size = 32 * 8; uint8_t current_page = 0; // maintain cipher states for both credit and debit key for each page State cipher_state_KC[8]; State cipher_state_KD[8]; State *cipher_state = &cipher_state_KD[0]; uint8_t *emulator = BigBuf_get_EM_addr(); uint8_t *csn = emulator; // CSN followed by two CRC bytes uint8_t anticoll_data[10]; uint8_t csn_data[10]; memcpy(csn_data, csn, sizeof(csn_data)); Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x", csn[0], csn[1], csn[2], csn[3], csn[4], csn[5], csn[6], csn[7]); // Construct anticollision-CSN rotateCSN(csn_data, anticoll_data); // Compute CRC on both CSNs AppendCrc(anticoll_data, 8); AppendCrc(csn_data, 8); uint8_t diversified_key_d[8] = { 0x00 }; uint8_t diversified_key_c[8] = { 0x00 }; uint8_t *diversified_key = diversified_key_d; // configuration block uint8_t conf_block[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00}; // e-Purse uint8_t card_challenge_data[8] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; if (simulationMode == ICLASS_SIM_MODE_FULL) { // initialize from page 0 memcpy(conf_block, emulator + 8 * 1, 8); memcpy(card_challenge_data, emulator + 8 * 2, 8); // e-purse memcpy(diversified_key_d, emulator + 8 * 3, 8); // Kd memcpy(diversified_key_c, emulator + 8 * 4, 8); // Kc } AppendCrc(conf_block, 8); // save card challenge for sim2,4 attack if (reader_mac_buf != NULL) { memcpy(reader_mac_buf, card_challenge_data, 8); } if (conf_block[5] & 0x80) { page_size = 256 * 8; } // From PicoPass DS: // When the page is in personalization mode this bit is equal to 1. // Once the application issuer has personalized and coded its dedicated areas, this bit must be set to 0: // the page is then "in application mode". bool personalization_mode = conf_block[7] & 0x80; // chip memory may be divided in 8 pages uint8_t max_page = conf_block[4] & 0x10 ? 0 : 7; // Precalculate the cipher states, feeding it the CC cipher_state_KD[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_d); cipher_state_KC[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_c); if (simulationMode == ICLASS_SIM_MODE_FULL) { for (int i = 1; i < max_page; i++) { uint8_t *epurse = emulator + i*page_size + 8*2; uint8_t *Kd = emulator + i*page_size + 8*3; uint8_t *Kc = emulator + i*page_size + 8*4; cipher_state_KD[i] = opt_doTagMAC_1(epurse, Kd); cipher_state_KC[i] = opt_doTagMAC_1(epurse, Kc); } } int exitLoop = 0; // Reader 0a // Tag 0f // Reader 0c // Tag anticoll. CSN // Reader 81 anticoll. CSN // Tag CSN uint8_t *modulated_response; int modulated_response_size = 0; uint8_t *trace_data = NULL; int trace_data_size = 0; // Respond SOF -- takes 1 bytes uint8_t *resp_sof = BigBuf_malloc(1); int resp_sof_Len; // Anticollision CSN (rotated CSN) // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) uint8_t *resp_anticoll = BigBuf_malloc(22); int resp_anticoll_len; // CSN (block 0) // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) uint8_t *resp_csn = BigBuf_malloc(22); int resp_csn_len; // configuration (block 1) picopass 2ks uint8_t *resp_conf = BigBuf_malloc(22); int resp_conf_len; // e-Purse (block 2) // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit) uint8_t *resp_cc = BigBuf_malloc(18); int resp_cc_len; // Kd, Kc (blocks 3 and 4). Cannot be read. Always respond with 0xff bytes only uint8_t *resp_ff = BigBuf_malloc(22); int resp_ff_len; uint8_t ff_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00}; AppendCrc(ff_data, 8); // Application Issuer Area (block 5) uint8_t *resp_aia = BigBuf_malloc(22); int resp_aia_len; uint8_t aia_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00}; AppendCrc(aia_data, 8); uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); int len; // Prepare card messages // First card answer: SOF only CodeIClassTagSOF(); memcpy(resp_sof, ToSend, ToSendMax); resp_sof_Len = ToSendMax; // Anticollision CSN CodeIso15693AsTag(anticoll_data, sizeof(anticoll_data)); memcpy(resp_anticoll, ToSend, ToSendMax); resp_anticoll_len = ToSendMax; // CSN (block 0) CodeIso15693AsTag(csn_data, sizeof(csn_data)); memcpy(resp_csn, ToSend, ToSendMax); resp_csn_len = ToSendMax; // Configuration (block 1) CodeIso15693AsTag(conf_block, sizeof(conf_block)); memcpy(resp_conf, ToSend, ToSendMax); resp_conf_len = ToSendMax; // e-Purse (block 2) CodeIso15693AsTag(card_challenge_data, sizeof(card_challenge_data)); memcpy(resp_cc, ToSend, ToSendMax); resp_cc_len = ToSendMax; // Kd, Kc (blocks 3 and 4) CodeIso15693AsTag(ff_data, sizeof(ff_data)); memcpy(resp_ff, ToSend, ToSendMax); resp_ff_len = ToSendMax; // Application Issuer Area (block 5) CodeIso15693AsTag(aia_data, sizeof(aia_data)); memcpy(resp_aia, ToSend, ToSendMax); resp_aia_len = ToSendMax; //This is used for responding to READ-block commands or other data which is dynamically generated uint8_t *data_generic_trace = BigBuf_malloc(32 + 2); // 32 bytes data + 2byte CRC is max tag answer uint8_t *data_response = BigBuf_malloc( (32 + 2) * 2 + 2); bool buttonPressed = false; enum { IDLE, ACTIVATED, SELECTED, HALTED } chip_state = IDLE; while (!exitLoop) { WDT_HIT(); uint32_t reader_eof_time = 0; len = GetIso15693CommandFromReader(receivedCmd, MAX_FRAME_SIZE, &reader_eof_time); if (len < 0) { buttonPressed = true; break; } // Now look at the reader command and provide appropriate responses // default is no response: modulated_response = NULL; modulated_response_size = 0; trace_data = NULL; trace_data_size = 0; if (receivedCmd[0] == ICLASS_CMD_ACTALL && len == 1) { // Reader in anticollision phase if (chip_state != HALTED) { modulated_response = resp_sof; modulated_response_size = resp_sof_Len; chip_state = ACTIVATED; } } else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { // identify // Reader asks for anticollision CSN if (chip_state == SELECTED || chip_state == ACTIVATED) { modulated_response = resp_anticoll; modulated_response_size = resp_anticoll_len; trace_data = anticoll_data; trace_data_size = sizeof(anticoll_data); } } else if (receivedCmd[0] == ICLASS_CMD_SELECT && len == 9) { // Reader selects anticollision CSN. // Tag sends the corresponding real CSN if (chip_state == ACTIVATED || chip_state == SELECTED) { if (!memcmp(receivedCmd+1, anticoll_data, 8)) { modulated_response = resp_csn; modulated_response_size = resp_csn_len; trace_data = csn_data; trace_data_size = sizeof(csn_data); chip_state = SELECTED; } else { chip_state = IDLE; } } else if (chip_state == HALTED) { // RESELECT with CSN if (!memcmp(receivedCmd+1, csn_data, 8)) { modulated_response = resp_csn; modulated_response_size = resp_csn_len; trace_data = csn_data; trace_data_size = sizeof(csn_data); chip_state = SELECTED; } } } else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4) { // read block uint16_t blockNo = receivedCmd[1]; if (chip_state == SELECTED) { if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) { // provide defaults for blocks 0 ... 