Ndef and MAD (#801)

* move mifare stuff to separate folder
* add mad and ndef
This commit is contained in:
Oleg Moiseenko 2019-03-19 08:51:10 +02:00 committed by pwpiwi
parent 3d057cfb91
commit fdd9395d1a
27 changed files with 2843 additions and 1588 deletions

View file

@ -28,6 +28,8 @@ This project uses the changelog in accordance with [keepchangelog](http://keepac
- Added `hf 15 snoop` (piwi)
- Added support for standard USB Smartcard Readers (piwi)
- Added `hf plot` (piwi)
- Added `hf mfp mad` `hf mf mad` parsing MAD1 and MAD2 (Merlok)
- Added `hf mfp ndef` `hf mf ndef` parsing NDEF records (Merlok)
## [v3.1.0][2018-10-10]

View file

@ -134,15 +134,17 @@ CMDSRCS = $(SRC_SMARTCARD) \
fido/cose.c \
fido/cbortools.c \
fido/fidocore.c \
mfkey.c \
mifare/mfkey.c \
loclass/cipher.c \
loclass/cipherutils.c \
loclass/ikeys.c \
loclass/elite_crack.c\
loclass/fileutils.c\
whereami.c\
mifarehost.c\
mifare4.c\
mifare/mifarehost.c\
mifare/mifare4.c\
mifare/mad.c \
mifare/ndef.c \
parity.c\
crc.c \
crc16.c \

View file

@ -27,7 +27,7 @@
#include "cmdmain.h"
#include "mifare.h"
#include "cmdhfmfu.h"
#include "mifarehost.h"
#include "mifare/mifarehost.h"
#include "cliparser/cliparser.h"
#include "emv/apduinfo.h"
#include "emv/emvcore.h"

View file

@ -24,8 +24,8 @@
#include "parity.h"
#include "protocols.h"
#include "crapto1/crapto1.h"
#include "mifarehost.h"
#include "mifaredefault.h"
#include "mifare/mifarehost.h"
#include "mifare/mifaredefault.h"
#include "usb_cmd.h"
#include "pcsc.h"

View file

@ -23,13 +23,16 @@
#include "util_posix.h"
#include "usb_cmd.h"
#include "ui.h"
#include "mifarehost.h"
#include "mifare/mifarehost.h"
#include "mifare.h"
#include "mfkey.h"
#include "mifare/mfkey.h"
#include "hardnested/hardnested_bf_core.h"
#include "cliparser/cliparser.h"
#include "cmdhf14a.h"
#include "mifare4.h"
#include "mifare/mifare4.h"
#include "mifare/mad.h"
#include "mifare/ndef.h"
#include "emv/dump.h"
#define NESTED_SECTOR_RETRY 10 // how often we try mfested() until we give up
@ -2712,6 +2715,201 @@ int CmdHF14AMfAuth4(const char *cmd) {
return MifareAuth4(NULL, keyn, key, true, false, true);
}
// https://www.nxp.com/docs/en/application-note/AN10787.pdf
int CmdHF14AMfMAD(const char *cmd) {
CLIParserInit("hf mf mad",
"Checks and prints Mifare Application Directory (MAD)",
"Usage:\n\thf mf mad -> shows MAD if exists\n"
"\thf mf mad -a 03e1 -k ffffffffffff -b -> shows NDEF data if exists. read card with custom key and key B\n");
void *argtable[] = {
arg_param_begin,
arg_lit0("vV", "verbose", "show technical data"),
arg_str0("aA", "aid", "print all sectors with aid", NULL),
arg_str0("kK", "key", "key for printing sectors", NULL),
arg_lit0("bB", "keyb", "use key B for access printing sectors (by default: key A)"),
arg_param_end
};
CLIExecWithReturn(cmd, argtable, true);
bool verbose = arg_get_lit(1);
uint8_t aid[2] = {0};
int aidlen;
CLIGetHexWithReturn(2, aid, &aidlen);
uint8_t key[6] = {0};
int keylen;
CLIGetHexWithReturn(3, key, &keylen);
bool keyB = arg_get_lit(4);
CLIParserFree();
if (aidlen != 2 && keylen > 0) {
PrintAndLogEx(WARNING, "do not need a key without aid.");
}
uint8_t sector0[16 * 4] = {0};
uint8_t sector10[16 * 4] = {0};
if (mfReadSector(MF_MAD1_SECTOR, MF_KEY_A, (uint8_t *)g_mifare_mad_key, sector0)) {
PrintAndLogEx(ERR, "read sector 0 error. card don't have MAD or don't have MAD on default keys.");
return 2;
}
if (verbose) {
for (int i = 0; i < 4; i ++)
PrintAndLogEx(NORMAL, "[%d] %s", i, sprint_hex(&sector0[i * 16], 16));
}
bool haveMAD2 = false;
MAD1DecodeAndPrint(sector0, verbose, &haveMAD2);
if (haveMAD2) {
if (mfReadSector(MF_MAD2_SECTOR, MF_KEY_A, (uint8_t *)g_mifare_mad_key, sector10)) {
PrintAndLogEx(ERR, "read sector 0x10 error. card don't have MAD or don't have MAD on default keys.");
return 2;
}
MAD2DecodeAndPrint(sector10, verbose);
}
if (aidlen == 2) {
uint16_t aaid = (aid[0] << 8) + aid[1];
PrintAndLogEx(NORMAL, "\n-------------- AID 0x%04x ---------------", aaid);
uint16_t mad[7 + 8 + 8 + 8 + 8] = {0};
size_t madlen = 0;
if (MADDecode(sector0, sector10, mad, &madlen)) {
PrintAndLogEx(ERR, "can't decode mad.");
return 10;
}
uint8_t akey[6] = {0};
memcpy(akey, g_mifare_ndef_key, 6);
if (keylen == 6) {
memcpy(akey, key, 6);
}
for (int i = 0; i < madlen; i++) {
if (aaid == mad[i]) {
uint8_t vsector[16 * 4] = {0};
if (mfReadSector(i + 1, keyB ? MF_KEY_B : MF_KEY_A, akey, vsector)) {
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(ERR, "read sector %d error.", i + 1);
return 2;
}
for (int j = 0; j < (verbose ? 4 : 3); j ++)
PrintAndLogEx(NORMAL, " [%03d] %s", (i + 1) * 4 + j, sprint_hex(&vsector[j * 16], 16));
}
}
}
return 0;
}
int CmdHFMFNDEF(const char *cmd) {
CLIParserInit("hf mf ndef",
"Prints NFC Data Exchange Format (NDEF)",
"Usage:\n\thf mf ndef -> shows NDEF data\n"
"\thf mf ndef -a 03e1 -k ffffffffffff -b -> shows NDEF data with custom AID, key and with key B\n");
void *argtable[] = {
arg_param_begin,
arg_litn("vV", "verbose", 0, 2, "show technical data"),
arg_str0("aA", "aid", "replace default aid for NDEF", NULL),
arg_str0("kK", "key", "replace default key for NDEF", NULL),
arg_lit0("bB", "keyb", "use key B for access sectors (by default: key A)"),
arg_param_end
};
CLIExecWithReturn(cmd, argtable, true);
bool verbose = arg_get_lit(1);
bool verbose2 = arg_get_lit(1) > 1;
uint8_t aid[2] = {0};
int aidlen;
CLIGetHexWithReturn(2, aid, &aidlen);
uint8_t key[6] = {0};
int keylen;
CLIGetHexWithReturn(3, key, &keylen);
bool keyB = arg_get_lit(4);
CLIParserFree();
uint16_t ndefAID = 0x03e1;
if (aidlen == 2)
ndefAID = (aid[0] << 8) + aid[1];
uint8_t ndefkey[6] = {0};
memcpy(ndefkey, g_mifare_ndef_key, 6);
if (keylen == 6) {
memcpy(ndefkey, key, 6);
}
uint8_t sector0[16 * 4] = {0};
uint8_t sector10[16 * 4] = {0};
uint8_t data[4096] = {0};
int datalen = 0;
PrintAndLogEx(NORMAL, "");
if (mfReadSector(MF_MAD1_SECTOR, MF_KEY_A, (uint8_t *)g_mifare_mad_key, sector0)) {
PrintAndLogEx(ERR, "read sector 0 error. card don't have MAD or don't have MAD on default keys.");
return 2;
}
bool haveMAD2 = false;
int res = MADCheck(sector0, NULL, verbose, &haveMAD2);
if (res) {
PrintAndLogEx(ERR, "MAD error %d.", res);
return res;
}
if (haveMAD2) {
if (mfReadSector(MF_MAD2_SECTOR, MF_KEY_A, (uint8_t *)g_mifare_mad_key, sector10)) {
PrintAndLogEx(ERR, "read sector 0x10 error. card don't have MAD or don't have MAD on default keys.");
return 2;
}
}
uint16_t mad[7 + 8 + 8 + 8 + 8] = {0};
size_t madlen = 0;
if (MADDecode(sector0, (haveMAD2 ? sector10 : NULL), mad, &madlen)) {
PrintAndLogEx(ERR, "can't decode mad.");
return 10;
}
printf("data reading:");
for (int i = 0; i < madlen; i++) {
if (ndefAID == mad[i]) {
uint8_t vsector[16 * 4] = {0};
if (mfReadSector(i + 1, keyB ? MF_KEY_B : MF_KEY_A, ndefkey, vsector)) {
PrintAndLogEx(ERR, "read sector %d error.", i + 1);
return 2;
}
memcpy(&data[datalen], vsector, 16 * 3);
datalen += 16 * 3;
printf(".");
}
}
printf(" OK\n");
if (!datalen) {
PrintAndLogEx(ERR, "no NDEF data.");
return 11;
}
if (verbose2) {
PrintAndLogEx(NORMAL, "NDEF data:");
dump_buffer(data, datalen, stdout, 1);
}
NDEFDecodeAndPrint(data, datalen, verbose);
return 0;
}
static command_t CommandTable[] =
{
{"help", CmdHelp, 1, "This help"},
@ -2743,6 +2941,8 @@ static command_t CommandTable[] =
{"cload", CmdHF14AMfCLoad, 0, "Load dump into magic Chinese card"},
{"csave", CmdHF14AMfCSave, 0, "Save dump from magic Chinese card into file or emulator"},
{"decrypt", CmdDecryptTraceCmds, 1, "[nt] [ar_enc] [at_enc] [data] - to decrypt snoop or trace"},
{"mad", CmdHF14AMfMAD, 0, "Checks and prints MAD"},
{"ndef", CmdHFMFNDEF, 0, "Prints NDEF records from card"},
{NULL, NULL, 0, NULL}
};