5 switch (blockNo) { case 0: // csn (block 00) modulated_response = resp_csn; modulated_response_size = resp_csn_len; trace_data = csn_data; trace_data_size = sizeof(csn_data); break; case 1: // configuration (block 01) modulated_response = resp_conf; modulated_response_size = resp_conf_len; trace_data = conf_block; trace_data_size = sizeof(conf_block); break; case 2: // e-purse (block 02) modulated_response = resp_cc; modulated_response_size = resp_cc_len; trace_data = card_challenge_data; trace_data_size = sizeof(card_challenge_data); // set epurse of sim2,4 attack if (reader_mac_buf != NULL) { memcpy(reader_mac_buf, card_challenge_data, 8); } break; case 3: case 4: // Kd, Kc, always respond with 0xff bytes modulated_response = resp_ff; modulated_response_size = resp_ff_len; trace_data = ff_data; trace_data_size = sizeof(ff_data); break; case 5: // Application Issuer Area (block 05) modulated_response = resp_aia; modulated_response_size = resp_aia_len; trace_data = aia_data; trace_data_size = sizeof(aia_data); break; // default: don't respond } } else if (simulationMode == ICLASS_SIM_MODE_FULL) { if (blockNo == 3 || blockNo == 4) { // Kd, Kc, always respond with 0xff bytes modulated_response = resp_ff; modulated_response_size = resp_ff_len; trace_data = ff_data; trace_data_size = sizeof(ff_data); } else { // use data from emulator memory memcpy(data_generic_trace, emulator + current_page*page_size + 8*blockNo, 8); AppendCrc(data_generic_trace, 8); trace_data = data_generic_trace; trace_data_size = 10; CodeIso15693AsTag(trace_data, trace_data_size); memcpy(data_response, ToSend, ToSendMax); modulated_response = data_response; modulated_response_size = ToSendMax; } } } } else if ((receivedCmd[0] == ICLASS_CMD_READCHECK_KD || receivedCmd[0] == ICLASS_CMD_READCHECK_KC) && receivedCmd[1] == 0x02 && len == 2) { // Read e-purse (88 02 || 18 02) if (chip_state == SELECTED) { if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD){ cipher_state = &cipher_state_KD[current_page]; diversified_key = diversified_key_d; } else { cipher_state = &cipher_state_KC[current_page]; diversified_key = diversified_key_c; } modulated_response = resp_cc; modulated_response_size = resp_cc_len; trace_data = card_challenge_data; trace_data_size = sizeof(card_challenge_data); } } else if ((receivedCmd[0] == ICLASS_CMD_CHECK_KC || receivedCmd[0] == ICLASS_CMD_CHECK_KD) && len == 9) { // Reader random and reader MAC!!! if (chip_state == SELECTED) { if (simulationMode == ICLASS_SIM_MODE_FULL) { //NR, from reader, is in receivedCmd+1 opt_doTagMAC_2(*cipher_state, receivedCmd+1, data_generic_trace, diversified_key); trace_data = data_generic_trace; trace_data_size = 4; CodeIso15693AsTag(trace_data, trace_data_size); memcpy(data_response, ToSend, ToSendMax); modulated_response = data_response; modulated_response_size = ToSendMax; //exitLoop = true; } else { // Not fullsim, we don't respond // We do not know what to answer, so lets keep quiet if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) { if (reader_mac_buf != NULL) { // save NR and MAC for sim 2,4 memcpy(reader_mac_buf + 8, receivedCmd + 1, 8); } exitLoop = true; } } } } else if (receivedCmd[0] == ICLASS_CMD_HALT && len == 1) { if (chip_state == SELECTED) { // Reader ends the session modulated_response = resp_sof; modulated_response_size = resp_sof_Len; chip_state = HALTED; } } else if (simulationMode == ICLASS_SIM_MODE_FULL && receivedCmd[0] == ICLASS_CMD_READ4 && len == 4) { // 0x06 //Read 4 blocks if (chip_state == SELECTED) { uint8_t blockNo = receivedCmd[1]; memcpy(data_generic_trace, emulator + current_page*page_size + blockNo*8, 8 * 4); AppendCrc(data_generic_trace, 8 * 4); trace_data = data_generic_trace; trace_data_size = 8 * 4 + 2; CodeIso15693AsTag(trace_data, trace_data_size); memcpy(data_response, ToSend, ToSendMax); modulated_response = data_response; modulated_response_size = ToSendMax; } } else if (receivedCmd[0] == ICLASS_CMD_UPDATE && (len == 12 || len == 14)) { // We're