View file

@ -11,8 +11,9 @@
#ifndef CMDHFMF_H__
#define CMDHFMF_H__
#include "mifaredefault.h"
#include "mifare/mifaredefault.h"
extern int CmdHFMF(const char *Cmd);
extern int CmdHFMF(const char *Cmd);
extern int CmdHF14AMfDbg(const char* cmd);

View file

@ -22,109 +22,17 @@
#include "ui.h"
#include "cmdhf14a.h"
#include "mifare.h"
#include "mifare4.h"
#include "mifare/mifare4.h"
#include "mifare/mad.h"
#include "mifare/ndef.h"
#include "cliparser/cliparser.h"
#include "crypto/libpcrypto.h"
#include "emv/dump.h"
static const uint8_t DefaultKey[16] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
typedef struct {
uint8_t Code;
const char *Description;
} PlusErrorsElm;
static const PlusErrorsElm PlusErrors[] = {
{0xFF, ""},
{0x00, "Transfer cannot be granted within the current authentication."},
{0x06, "Access Conditions not fulfilled. Block does not exist, block is not a value block."},
{0x07, "Too many read or write commands in the session or in the transaction."},
{0x08, "Invalid MAC in command or response"},
{0x09, "Block Number is not valid"},
{0x0a, "Invalid block number, not existing block number"},
{0x0b, "The current command code not available at the current card state."},
{0x0c, "Length error"},
{0x0f, "General Manipulation Error. Failure in the operation of the PICC (cannot write to the data block), etc."},
{0x90, "OK"},
};
int PlusErrorsLen = sizeof(PlusErrors) / sizeof(PlusErrorsElm);
const char * GetErrorDescription(uint8_t errorCode) {
for(int i = 0; i < PlusErrorsLen; i++)
if (errorCode == PlusErrors[i].Code)
return PlusErrors[i].Description;
return PlusErrors[0].Description;
}
static int CmdHelp(const char *Cmd);
static bool VerboseMode = false;
void SetVerboseMode(bool verbose) {
VerboseMode = verbose;
}
int intExchangeRAW14aPlus(uint8_t *datain, int datainlen, bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen) {
if(VerboseMode)
PrintAndLog(">>> %s", sprint_hex(datain, datainlen));
int res = ExchangeRAW14a(datain, datainlen, activateField, leaveSignalON, dataout, maxdataoutlen, dataoutlen);
if(VerboseMode)
PrintAndLog("<<< %s", sprint_hex(dataout, *dataoutlen));
return res;
}
int MFPWritePerso(uint8_t *keyNum, uint8_t *key, bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen) {
uint8_t rcmd[3 + 16] = {0xa8, keyNum[1], keyNum[0], 0x00};
memmove(&rcmd[3], key, 16);
return intExchangeRAW14aPlus(rcmd, sizeof(rcmd), activateField, leaveSignalON, dataout, maxdataoutlen, dataoutlen);
}
int MFPCommitPerso(bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen) {
uint8_t rcmd[1] = {0xaa};
return intExchangeRAW14aPlus(rcmd, sizeof(rcmd), activateField, leaveSignalON, dataout, maxdataoutlen, dataoutlen);
}
int MFPReadBlock(mf4Session *session, bool plain, uint8_t blockNum, uint8_t blockCount, bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen, uint8_t *mac) {
uint8_t rcmd[4 + 8] = {(plain?(0x37):(0x33)), blockNum, 0x00, blockCount};
if (!plain && session)
CalculateMAC(session, mtypReadCmd, blockNum, blockCount, rcmd, 4, &rcmd[4], VerboseMode);
int res = intExchangeRAW14aPlus(rcmd, plain?4:sizeof(rcmd), activateField, leaveSignalON, dataout, maxdataoutlen, dataoutlen);
if(res)
return res;
if (session)
session->R_Ctr++;
if(session && mac && *dataoutlen > 11)
CalculateMAC(session, mtypReadResp, blockNum, blockCount, dataout, *dataoutlen - 8 - 2, mac, VerboseMode);
return 0;
}
int MFPWriteBlock(mf4Session *session, uint8_t blockNum, uint8_t *data, bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen, uint8_t *mac) {
uint8_t rcmd[1 + 2 + 16 + 8] = {0xA3, blockNum, 0x00};
memmove(&rcmd[3], data, 16);
if (session)
CalculateMAC(session, mtypWriteCmd, blockNum, 1, rcmd, 19, &rcmd[19], VerboseMode);
int res = intExchangeRAW14aPlus(rcmd, sizeof(rcmd), activateField, leaveSignalON, dataout, maxdataoutlen, dataoutlen);
if(res)
return res;
if (session)
session->W_Ctr++;
if(session && mac && *dataoutlen > 3)
CalculateMAC(session, mtypWriteResp, blockNum, 1, dataout, *dataoutlen, mac, VerboseMode);
return 0;
}
int CmdHFMFPInfo(const char *cmd) {
if (cmd && strlen(cmd) > 0)
@ -229,7 +137,7 @@ int CmdHFMFPWritePerso(const char *cmd) {
CLIGetHexWithReturn(3, key, &keyLen);
CLIParserFree();
SetVerboseMode(verbose);
mfpSetVerboseMode(verbose);
if (!keyLen) {
memmove(key, DefaultKey, 16);
@ -260,7 +168,7 @@ int CmdHFMFPWritePerso(const char *cmd) {
}
if (data[0] != 0x90) {
PrintAndLog("Command error: %02x %s", data[0], GetErrorDescription(data[0]));
PrintAndLog("Command error: %02x %s", data[0], mfpGetErrorDescription(data[0]));
return 1;
}
PrintAndLog("Write OK.");
@ -304,7 +212,7 @@ int CmdHFMFPInitPerso(const char *cmd) {
if (!keyLen)
memmove(key, DefaultKey, 16);
SetVerboseMode(verbose2);
mfpSetVerboseMode(verbose2);
for (uint16_t sn = 0x4000; sn < 0x4050; sn++) {
keyNum[0] = sn >> 8;
keyNum[1] = sn & 0xff;
@ -319,7 +227,7 @@ int CmdHFMFPInitPerso(const char *cmd) {
}
}
SetVerboseMode(verbose);
mfpSetVerboseMode(verbose);
for (int i = 0; i < sizeof(CardAddresses) / 2; i++) {
keyNum[0] = CardAddresses[i] >> 8;
keyNum[1] = CardAddresses[i] & 0xff;
@ -360,7 +268,7 @@ int CmdHFMFPCommitPerso(const char *cmd) {
bool verbose = arg_get_lit(1);
CLIParserFree();
SetVerboseMode(verbose);
mfpSetVerboseMode(verbose);
uint8_t data[250] = {0};
int datalen = 0;
@ -377,7 +285,7 @@ int CmdHFMFPCommitPerso(const char *cmd) {
}
if (data[0] != 0x90) {
PrintAndLog("Command error: %02x %s", data[0], GetErrorDescription(data[0]));
PrintAndLog("Command error: %02x %s", data[0], mfpGetErrorDescription(data[0]));
return 1;
}
PrintAndLog("Switch level OK.");
@ -453,7 +361,7 @@ int CmdHFMFPRdbl(const char *cmd) {
CLIGetHexWithReturn(6, key, &keylen);
CLIParserFree();
SetVerboseMode(verbose);
mfpSetVerboseMode(verbose);
if (!keylen) {
memmove(key, DefaultKey, 16);
@ -504,7 +412,7 @@ int CmdHFMFPRdbl(const char *cmd) {
}
if (datalen && data[0] != 0x90) {
PrintAndLog("Card read error: %02x %s", data[0], GetErrorDescription(data[0]));
PrintAndLog("Card read error: %02x %s", data[0], mfpGetErrorDescription(data[0]));
return 6;
}
@ -563,7 +471,7 @@ int CmdHFMFPRdsc(const char *cmd) {
CLIGetHexWithReturn(5, key, &keylen);
CLIParserFree();
SetVerboseMode(verbose);
mfpSetVerboseMode(verbose);
if (!keylen) {
memmove(key, DefaultKey, 16);
@ -605,7 +513,7 @@ int CmdHFMFPRdsc(const char *cmd) {