expected to respond with the data+crc, exactly what's already in the receivedCmd // receivedCmd is now UPDATE 1b | ADDRESS 1b | DATA 8b | Signature 4b or CRC 2b if (chip_state == SELECTED) { uint8_t blockNo = receivedCmd[1]; if (blockNo == 2) { // update e-purse memcpy(card_challenge_data, receivedCmd+2, 8); CodeIso15693AsTag(card_challenge_data, sizeof(card_challenge_data)); memcpy(resp_cc, ToSend, ToSendMax); resp_cc_len = ToSendMax; cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d); cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_c); if (simulationMode == ICLASS_SIM_MODE_FULL) { memcpy(emulator + current_page*page_size + 8*2, card_challenge_data, 8); } } else if (blockNo == 3) { // update Kd for (int i = 0; i < 8; i++) { if (personalization_mode) { diversified_key_d[i] = receivedCmd[2 + i]; } else { diversified_key_d[i] ^= receivedCmd[2 + i]; } } cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d); if (simulationMode == ICLASS_SIM_MODE_FULL) { memcpy(emulator + current_page*page_size + 8*3, diversified_key_d, 8); } } else if (blockNo == 4) { // update Kc for (int i = 0; i < 8; i++) { if (personalization_mode) { diversified_key_c[i] = receivedCmd[2 + i]; } else { diversified_key_c[i] ^= receivedCmd[2 + i]; } } cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_c); if (simulationMode == ICLASS_SIM_MODE_FULL) { memcpy(emulator + current_page*page_size + 8*4, diversified_key_c, 8); } } else if (simulationMode == ICLASS_SIM_MODE_FULL) { // update any other data block memcpy(emulator + current_page*page_size + 8*blockNo, receivedCmd+2, 8); } memcpy(data_generic_trace, receivedCmd + 2, 8); AppendCrc(data_generic_trace, 8); trace_data = data_generic_trace; trace_data_size = 10; CodeIso15693AsTag(trace_data, trace_data_size); memcpy(data_response, ToSend, ToSendMax); modulated_response = data_response; modulated_response_size = ToSendMax; } } else if (receivedCmd[0] == ICLASS_CMD_PAGESEL && len == 4) { // Pagesel // Chips with a single page will not answer to this command // Otherwise, we should answer 8bytes (conf block 1) + 2bytes CRC if (chip_state == SELECTED) { if (simulationMode == ICLASS_SIM_MODE_FULL && max_page > 0) { current_page = receivedCmd[1]; memcpy(data_generic_trace, emulator + current_page*page_size + 8*1, 8); memcpy(diversified_key_d, emulator + current_page*page_size + 8*3, 8); memcpy(diversified_key_c, emulator + current_page*page_size + 8*4, 8); cipher_state = &cipher_state_KD[current_page]; personalization_mode = data_generic_trace[7] & 0x80; AppendCrc(data_generic_trace, 8); trace_data = data_generic_trace; trace_data_size = 10; CodeIso15693AsTag(trace_data, trace_data_size); memcpy(data_response, ToSend, ToSendMax); modulated_response = data_response; modulated_response_size = ToSendMax; } } } else if (receivedCmd[0] == 0x26 && len == 5) { // standard ISO15693 INVENTORY command. Ignore. } else { // don't know how to handle this command char debug_message[250]; // should be enough sprintf(debug_message, "Unhandled command (len = %d) received from reader:", len); for (int i = 0; i < len && strlen(debug_message) < sizeof(debug_message) - 3 - 1; i++) { sprintf(debug_message + strlen(debug_message), " %02x", receivedCmd[i]); } Dbprintf("%s", debug_message); // Do not respond } /** A legit tag has about 273,4us delay between reader EOT and tag SOF. **/ if (modulated_response_size > 0) { uint32_t response_time = reader_eof_time + DELAY_ICLASS_VCD_TO_VICC_SIM; TransmitTo15693Reader(modulated_response, modulated_response_size, &response_time, 0, false); LogTrace_ISO15693(trace_data, trace_data_size, response_time*32, response_time*32 + modulated_response_size*32*64, NULL, false); } } if (buttonPressed) { DbpString("Button pressed"); } return buttonPressed; } /** * @brief SimulateIClass simulates an iClass card. * @param arg0 type of simulation * - 0 uses the first 8 bytes in usb data as CSN * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified * in the usb data. This mode collects MAC from the reader, in order to do an offline * attack on the keys. For more info, see "dismantling iclass" and proxclone.com. * - Other : Uses the default CSN (031fec8af7ff12e0) * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only) * @param arg2 * @param datain */ void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) { LED_A_ON(); Iso15693InitTag(); uint32_t simType = arg0; uint32_t numberOfCSNS = arg1; // Enable and clear the trace set_tracing(true); clear_trace(); //Use the emulator memory for SIM uint8_t *emulator = BigBuf_get_EM_addr(); if (simType == ICLASS_SIM_MODE_CSN) { // Use the CSN from commandline memcpy(emulator, datain, 8); doIClassSimulation(ICLASS_SIM_MODE_CSN, NULL); } else if (simType == ICLASS_SIM_MODE_CSN_DEFAULT) { //Default CSN uint8_t csn[] = {0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0}; memcpy(emulator, csn, 8); doIClassSimulation(ICLASS_SIM_MODE_CSN, NULL); } else if (simType == ICLASS_SIM_MODE_READER_ATTACK) { uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 }; Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS); // In this mode, a number of csns are within datain. We'll simulate each one, one at a time // in order to collect MAC's from the reader. This can later be used in an offline-attack // in order to obtain the keys, as in the "dismantling iclass"-paper. int i; for (i = 0; i < numberOfCSNS && i*16+16 <= USB_CMD_DATA_SIZE; i++) { // The usb data is 512 bytes, fitting 32 responses (8 byte CC + 4 Byte NR + 4 Byte MAC = 16 Byte response). memcpy(emulator, datain+(i*8), 8); if (doIClassSimulation(ICLASS_SIM_MODE_EXIT_AFTER_MAC, mac_responses+i*16)) { // Button pressed break; } Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x", datain[i*8+0], datain[i*8+1], datain[i*8+2], datain[i*8+3], datain[i*8+4], datain[i*8+5], datain[i*8+6], datain[i*8+7]); Dbprintf("NR,MAC: %02x %02x %02x %02x %02x %02x %02x %02x", mac_responses[i*16+ 8], mac_responses[i*16+ 9], mac_responses[i*16+10], mac_responses[i*16+11], mac_responses[i*16+12], mac_responses[i*16+13], mac_responses[i*16+14], mac_responses[i*16+15]); SpinDelay(100); // give the reader some time to prepare for next CSN } cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i, 0, mac_responses, i*16); } else if (simType == ICLASS_SIM_MODE_FULL) { //This is 'full sim' mode, where we use the emulator storage for data. doIClassSimulation(ICLASS_SIM_MODE_FULL, NULL); } else { // We may want a mode here where we hardcode the csns to use (from proxclone). // That will speed things up a little, but not required just yet. Dbprintf("The mode is not implemented, reserved for future use"); } Dbprintf("Done..."); LED_A_OFF(); } /// THE READER CODE static void ReaderTransmitIClass(uint8_t *frame, int len, uint32_t *start_time) { CodeIso15693AsReader(frame, len); TransmitTo15693Tag(ToSend, ToSendMax, start_time); uint32_t end_time = *start_time + 32*(8*ToSendMax-4); // substract the 4 padding bits after EOF LogTrace_ISO15693(frame, len, *start_time*4, end_time*4, NULL, true); } static bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, size_t max_resp_size, uint8_t expected_size, uint8_t tries, uint32_t start_time, uint32_t timeout, uint32_t *eof_time) { while (tries-- > 