}
if (datalen && data[0] != 0x90) {
PrintAndLog("Card read error: %02x %s", data[0], GetErrorDescription(data[0]));
PrintAndLog("Card read error: %02x %s", data[0], mfpGetErrorDescription(data[0]));
DropField();
return 6;
}
@ -661,7 +569,7 @@ int CmdHFMFPWrbl(const char *cmd) {
CLIGetHexWithReturn(5, key, &keylen);
CLIParserFree();
SetVerboseMode(verbose);
mfpSetVerboseMode(verbose);
if (!keylen) {
memmove(key, DefaultKey, 16);
@ -714,7 +622,7 @@ int CmdHFMFPWrbl(const char *cmd) {
}
if (datalen && data[0] != 0x90) {
PrintAndLog("Card write error: %02x %s", data[0], GetErrorDescription(data[0]));
PrintAndLog("Card write error: %02x %s", data[0], mfpGetErrorDescription(data[0]));
DropField();
return 6;
}
@ -733,6 +641,204 @@ int CmdHFMFPWrbl(const char *cmd) {
return 0;
}
int CmdHFMFPMAD(const char *cmd) {
CLIParserInit("hf mfp mad",
"Checks and prints Mifare Application Directory (MAD)",
"Usage:\n\thf mfp mad -> shows MAD if exists\n"
"\thf mfp mad -a 03e1 -k d3f7d3f7d3f7d3f7d3f7d3f7d3f7d3f7 -> shows NDEF data if exists\n");
void *argtable[] = {
arg_param_begin,
arg_lit0("vV", "verbose", "show technical data"),
arg_str0("aA", "aid", "print all sectors with aid", NULL),
arg_str0("kK", "key", "key for printing sectors", NULL),
arg_lit0("bB", "keyb", "use key B for access printing sectors (by default: key A)"),
arg_param_end
};
CLIExecWithReturn(cmd, argtable, true);
bool verbose = arg_get_lit(1);
uint8_t aid[2] = {0};
int aidlen;
CLIGetHexWithReturn(2, aid, &aidlen);
uint8_t key[16] = {0};
int keylen;
CLIGetHexWithReturn(3, key, &keylen);
bool keyB = arg_get_lit(4);
CLIParserFree();
if (aidlen != 2 && keylen > 0) {
PrintAndLogEx(WARNING, "do not need a key without aid.");
}
uint8_t sector0[16 * 4] = {0};
uint8_t sector10[16 * 4] = {0};
if (mfpReadSector(MF_MAD1_SECTOR, MF_KEY_A, (uint8_t *)g_mifarep_mad_key, sector0, verbose)) {
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(ERR, "read sector 0 error. card don't have MAD or don't have MAD on default keys.");
return 2;
}
if (verbose) {
for (int i = 0; i < 4; i ++)
PrintAndLogEx(NORMAL, "[%d] %s", i, sprint_hex(&sector0[i * 16], 16));
}
bool haveMAD2 = false;
MAD1DecodeAndPrint(sector0, verbose, &haveMAD2);
if (haveMAD2) {
if (mfpReadSector(MF_MAD2_SECTOR, MF_KEY_A, (uint8_t *)g_mifarep_mad_key, sector10, verbose)) {
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(ERR, "read sector 0x10 error. card don't have MAD or don't have MAD on default keys.");
return 2;
}
MAD2DecodeAndPrint(sector10, verbose);
}
if (aidlen == 2) {
uint16_t aaid = (aid[0] << 8) + aid[1];
PrintAndLogEx(NORMAL, "\n-------------- AID 0x%04x ---------------", aaid);
uint16_t mad[7 + 8 + 8 + 8 + 8] = {0};
size_t madlen = 0;
if (MADDecode(sector0, sector10, mad, &madlen)) {
PrintAndLogEx(ERR, "can't decode mad.");
return 10;
}
uint8_t akey[16] = {0};
memcpy(akey, g_mifarep_ndef_key, 16);
if (keylen == 16) {
memcpy(akey, key, 16);
}
for (int i = 0; i < madlen; i++) {
if (aaid == mad[i]) {
uint8_t vsector[16 * 4] = {0};
if (mfpReadSector(i + 1, keyB ? MF_KEY_B : MF_KEY_A, akey, vsector, false)) {
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(ERR, "read sector %d error.", i + 1);
return 2;
}
for (int j = 0; j < (verbose ? 4 : 3); j ++)
PrintAndLogEx(NORMAL, " [%03d] %s", (i + 1) * 4 + j, sprint_hex(&vsector[j * 16], 16));
}
}
}
return 0;
}
int CmdHFMFPNDEF(const char *cmd) {
CLIParserInit("hf mfp ndef",
"Prints NFC Data Exchange Format (NDEF)",
"Usage:\n\thf mfp ndef -> shows NDEF data\n"
"\thf mfp ndef -a 03e1 -k d3f7d3f7d3f7d3f7d3f7d3f7d3f7d3f7 -> shows NDEF data with custom AID and key\n");
void *argtable[] = {
arg_param_begin,
arg_litn("vV", "verbose", 0, 2, "show technical data"),
arg_str0("aA", "aid", "replace default aid for NDEF", NULL),
arg_str0("kK", "key", "replace default key for NDEF", NULL),
arg_lit0("bB", "keyb", "use key B for access sectors (by default: key A)"),
arg_param_end
};
CLIExecWithReturn(cmd, argtable, true);
bool verbose = arg_get_lit(1);
bool verbose2 = arg_get_lit(1) > 1;
uint8_t aid[2] = {0};
int aidlen;
CLIGetHexWithReturn(2, aid, &aidlen);
uint8_t key[16] = {0};
int keylen;
CLIGetHexWithReturn(3, key, &keylen);
bool keyB = arg_get_lit(4);
CLIParserFree();
uint16_t ndefAID = 0x03e1;
if (aidlen == 2)
ndefAID = (aid[0] << 8) + aid[1];
uint8_t ndefkey[16] = {0};
memcpy(ndefkey, g_mifarep_ndef_key, 16);
if (keylen == 16) {
memcpy(ndefkey, key, 16);
}
uint8_t sector0[16 * 4] = {0};
uint8_t sector10[16 * 4] = {0};
uint8_t data[4096] = {0};
int datalen = 0;
PrintAndLogEx(NORMAL, "");
if (mfpReadSector(MF_MAD1_SECTOR, MF_KEY_A, (uint8_t *)g_mifarep_mad_key, sector0, verbose)) {
PrintAndLogEx(ERR, "read sector 0 error. card don't have MAD or don't have MAD on default keys.");
return 2;
}
bool haveMAD2 = false;
int res = MADCheck(sector0, NULL, verbose, &haveMAD2);
if (res) {
PrintAndLogEx(ERR, "MAD error %d.", res);
return res;
}
if (haveMAD2) {
if (mfpReadSector(MF_MAD2_SECTOR, MF_KEY_A, (uint8_t *)g_mifarep_mad_key, sector10, verbose)) {
PrintAndLogEx(ERR, "read sector 0x10 error. card don't have MAD or don't have MAD on default keys.");
return 2;
}
}
uint16_t mad[7 + 8 + 8 + 8 + 8] = {0};
size_t madlen = 0;
if (MADDecode(sector0, (haveMAD2 ? sector10 : NULL), mad, &madlen)) {
PrintAndLogEx(ERR, "can't decode mad.");
return 10;
}
printf("data reading:");
for (int i = 0; i < madlen; i++) {
if (ndefAID == mad[i]) {
uint8_t vsector[16 * 4] = {0};
if (mfpReadSector(i + 1, keyB ? MF_KEY_B : MF_KEY_A, ndefkey, vsector, false)) {
PrintAndLogEx(ERR, "read sector %d error.", i + 1);
return 2;
}
memcpy(&data[datalen], vsector, 16 * 3);
datalen += 16 * 3;
printf(".");
}
}
printf(" OK\n");
if (!datalen) {
PrintAndLogEx(ERR, "no NDEF data.");
return 11;
}
if (verbose2) {
PrintAndLogEx(NORMAL, "NDEF data:");
dump_buffer(data, datalen, stdout, 1);
}
NDEFDecodeAndPrint(data, datalen, verbose);
return 0;
}
static command_t CommandTable[] =
{
{"help", CmdHelp, 1, "This help"},
@ -744,6 +850,8 @@ static command_t CommandTable[] =
{"rdbl", CmdHFMFPRdbl, 0, "Read blocks"},
{"rdsc", CmdHFMFPRdsc, 0, "Read sectors"},
{"wrbl", CmdHFMFPWrbl, 0, "Write blocks"},
{"mad", CmdHFMFPMAD, 0, "Checks and prints MAD"},
{"ndef", CmdHFMFPNDEF, 0, "Prints NDEF records from card"},
{NULL, NULL, 0, NULL}
};