0) { ReaderTransmitIClass(command, cmdsize, &start_time); if (expected_size == GetIso15693AnswerFromTag(resp, max_resp_size, timeout, eof_time)) { return true; } } return false;//Error } /** * @brief Selects an iclass tag * @param card_data where the CSN is stored for return * @return false = fail * true = success */ static bool selectIclassTag(uint8_t *card_data, uint32_t *eof_time) { uint8_t act_all[] = { 0x0a }; uint8_t identify[] = { 0x0c }; uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t resp[ICLASS_BUFFER_SIZE]; uint32_t start_time = GetCountSspClk(); // Send act_all ReaderTransmitIClass(act_all, 1, &start_time); // Card present? if (GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_ACTALL, eof_time) < 0) return false; //Fail //Send Identify start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; ReaderTransmitIClass(identify, 1, &start_time); //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC uint8_t len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time); if (len != 10) return false; //Fail //Copy the Anti-collision CSN to our select-packet memcpy(&select[1], resp, 8); //Select the card start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; ReaderTransmitIClass(select, sizeof(select), &start_time); //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time); if (len != 10) return false; //Fail //Success - we got CSN //Save CSN in response data memcpy(card_data, resp, 8); return true; } // Select an iClass tag and read all blocks which are always readable without authentication void ReaderIClass(uint8_t flags) { LED_A_ON(); uint8_t card_data[6 * 8] = {0}; memset(card_data, 0xFF, sizeof(card_data)); uint8_t resp[ICLASS_BUFFER_SIZE]; //Read conf block CRC(0x01) => 0xfa 0x22 uint8_t readConf[] = {ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22}; //Read e-purse block CRC(0x02) => 0x61 0x10 uint8_t readEpurse[] = {ICLASS_CMD_READ_OR_IDENTIFY, 0x02, 0x61, 0x10}; //Read App Issuer Area block CRC(0x05) => 0xde 0x64 uint8_t readAA[] = {ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64}; uint8_t result_status = 0; if (flags & FLAG_ICLASS_READER_INIT) { Iso15693InitReader(); } if (flags & FLAG_ICLASS_READER_CLEARTRACE) { set_tracing(true); clear_trace(); StartCountSspClk(); } uint32_t start_time = 0; uint32_t eof_time = 0; if (selectIclassTag(resp, &eof_time)) { result_status = FLAG_ICLASS_READER_CSN; memcpy(card_data, resp, 8); start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; //Read block 1, config if (flags & FLAG_ICLASS_READER_CONF) { if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) { result_status |= FLAG_ICLASS_READER_CONF; memcpy(card_data+8, resp, 8); } else { Dbprintf("Failed to read config block"); } start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; } //Read block 2, e-purse if (flags & FLAG_ICLASS_READER_CC) { if (sendCmdGetResponseWithRetries(readEpurse, sizeof(readEpurse), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) { result_status |= FLAG_ICLASS_READER_CC; memcpy(card_data + (8*2), resp, 8); } else { Dbprintf("Failed to read e-purse"); } start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; } //Read block 5, AA if (flags & FLAG_ICLASS_READER_AA) { if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) { result_status |= FLAG_ICLASS_READER_AA; memcpy(card_data + (8*5), resp, 8); } else { Dbprintf("Failed to read AA block"); } } } cmd_send(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data)); LED_A_OFF(); } void iClass_Check(uint8_t *NRMAC) { uint8_t check[9] = {ICLASS_CMD_CHECK_KD, 0x00}; uint8_t resp[4]; memcpy(check+1, NRMAC, 8); uint32_t eof_time; bool isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, sizeof(resp), 4, 3, 0, ICLASS_READER_TIMEOUT_OTHERS, &eof_time); cmd_send(CMD_ACK, isOK, 0, 0, resp, sizeof(resp)); } void iClass_Readcheck(uint8_t block, bool use_credit_key) { uint8_t readcheck[2] = {ICLASS_CMD_READCHECK_KD, block}; if (use_credit_key) { readcheck[0] = ICLASS_CMD_READCHECK_KC; } uint8_t resp[8]; uint32_t eof_time; bool isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 8, 3, 0, ICLASS_READER_TIMEOUT_OTHERS, &eof_time); cmd_send(CMD_ACK, isOK, 0, 0, resp, sizeof(resp)); } static bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) { uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C? uint8_t bl = blockNo; uint16_t rdCrc = iclass_crc16(&bl, 1); readcmd[2] = rdCrc >> 8; readcmd[3] = rdCrc & 0xff; uint8_t resp[10]; uint32_t eof_time; bool isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, sizeof(resp), 10, 10, 0, ICLASS_READER_TIMEOUT_OTHERS, &eof_time); memcpy(readdata, resp, sizeof(resp)); return isOK; } void iClass_ReadBlk(uint8_t blockno) { LED_A_ON(); uint8_t readblockdata[10]; bool isOK = iClass_ReadBlock(blockno, readblockdata); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8); LED_A_OFF(); } void iClass_Dump(uint8_t startblock, uint8_t numblks) { LED_A_ON(); uint8_t readblockdata[USB_CMD_DATA_SIZE+2] = {0}; bool isOK = false; uint16_t blkCnt = 0; if (numblks > USB_CMD_DATA_SIZE / 8) { numblks = USB_CMD_DATA_SIZE / 8; } for (blkCnt = 0; blkCnt < numblks; blkCnt++) { isOK = iClass_ReadBlock(startblock+blkCnt, readblockdata+8*blkCnt); if (!isOK) { Dbprintf("Block %02X failed to read", startblock+blkCnt); break; } } FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); cmd_send(CMD_ACK, isOK, blkCnt, 0, readblockdata, blkCnt*8); LED_A_OFF(); } static bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) { uint8_t write[16] = {ICLASS_CMD_UPDATE, blockNo}; memcpy(write+2, data, 12); // data + mac AppendCrc(write+1, 13); uint8_t resp[10]; bool isOK = false; uint32_t eof_time = 0; isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10, 3, 0, ICLASS_READER_TIMEOUT_UPDATE, &eof_time); if (!isOK) { return false; } uint8_t all_ff[8] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; if (blockNo == 2) { if (memcmp(data+4, resp, 4) || memcmp(data, resp+4, 4)) { // check response. e-purse update swaps first and second half return false; } } else if (blockNo == 3 || blockNo == 4) { if (memcmp(all_ff, resp, 8)) { // check response. Key updates always return 0xffffffffffffffff return false; } } else { if (memcmp(data, resp, 8)) { // check response. All other updates return unchanged data return false; } } return true; } void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) { LED_A_ON(); bool isOK = iClass_WriteBlock_ext(blockNo, data); if (isOK) { Dbprintf("Write block [%02x] successful", blockNo); } else { Dbprintf("Write block [%02x] failed", blockNo); } FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); cmd_send(CMD_ACK, isOK, 0, 0, 0, 0); LED_A_OFF(); } void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) { LED_A_ON(); int written = 0; int total_blocks = (endblock - startblock) + 1; for (uint8_t block = startblock; block <= endblock; block++) { // block number if (iClass_WriteBlock_ext(block, data + (block-startblock)*12)) { Dbprintf("Write block [%02x] successful", block); written++; } else { Dbprintf("Write block [%02x] failed", block); } } if (written == total_blocks) Dbprintf("Clone complete"); else Dbprintf("Clone incomplete"); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); cmd_send(CMD_ACK, 1, 0, 0, 0, 0); LED_A_OFF(); }