View file

@ -10,7 +10,7 @@
#ifndef CMDHFMFP_H__
#define CMDHFMFP_H__
#include "mifaredefault.h"
#include "mifare/mifaredefault.h"
extern int CmdHFMFP(const char *Cmd);

256
client/mifare/mad.c Normal file
View file

@ -0,0 +1,256 @@
//-----------------------------------------------------------------------------
// Copyright (C) 2019 Merlok
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// MIFARE Application Directory (MAD) functions
//-----------------------------------------------------------------------------
#include "mad.h"
#include "ui.h"
#include "crc.h"
#include "util.h"
// https://www.nxp.com/docs/en/application-note/AN10787.pdf
static madAIDDescr madKnownAIDs[] = {
{0x0000, "free"},
{0x0001, "defect, e.g. access keys are destroyed or unknown"},
{0x0002, "reserved"},
{0x0003, "contains additional directory info"},
{0x0004, "contains card holder information in ASCII format."},
{0x0005, "not applicable (above memory size)"},
{0x03e1, "NDEF"},
};
static madAIDDescr madKnownClusterCodes[] = {
{0x00, "cluster: card administration"},
{0x01, "cluster: miscellaneous applications"},
{0x02, "cluster: miscellaneous applications"},
{0x03, "cluster: miscellaneous applications"},
{0x04, "cluster: miscellaneous applications"},
{0x05, "cluster: miscellaneous applications"},
{0x06, "cluster: miscellaneous applications"},
{0x07, "cluster: miscellaneous applications"},
{0x08, "cluster: airlines"},
{0x09, "cluster: ferry traffic"},
{0x10, "cluster: railway services"},
{0x11, "cluster: miscellaneous applications"},
{0x12, "cluster: transport"},
{0x14, "cluster: security solutions"},
{0x18, "cluster: city traffic"},
{0x19, "cluster: Czech Railways"},
{0x20, "cluster: bus services"},
{0x21, "cluster: multi modal transit"},
{0x28, "cluster: taxi"},
{0x30, "cluster: road toll"},
{0x31, "cluster: generic transport"},
{0x38, "cluster: company services"},
{0x40, "cluster: city card services"},
{0x47, "cluster: access control & security"},
{0x48, "cluster: access control & security"},
{0x49, "cluster: VIGIK"},
{0x4A, "cluster: Ministry of Defence, Netherlands"},
{0x4B, "cluster: Bosch Telecom, Germany"},
{0x4C, "cluster: European Union Institutions"},
{0x50, "cluster: ski ticketing"},
{0x51, "cluster: access control & security"},
{0x52, "cluster: access control & security"},
{0x53, "cluster: access control & security"},
{0x54, "cluster: access control & security"},
{0x55, "cluster: SOAA standard for offline access standard"},
{0x56, "cluster: access control & security"},
{0x58, "cluster: academic services"},
{0x60, "cluster: food"},
{0x68, "cluster: non-food trade"},
{0x70, "cluster: hotel"},
{0x71, "cluster: loyalty"},
{0x75, "cluster: airport services"},
{0x78, "cluster: car rental"},
{0x79, "cluster: Dutch government"},
{0x80, "cluster: administration services"},
{0x88, "cluster: electronic purse"},
{0x90, "cluster: television"},
{0x91, "cluster: cruise ship"},
{0x95, "cluster: IOPTA"},
{0x97, "cluster: metering"},
{0x98, "cluster: telephone"},
{0xA0, "cluster: health services"},
{0xA8, "cluster: warehouse"},
{0xB0, "cluster: electronic trade"},
{0xB8, "cluster: banking"},
{0xC0, "cluster: entertainment & sports"},
{0xC8, "cluster: car parking"},
{0xC9, "cluster: fleet management"},
{0xD0, "cluster: fuel, gasoline"},
{0xD8, "cluster: info services"},
{0xE0, "cluster: press"},
{0xE1, "cluster: NFC Forum"},
{0xE8, "cluster: computer"},
{0xF0, "cluster: mail"},
{0xF8, "cluster: miscellaneous applications"},
};
static const char unknownAID[] = "";
static const char *GetAIDDescription(uint16_t AID) {
for (int i = 0; i < ARRAYLEN(madKnownAIDs); i++)
if (madKnownAIDs[i].AID == AID)
return madKnownAIDs[i].Description;
for (int i = 0; i < ARRAYLEN(madKnownClusterCodes); i++)
if (madKnownClusterCodes[i].AID == (AID >> 8)) // high byte - cluster code
return madKnownClusterCodes[i].Description;
return unknownAID;
}
int madCRCCheck(uint8_t *sector, bool verbose, int MADver) {
if (MADver == 1) {
uint8_t crc = CRC8Mad(&sector[16 + 1], 15 + 16);
if (crc != sector[16]) {
PrintAndLogEx(WARNING, "Wrong MAD%d CRC. Calculated: 0x%02x, from card: 0x%02x", MADver, crc, sector[16]);
return 3;
};
} else {
uint8_t crc = CRC8Mad(&sector[1], 15 + 16 + 16);
if (crc != sector[0]) {
PrintAndLogEx(WARNING, "Wrong MAD%d CRC. Calculated: 0x%02x, from card: 0x%02x", MADver, crc, sector[16]);
return 3;
};
}
return 0;
}
uint16_t madGetAID(uint8_t *sector, int MADver, int sectorNo) {
if (MADver == 1)
return (sector[16 + 2 + (sectorNo - 1) * 2] << 8) + (sector[16 + 2 + (sectorNo - 1) * 2 + 1]);
else
return (sector[2 + (sectorNo - 1) * 2] << 8) + (sector[2 + (sectorNo - 1) * 2 + 1]);
}
int MADCheck(uint8_t *sector0, uint8_t *sector10, bool verbose, bool *haveMAD2) {
int res = 0;
if (!sector0)
return 1;
uint8_t GPB = sector0[3 * 16 + 9];
if (verbose)
PrintAndLogEx(NORMAL, "GPB: 0x%02x", GPB);
// DA (MAD available)
if (!(GPB & 0x80)) {
PrintAndLogEx(ERR, "DA=0! MAD not available.");
return 1;
}
// MA (multi-application card)
if (verbose) {
if (GPB & 0x40)
PrintAndLogEx(NORMAL, "Multi application card.");
else
PrintAndLogEx(NORMAL, "Single application card.");
}
uint8_t MADVer = GPB & 0x03;
if (verbose)
PrintAndLogEx(NORMAL, "MAD version: %d", MADVer);
// MAD version
if ((MADVer != 0x01) && (MADVer != 0x02)) {
PrintAndLogEx(ERR, "Wrong MAD version: 0x%02x", MADVer);
return 2;
};
if (haveMAD2)
*haveMAD2 = (MADVer == 2);
res = madCRCCheck(sector0, true, 1);
if (verbose && !res)
PrintAndLogEx(NORMAL, "CRC8-MAD1 OK.");
if (MADVer == 2 && sector10) {
int res2 = madCRCCheck(sector10, true, 2);
if (!res)
res = res2;
if (verbose & !res2)
PrintAndLogEx(NORMAL, "CRC8-MAD2 OK.");
}
return res;
}
int MADDecode(uint8_t *sector0, uint8_t *sector10, uint16_t *mad, size_t *madlen) {
*madlen = 0;
bool haveMAD2 = false;
MADCheck(sector0, sector10, false, &haveMAD2);
for (int i = 1; i < 16; i++) {
mad[*madlen] = madGetAID(sector0, 1, i);
(*madlen)++;
}
if (haveMAD2) {
// mad2 sector (0x10 == 16dec) here
mad[*madlen] = 0x0005;
(*madlen)++;
for (int i = 1; i < 24; i++) {
mad[*madlen] = madGetAID(sector10, 2, i);
(*madlen)++;
}
}
return 0;
}
int MAD1DecodeAndPrint(uint8_t *sector, bool verbose, bool *haveMAD2) {
// check MAD1 only
MADCheck(sector, NULL, verbose, haveMAD2);
// info byte
uint8_t InfoByte = sector[16 + 1] & 0x3f;
if (InfoByte) {
PrintAndLogEx(NORMAL, "Card publisher sector: 0x%02x", InfoByte);
} else {
if (verbose)
PrintAndLogEx(NORMAL, "Card publisher sector not present.");
}
if (InfoByte == 0x10 || InfoByte >= 0x28)
PrintAndLogEx(WARNING, "Info byte error");
PrintAndLogEx(NORMAL, "00 MAD1");
for (int i = 1; i < 16; i++) {
uint16_t AID = madGetAID(sector, 1, i);
PrintAndLogEx(NORMAL, "%02d [%04X] %s", i, AID, GetAIDDescription(AID));
};
return 0;
};
int MAD2DecodeAndPrint(uint8_t *sector, bool verbose) {
PrintAndLogEx(NORMAL, "16 MAD2");
int res = madCRCCheck(sector, true, 2);
if (verbose && !res)
PrintAndLogEx(NORMAL, "CRC8-MAD2 OK.");
uint8_t InfoByte = sector[1] & 0x3f;
PrintAndLogEx(NORMAL, "MAD2 Card publisher sector: 0x%02x", InfoByte);
for (int i = 1; i < 8 + 8 + 7 + 1; i++) {
uint16_t AID = madGetAID(sector, 2, i);
PrintAndLogEx(NORMAL, "%02d [%04X] %s", i + 16, AID, GetAIDDescription(AID));
};
return 0;
};

29
client/mifare/mad.h Normal file
View file

@ -0,0 +1,29 @@
//-----------------------------------------------------------------------------
// Copyright (C) 2019 Merlok
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// MIFARE Application Directory (MAD) functions
//-----------------------------------------------------------------------------
#ifndef _MAD_H_
#define _MAD_H_
#include <stdint.h>
#include <stdbool.h>
#include <stddef.h>
typedef struct {
uint16_t AID;
const char *Description;
} madAIDDescr;
extern int MADCheck(uint8_t *sector0, uint8_t *sector10, bool verbose, bool *haveMAD2);
extern int MADDecode(uint8_t *sector0, uint8_t *sector10, uint16_t *mad, size_t *madlen);
extern int MAD1DecodeAndPrint(uint8_t *sector, bool verbose, bool *haveMAD2);
extern int MAD2DecodeAndPrint(uint8_t *sector, bool verbose);
#endif // _MAD_H_

469
client/mifare/mifare4.c Normal file
View file

@ -0,0 +1,469 @@
//-----------------------------------------------------------------------------
// Copyright (C) 2018 Merlok
// Copyright (C) 2018 drHatson
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// iso14443-4 mifare commands
//-----------------------------------------------------------------------------
#include "mifare4.h"
#include <ctype.h>
#include <string.h>
#include "cmdhf14a.h"
#include "util.h"
#include "ui.h"
#include "crypto/libpcrypto.h"
static bool VerboseMode = false;
void mfpSetVerboseMode(bool verbose) {
VerboseMode = verbose;
}
typedef struct {
uint8_t Code;
const char *Description;
} PlusErrorsElm;
static const PlusErrorsElm PlusErrors[] = {
{0xFF, ""},
{0x00, "Transfer cannot be granted within the current authentication."},
{0x06, "Access Conditions not fulfilled. Block does not exist, block is not a value block."},
{0x07, "Too many read or write commands in the session or in the transaction."},
{0x08, "Invalid MAC in command or response"},
{0x09, "Block Number is not valid"},
{0x0a, "Invalid block number, not existing block number"},
{0x0b, "The current command code not available at the current card state."},
{0x0c, "Length error"},
{0x0f, "General Manipulation Error. Failure in the operation of the PICC (cannot write to the data block), etc."},
{0x90, "OK"},
};
int PlusErrorsLen = sizeof(PlusErrors) / sizeof(PlusErrorsElm);
const char *mfpGetErrorDescription(uint8_t errorCode) {
for (int i = 0; i < PlusErrorsLen; i++)
if (errorCode == PlusErrors[i].Code)
return PlusErrors[i].Description;
return PlusErrors[0].Description;
}
AccessConditions_t MFAccessConditions[] = {
{0x00, "read AB; write AB; increment AB; decrement transfer restore AB"},
{0x01, "read AB; decrement transfer restore AB"},
{0x02, "read AB"},
{0x03, "read B; write B"},
{0x04, "read AB; writeB"},
{0x05, "read B"},
{0x06, "read AB; write B; increment B; decrement transfer restore AB"},
{0x07, "none"}
};
AccessConditions_t MFAccessConditionsTrailer[] = {
{0x00, "read A by A; read ACCESS by A; read B by A; write B by A"},
{0x01, "write A by A; read ACCESS by A write ACCESS by A; read B by A; write B by A"},
{0x02, "read ACCESS by A; read B by A"},
{0x03, "write A by B; read ACCESS by AB; write ACCESS by B; write B by B"},
{0x04, "write A by B; read ACCESS by AB; write B by B"},
{0x05, "read ACCESS by AB; write ACCESS by B"},
{0x06, "read ACCESS by AB"},
{0x07, "read ACCESS by AB"}
};
char *mfGetAccessConditionsDesc(uint8_t blockn, uint8_t *data) {
static char StaticNone[] = "none";
uint8_t data1 = ((data[1] >> 4) & 0x0f) >> blockn;
uint8_t data2 = ((data[2]) & 0x0f) >> blockn;
uint8_t data3 = ((data[2] >> 4) & 0x0f) >> blockn;
uint8_t cond = (data1 & 0x01) << 2 | (data2 & 0x01) << 1 | (data3 & 0x01);
if (blockn == 3) {
for (int i = 0; i < ARRAYLEN(MFAccessConditionsTrailer); i++)
if (MFAccessConditionsTrailer[i].cond == cond) {
return MFAccessConditionsTrailer[i].description;
}
} else {
for (int i = 0; i < ARRAYLEN(MFAccessConditions); i++)
if (MFAccessConditions[i].cond == cond) {
return MFAccessConditions[i].description;
}
};
return StaticNone;
};
int CalculateEncIVCommand(mf4Session *session, uint8_t *iv, bool verbose) {
memcpy(&iv[0], session->TI, 4);
memcpy(&iv[4], &session->R_Ctr, 2);
memcpy(&iv[6], &session->W_Ctr, 2);
memcpy(&iv[8], &session->R_Ctr, 2);
memcpy(&iv[10], &session->W_Ctr, 2);
memcpy(&iv[12], &session->R_Ctr, 2);
memcpy(&iv[14], &session->W_Ctr, 2);
return 0;
}
int CalculateEncIVResponse(mf4Session *session, uint8_t *iv, bool verbose) {
memcpy(&iv[0], &session->R_Ctr, 2);
memcpy(&iv[2], &session->W_Ctr, 2);
memcpy(&iv[4], &session->R_Ctr, 2);
memcpy(&iv[6], &session->W_Ctr, 2);
memcpy(&iv[8], &session->R_Ctr, 2);
memcpy(&iv[10], &session->W_Ctr, 2);
memcpy(&iv[12], session->TI, 4);
return 0;
}
int CalculateMAC(mf4Session *session, MACType_t mtype, uint8_t blockNum, uint8_t blockCount, uint8_t *data, int datalen, uint8_t *mac, bool verbose) {
if (!session || !session->Authenticated || !mac || !data || !datalen || datalen < 1)
return 1;
memset(mac, 0x00, 8);
uint16_t ctr = session->R_Ctr;
switch (mtype) {
case mtypWriteCmd:
case mtypWriteResp:
ctr = session->W_Ctr;
break;
case mtypReadCmd:
case mtypReadResp:
break;
}
uint8_t macdata[2049] = {data[0], (ctr & 0xFF), (ctr >> 8), 0};
int macdatalen = datalen;
memcpy(&macdata[3], session->TI, 4);
switch (mtype) {
case mtypReadCmd:
memcpy(&macdata[7], &data[1], datalen - 1);
macdatalen = datalen + 6;
break;
case mtypReadResp:
macdata[7] = blockNum;
macdata[8] = 0;
macdata[9] = blockCount;
memcpy(&macdata[10], &data[1], datalen - 1);
macdatalen = datalen + 9;
break;
case mtypWriteCmd:
memcpy(&macdata[7], &data[1], datalen - 1);
macdatalen = datalen + 6;
break;
case mtypWriteResp:
macdatalen = 1 + 6;
break;
}
if (verbose)
PrintAndLog("MAC data[%d]: %s", macdatalen, sprint_hex(macdata, macdatalen));
return aes_cmac8(NULL, session->Kmac, macdata, mac, macdatalen);
}
int MifareAuth4(mf4Session *session, uint8_t *keyn, uint8_t *key, bool activateField, bool leaveSignalON, bool verbose) {
uint8_t data[257] = {0};
int datalen = 0;
uint8_t RndA[17] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00};
uint8_t RndB[17] = {0};
if (session)
session->Authenticated = false;
uint8_t cmd1[] = {0x70, keyn[1], keyn[0], 0x00};
int res = ExchangeRAW14a(cmd1, sizeof(cmd1), activateField, true, data, sizeof(data), &datalen);
if (res) {
PrintAndLogEx(ERR, "Exchande raw error: %d", res);
DropField();
return 2;
}
if (verbose)
PrintAndLogEx(INFO, "<phase1: %s", sprint_hex(data, datalen));
if (datalen < 1) {
PrintAndLogEx(ERR, "Card response wrong length: %d", datalen);
DropField();
return 3;
}
if (data[0] != 0x90) {
PrintAndLogEx(ERR, "Card response error: %02x", data[2]);
DropField();
return 3;
}
if (datalen != 19) { // code 1b + 16b + crc 2b
PrintAndLogEx(ERR, "Card response must be 19 bytes long instead of: %d", datalen);
DropField();
return 3;
}
aes_decode(NULL, key, &data[1], RndB, 16);
RndB[16] = RndB[0];
if (verbose)
PrintAndLogEx(INFO, "RndB: %s", sprint_hex(RndB, 16));
uint8_t cmd2[33] = {0};
cmd2[0] = 0x72;
uint8_t raw[32] = {0};
memmove(raw, RndA, 16);
memmove(&raw[16], &RndB[1], 16);
aes_encode(NULL, key, raw, &cmd2[1], 32);
if (verbose)
PrintAndLogEx(INFO, ">phase2: %s", sprint_hex(cmd2, 33));
res = ExchangeRAW14a(cmd2, sizeof(cmd2), false, true, data, sizeof(data), &datalen);
if (res) {
PrintAndLogEx(ERR, "Exchande raw error: %d", res);
DropField();
return 4;
}
if (verbose)
PrintAndLogEx(INFO, "<phase2: %s", sprint_hex(data, datalen));
aes_decode(NULL, key, &data[1], raw, 32);
if (verbose) {
PrintAndLogEx(INFO, "res: %s", sprint_hex(raw, 32));
PrintAndLogEx(INFO, "RndA`: %s", sprint_hex(&raw[4], 16));
}
if (memcmp(&raw[4], &RndA[1], 16)) {
PrintAndLogEx(ERR, "\nAuthentication FAILED. rnd not equal");
if (verbose) {
PrintAndLogEx(ERR, "RndA reader: %s", sprint_hex(&RndA[1], 16));
PrintAndLogEx(ERR, "RndA card: %s", sprint_hex(&raw[4], 16));
}
DropField();
return 5;
}
if (verbose) {
PrintAndLogEx(INFO, " TI: %s", sprint_hex(raw, 4));
PrintAndLogEx(INFO, "pic: %s", sprint_hex(&raw[20], 6));
PrintAndLogEx(INFO, "pcd: %s", sprint_hex(&raw[26], 6));
}
uint8_t kenc[16] = {0};
memcpy(&kenc[0], &RndA[11], 5);
memcpy(&kenc[5], &RndB[11], 5);
for (int i = 0; i < 5; i++)
kenc[10 + i] = RndA[4 + i] ^ RndB[4 + i];
kenc[15] = 0x11;
aes_encode(NULL, key, kenc, kenc, 16);
if (verbose) {
PrintAndLogEx(INFO, "kenc: %s", sprint_hex(kenc, 16));
}
uint8_t kmac[16] = {0};
memcpy(&kmac[0], &RndA[7], 5);
memcpy(&kmac[5], &RndB[7], 5);
for(int i = 0; i < 5; i++)
kmac[10 + i] = RndA[0 + i] ^ RndB[0 + i];
kmac[15] = 0x22;
aes_encode(NULL, key, kmac, kmac, 16);
if (verbose) {
PrintAndLog("kmac: %s", sprint_hex(kmac, 16));
}
if (!leaveSignalON)
DropField();
if (verbose)
PrintAndLog("");
if (session) {
session->Authenticated = true;
session->R_Ctr = 0;
session->W_Ctr = 0;
session->KeyNum = keyn[1] + (keyn[0] << 8);
memmove(session->RndA, RndA, 16);
memmove(session->RndB, RndB, 16);
memmove(session->Key, key, 16);
memmove(session->TI, raw, 4);
memmove(session->PICCap2, &raw[20], 6);
memmove(session->PCDCap2, &raw[26], 6);
memmove(session->Kenc, kenc, 16);
memmove(session->Kmac, kmac, 16);
}
if (verbose)
PrintAndLogEx(INFO, "Authentication OK");
return 0;
}
int intExchangeRAW14aPlus(uint8_t *datain, int datainlen, bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen) {
if (VerboseMode)
PrintAndLogEx(INFO, ">>> %s", sprint_hex(datain, datainlen));
int res = ExchangeRAW14a(datain, datainlen, activateField, leaveSignalON, dataout, maxdataoutlen, dataoutlen);
if (VerboseMode)
PrintAndLogEx(INFO, "<<< %s", sprint_hex(dataout, *dataoutlen));
return res;
}
int MFPWritePerso(uint8_t *keyNum, uint8_t *key, bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen) {
uint8_t rcmd[3 + 16] = {0xa8, keyNum[1], keyNum[0], 0x00};
memmove(&rcmd[3], key, 16);
return intExchangeRAW14aPlus(rcmd, sizeof(rcmd), activateField, leaveSignalON, dataout, maxdataoutlen, dataoutlen);
}
int MFPCommitPerso(bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen) {
uint8_t rcmd[1] = {0xaa};
return intExchangeRAW14aPlus(rcmd, sizeof(rcmd), activateField, leaveSignalON, dataout, maxdataoutlen, dataoutlen);
}
int MFPReadBlock(mf4Session *session, bool plain, uint8_t blockNum, uint8_t blockCount, bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen, uint8_t *mac) {
uint8_t rcmd[4 + 8] = {(plain ? (0x37) : (0x33)), blockNum, 0x00, blockCount};
if (!plain && session)
CalculateMAC(session, mtypReadCmd, blockNum, blockCount, rcmd, 4, &rcmd[4], VerboseMode);
int res = intExchangeRAW14aPlus(rcmd, plain ? 4 : sizeof(rcmd), activateField, leaveSignalON, dataout, maxdataoutlen, dataoutlen);
if (res)
return res;
if (session)
session->R_Ctr++;
if (session && mac && *dataoutlen > 11)
CalculateMAC(session, mtypReadResp, blockNum, blockCount, dataout, *dataoutlen - 8 - 2, mac, VerboseMode);
return 0;
}
int MFPWriteBlock(mf4Session *session, uint8_t blockNum, uint8_t *data, bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen, uint8_t *mac) {
uint8_t rcmd[1 + 2 + 16 + 8] = {0xA3, blockNum, 0x00};
memmove(&rcmd[3], data, 16);
if (session)
CalculateMAC(session, mtypWriteCmd, blockNum, 1, rcmd, 19, &rcmd[19], VerboseMode);
int res = intExchangeRAW14aPlus(rcmd, sizeof(rcmd), activateField, leaveSignalON, dataout, maxdataoutlen, dataoutlen);
if (res)
return res;
if (session)
session->W_Ctr++;
if (session && mac && *dataoutlen > 3)
CalculateMAC(session, mtypWriteResp, blockNum, 1, dataout, *dataoutlen, mac, VerboseMode);
return 0;
}
int mfpReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *dataout, bool verbose) {
uint8_t keyn[2] = {0};
bool plain = false;
uint16_t uKeyNum = 0x4000 + sectorNo * 2 + (keyType ? 1 : 0);
keyn[0] = uKeyNum >> 8;
keyn[1] = uKeyNum & 0xff;
if (verbose)
PrintAndLogEx(INFO, "--sector[%d]:%02x key:%04x", mfNumBlocksPerSector(sectorNo), sectorNo, uKeyNum);
mf4Session session;
int res = MifareAuth4(&session, keyn, key, true, true, verbose);
if (res) {
PrintAndLogEx(ERR, "Sector %d authentication error: %d", sectorNo, res);
return res;
}
uint8_t data[250] = {0};
int datalen = 0;
uint8_t mac[8] = {0};
uint8_t firstBlockNo = mfFirstBlockOfSector(sectorNo);
for (int n = firstBlockNo; n < firstBlockNo + mfNumBlocksPerSector(sectorNo); n++) {
res = MFPReadBlock(&session, plain, n & 0xff, 1, false, true, data, sizeof(data), &datalen, mac);
if (res) {
PrintAndLogEx(ERR, "Sector %d read error: %d", sectorNo, res);
DropField();
return res;
}
if (datalen && data[0] != 0x90) {
PrintAndLogEx(ERR, "Sector %d card read error: %02x %s", sectorNo, data[0], mfpGetErrorDescription(data[0]));
DropField();
return 5;
}
if (datalen != 1 + 16 + 8 + 2) {
PrintAndLogEx(ERR, "Sector %d error returned data length:%d", sectorNo, datalen);
DropField();
return 6;
}
memcpy(&dataout[(n - firstBlockNo) * 16], &data[1], 16);
if (verbose)
PrintAndLogEx(INFO, "data[%03d]: %s", n, sprint_hex(&data[1], 16));
if (memcmp(&data[1 + 16], mac, 8)) {
PrintAndLogEx(WARNING, "WARNING: mac on block %d not equal...", n);
PrintAndLogEx(WARNING, "MAC card: %s", sprint_hex(&data[1 + 16], 8));
PrintAndLogEx(WARNING, "MAC reader: %s", sprint_hex(mac, 8));
if (!verbose)
return 7;
} else {
if (verbose)
PrintAndLogEx(INFO, "MAC: %s", sprint_hex(&data[1 + 16], 8));
}
}
DropField();
return 0;
}
// Mifare Memory Structure: up to 32 Sectors with 4 blocks each (1k and 2k cards),
// plus evtl. 8 sectors with 16 blocks each (4k cards)
uint8_t mfNumBlocksPerSector(uint8_t sectorNo) {
if (sectorNo < 32)
return 4;
else
return 16;
}
uint8_t mfFirstBlockOfSector(uint8_t sectorNo) {
if (sectorNo < 32)
return sectorNo * 4;
else
return 32 * 4 + (sectorNo - 32) * 16;
}
uint8_t mfSectorTrailer(uint8_t blockNo) {
if (blockNo < 32 * 4) {
return (blockNo | 0x03);
} else {
return (blockNo | 0x0f);
}
}
bool mfIsSectorTrailer(uint8_t blockNo) {
return (blockNo == mfSectorTrailer(blockNo));
}
uint8_t mfSectorNum(uint8_t blockNo) {
if (blockNo < 32 * 4)
return blockNo / 4;
else
return 32 + (blockNo - 32 * 4) / 16;
}

View file

@ -43,9 +43,18 @@ typedef struct {
char *description;
} AccessConditions_t;
extern void mfpSetVerboseMode(bool verbose);
extern const char *mfpGetErrorDescription(uint8_t errorCode);
extern int CalculateMAC(mf4Session *session, MACType_t mtype, uint8_t blockNum, uint8_t blockCount, uint8_t *data, int datalen, uint8_t *mac, bool verbose);
extern int MifareAuth4(mf4Session *session, uint8_t *keyn, uint8_t *key, bool activateField, bool leaveSignalON, bool verbose);
extern int MFPWritePerso(uint8_t *keyNum, uint8_t *key, bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen);
extern int MFPCommitPerso(bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen);
extern int MFPReadBlock(mf4Session *session, bool plain, uint8_t blockNum, uint8_t blockCount, bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen, uint8_t *mac);
extern int MFPWriteBlock(mf4Session *session, uint8_t blockNum, uint8_t *data, bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen, uint8_t *mac);
extern int mfpReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *dataout, bool verbose);
extern char *mfGetAccessConditionsDesc(uint8_t blockn, uint8_t *data);
extern uint8_t mfNumBlocksPerSector(uint8_t sectorNo);

View file

@ -37,4 +37,9 @@ static const uint64_t MifareDefaultKeys[] =
0x8fd0a4f256e9
};
static const uint8_t g_mifare_mad_key[] = {0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5};
static const uint8_t g_mifare_ndef_key[] = {0xd3, 0xf7, 0xd3, 0xf7, 0xd3, 0xf7};
static const uint8_t g_mifarep_mad_key[] = {0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7};
static const uint8_t g_mifarep_ndef_key[] = {0xd3, 0xf7, 0xd3, 0xf7, 0xd3, 0xf7, 0xd3, 0xf7, 0xd3, 0xf7, 0xd3, 0xf7, 0xd3, 0xf7, 0xd3, 0xf7};
#endif

View file

@ -25,6 +25,7 @@
#include "iso14443crc.h"
#include "mifare.h"
#include "mifare4.h"
// mifare tracer flags used in mfTraceDecode()
#define TRACE_IDLE 0x00
@ -429,6 +430,32 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo,
return 0;
}
// MIFARE
int mfReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *data) {
UsbCommand c = {CMD_MIFARE_READSC, {sectorNo, keyType, 0}};
memcpy(c.d.asBytes, key, 6);
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
uint8_t isOK = resp.arg[0] & 0xff;
if (isOK) {
memcpy(data, resp.d.asBytes, mfNumBlocksPerSector(sectorNo) * 16);
return 0;
} else {
return 1;
}
} else {
PrintAndLogEx(ERR, "Command execute timeout");
return 2;
}
return 0;
}
// EMULATOR
int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {

View file

@ -42,6 +42,8 @@ extern int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgB
extern int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t *keyBlock, uint64_t *key);
extern int mfCheckKeysSec(uint8_t sectorCnt, uint8_t keyType, uint8_t timeout14a, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, sector_t * e_sector);
extern int mfReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *data);
extern int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount);
extern int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount);

359
client/mifare/ndef.c Normal file
View file

@ -0,0 +1,359 @@
//-----------------------------------------------------------------------------
// Copyright (C) 2019 Merlok
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// NFC Data Exchange Format (NDEF) functions
//-----------------------------------------------------------------------------
#include "ndef.h"
#include "ui.h"
#include "emv/dump.h"
#include "crypto/asn1utils.h"
#include "util.h"
#include <string.h>
#define STRBOOL(p) ((p) ? "+" : "-")
static const char *TypeNameFormat_s[] = {
"Empty Record",
"Well Known Record",
"MIME Media Record",
"Absolute URI Record",
"External Record",
"Unknown Record",
"Unchanged Record",
"n/a"
};
static const char *ndefSigType_s[] = {
"Not present", // No signature present
"RSASSA_PSS_SHA_1", // PKCS_1
"RSASSA_PKCS1_v1_5_WITH_SHA_1", // PKCS_1
"DSA",
"ECDSA",
"n/a"
};
static const char *ndefCertificateFormat_s[] = {
"X_509",
"X9_68",
"n/a"
};
static const char *URI_s[] = {
"", // 0x00
"http://www.", // 0x01
"https://www.", // 0x02
"http://", // 0x03
"https://", // 0x04
"tel:", // 0x05
"mailto:", // 0x06
"ftp://anonymous:anonymous@", // 0x07
"ftp://ftp.", // 0x08
"ftps://", // 0x09
"sftp://", // 0x0A
"smb://", // 0x0B
"nfs://", // 0x0C
"ftp://", // 0x0D
"dav://", // 0x0E
"news:", // 0x0F
"telnet://", // 0x10
"imap:", // 0x11
"rtsp://", // 0x12
"urn:", // 0x13
"pop:", // 0x14
"sip:", // 0x15
"sips:", // 0x16
"tftp:", // 0x17
"btspp://", // 0x18
"btl2cap://", // 0x19
"btgoep://", // 0x1A
"tcpobex://", // 0x1B
"irdaobex://", // 0x1C
"file://", // 0x1D
"urn:epc:id:", // 0x1E
"urn:epc:tag:", // 0x1F
"urn:epc:pat:", // 0x20
"urn:epc:raw:", // 0x21
"urn:epc:", // 0x22
"urn:nfc:" // 0x23
};
uint16_t ndefTLVGetLength(uint8_t *data, size_t *indx) {
uint16_t len = 0;
if (data[0] == 0xff) {
len = (data[1] << 8) + data[2];
*indx += 3;
} else {
len = data[0];
*indx += 1;
}
return len;
}
int ndefDecodeHeader(uint8_t *data, size_t datalen, NDEFHeader_t *header) {
header->Type = NULL;
header->Payload = NULL;
header->ID = NULL;
header->MessageBegin = data[0] & 0x80;
header->MessageEnd = data[0] & 0x40;
header->ChunkFlag = data[0] & 0x20;
header->ShortRecordBit = data[0] & 0x10;
header->IDLenPresent = data[0] & 0x08;
header->TypeNameFormat = data[0] & 0x07;
header->len = 1 + 1 + (header->ShortRecordBit ? 1 : 4) + (header->IDLenPresent ? 1 : 0); // header + typelen + payloadlen + idlen
if (header->len > datalen)
return 1;
header->TypeLen = data[1];
header->Type = data + header->len;
header->PayloadLen = (header->ShortRecordBit ? (data[2]) : ((data[2] << 24) + (data[3] << 16) + (data[4] << 8) + data[5]));
if (header->IDLenPresent) {
header->IDLen = (header->ShortRecordBit ? (data[3]) : (data[6]));
header->Payload = header->Type + header->TypeLen;
} else {
header->IDLen = 0;
}
header->Payload = header->Type + header->TypeLen + header->IDLen;
header->RecLen = header->len + header->TypeLen + header->PayloadLen + header->IDLen;
if (header->RecLen > datalen)
return 3;
return 0;
}
int ndefPrintHeader(NDEFHeader_t *header) {
PrintAndLogEx(INFO, "Header:");
PrintAndLogEx(NORMAL, "\tMessage Begin: %s", STRBOOL(header->MessageBegin));
PrintAndLogEx(NORMAL, "\tMessage End: %s", STRBOOL(header->MessageEnd));
PrintAndLogEx(NORMAL, "\tChunk Flag: %s", STRBOOL(header->ChunkFlag));
PrintAndLogEx(NORMAL, "\tShort Record Bit: %s", STRBOOL(header->ShortRecordBit));
PrintAndLogEx(NORMAL, "\tID Len Present: %s", STRBOOL(header->IDLenPresent));
PrintAndLogEx(NORMAL, "\tType Name Format: [0x%02x] %s", header->TypeNameFormat, TypeNameFormat_s[header->TypeNameFormat]);
PrintAndLogEx(NORMAL, "\tHeader length : %d", header->len);
PrintAndLogEx(NORMAL, "\tType length : %d", header->TypeLen);
PrintAndLogEx(NORMAL, "\tPayload length : %d", header->PayloadLen);
PrintAndLogEx(NORMAL, "\tID length : %d", header->IDLen);
PrintAndLogEx(NORMAL, "\tRecord length : %d", header->RecLen);
return 0;
}
int ndefDecodeSig(uint8_t *sig, size_t siglen) {
size_t indx = 0;
PrintAndLogEx(NORMAL, "\tsignature version: 0x%02x", sig[0]);
if (sig[0] != 0x01) {
PrintAndLogEx(ERR, "signature version unknown.");
return 1;
}
indx++;
uint8_t sigType = sig[indx] & 0x7f;
bool sigURI = sig[indx] & 0x80;
PrintAndLogEx(NORMAL, "\tsignature type: %s", ((sigType < stNA) ? ndefSigType_s[sigType] : ndefSigType_s[stNA]));
PrintAndLogEx(NORMAL, "\tsignature uri: %s", (sigURI ? "present" : "not present"));
size_t intsiglen = (sig[indx + 1] << 8) + sig[indx + 2];
// ecdsa 0x04
if (sigType == stECDSA) {
indx += 3;
PrintAndLogEx(NORMAL, "\tsignature [%d]: %s", intsiglen, sprint_hex_inrow(&sig[indx], intsiglen));
uint8_t rval[300] = {0};
uint8_t sval[300] = {0};
int res = ecdsa_asn1_get_signature(&sig[indx], intsiglen, rval, sval);
if (!res) {
PrintAndLogEx(NORMAL, "\t\tr: %s", sprint_hex(rval, 32));
PrintAndLogEx(NORMAL, "\t\ts: %s", sprint_hex(sval, 32));
}
}
indx += intsiglen;
if (sigURI) {
size_t intsigurilen = (sig[indx] << 8) + sig[indx + 1];
indx += 2;
PrintAndLogEx(NORMAL, "\tsignature uri [%d]: %.*s", intsigurilen, intsigurilen, &sig[indx]);
indx += intsigurilen;
}
uint8_t certFormat = (sig[indx] >> 4) & 0x07;
uint8_t certCount = sig[indx] & 0x0f;
bool certURI = sig[indx] & 0x80;
PrintAndLogEx(NORMAL, "\tcertificate format: %s", ((certFormat < sfNA) ? ndefCertificateFormat_s[certFormat] : ndefCertificateFormat_s[sfNA]));
PrintAndLogEx(NORMAL, "\tcertificates count: %d", certCount);
// print certificates
indx++;
for (int i = 0; i < certCount; i++) {
size_t intcertlen = (sig[indx + 1] << 8) + sig[indx + 2];
indx += 2;
PrintAndLogEx(NORMAL, "\tcertificate %d [%d]: %s", i + 1, intcertlen, sprint_hex_inrow(&sig[indx], intcertlen));
indx += intcertlen;
}
// have certificate uri
if ((indx <= siglen) && certURI) {
size_t inturilen = (sig[indx] << 8) + sig[indx + 1];
indx += 2;
PrintAndLogEx(NORMAL, "\tcertificate uri [%d]: %.*s", inturilen, inturilen, &sig[indx]);
indx += inturilen;
}
return 0;
};
int ndefDecodePayload(NDEFHeader_t *ndef) {
switch (ndef->TypeNameFormat) {
case tnfWellKnownRecord:
PrintAndLogEx(INFO, "Well Known Record");
PrintAndLogEx(NORMAL, "\ttype: %.*s", ndef->TypeLen, ndef->Type);
if (!strncmp((char *)ndef->Type, "T", ndef->TypeLen)) {
PrintAndLogEx(NORMAL, "\ttext : %.*s", ndef->PayloadLen, ndef->Payload);
}
if (!strncmp((char *)ndef->Type, "U", ndef->TypeLen)) {
PrintAndLogEx(NORMAL, "\turi : %s%.*s", (ndef->Payload[0] <= 0x23 ? URI_s[ndef->Payload[0]] : "[err]"), ndef->PayloadLen, &ndef->Payload[1]);
}
if (!strncmp((char *)ndef->Type, "Sig", ndef->TypeLen)) {
ndefDecodeSig(ndef->Payload, ndef->PayloadLen);
}
break;
case tnfAbsoluteURIRecord:
PrintAndLogEx(INFO, "Absolute URI Record");
PrintAndLogEx(NORMAL, "\ttype: %.*s", ndef->TypeLen, ndef->Type);
PrintAndLogEx(NORMAL, "\tpayload: %.*s", ndef->PayloadLen, ndef->Payload);
break;
default:
break;
}
return 0;
}
int ndefRecordDecodeAndPrint(uint8_t *ndefRecord, size_t ndefRecordLen) {
NDEFHeader_t NDEFHeader = {0};
int res = ndefDecodeHeader(ndefRecord, ndefRecordLen, &NDEFHeader);
if (res)
return res;
ndefPrintHeader(&NDEFHeader);
if (NDEFHeader.TypeLen) {
PrintAndLogEx(INFO, "Type data:");
dump_buffer(NDEFHeader.Type, NDEFHeader.TypeLen, stdout, 1);
}
if (NDEFHeader.IDLen) {
PrintAndLogEx(INFO, "ID data:");
dump_buffer(NDEFHeader.ID, NDEFHeader.IDLen, stdout, 1);
}
if (NDEFHeader.PayloadLen) {
PrintAndLogEx(INFO, "Payload data:");
dump_buffer(NDEFHeader.Payload, NDEFHeader.PayloadLen, stdout, 1);
if (NDEFHeader.TypeLen)
ndefDecodePayload(&NDEFHeader);
}
return 0;
}
int ndefRecordsDecodeAndPrint(uint8_t *ndefRecord, size_t ndefRecordLen) {
bool firstRec = true;
size_t len = 0;
while (len < ndefRecordLen) {
NDEFHeader_t NDEFHeader = {0};
int res = ndefDecodeHeader(&ndefRecord[len], ndefRecordLen - len, &NDEFHeader);
if (res)
return res;
if (firstRec) {
if (!NDEFHeader.MessageBegin) {
PrintAndLogEx(ERR, "NDEF first record have MessageBegin=false!");
return 1;
}
firstRec = false;
}
if (NDEFHeader.MessageEnd && len + NDEFHeader.RecLen != ndefRecordLen) {
PrintAndLogEx(ERR, "NDEF records have wrong length. Must be %d, calculated %d", ndefRecordLen, len + NDEFHeader.RecLen);
return 1;
}
ndefRecordDecodeAndPrint(&ndefRecord[len], NDEFHeader.RecLen);
len += NDEFHeader.RecLen;
if (NDEFHeader.MessageEnd)
break;
}
return 0;
}
int NDEFDecodeAndPrint(uint8_t *ndef, size_t ndefLen, bool verbose) {
size_t indx = 0;
PrintAndLogEx(INFO, "NDEF decoding:");
while (indx < ndefLen) {
switch (ndef[indx]) {
case 0x00: {
indx++;
uint16_t len = ndefTLVGetLength(&ndef[indx], &indx);
PrintAndLogEx(INFO, "-- NDEF NULL block.");
if (len)
PrintAndLogEx(WARNING, "NDEF NULL block size must be 0 instead of %d.", len);
indx += len;
break;
}
case 0x03: {
indx++;
uint16_t len = ndefTLVGetLength(&ndef[indx], &indx);
PrintAndLogEx(INFO, "-- NDEF message. len: %d", len);
int res = ndefRecordsDecodeAndPrint(&ndef[indx], len);
if (res)
return res;
indx += len;
break;
}
case 0xfd: {
indx++;
uint16_t len = ndefTLVGetLength(&ndef[indx], &indx);
PrintAndLogEx(INFO, "-- NDEF proprietary info. Skipped %d bytes.", len);
indx += len;
break;
}
case 0xfe: {
PrintAndLogEx(INFO, "-- NDEF Terminator. Done.");
return 0;
break;
}
default: {
PrintAndLogEx(ERR, "unknown tag 0x%02x", ndef[indx]);
return 1;
}
}
}
return 0;
}

62
client/mifare/ndef.h Normal file
View file

@ -0,0 +1,62 @@
//-----------------------------------------------------------------------------
// Copyright (C) 2019 Merlok
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// NFC Data Exchange Format (NDEF) functions
//-----------------------------------------------------------------------------
#ifndef _NDEF_H_
#define _NDEF_H_
#include <stdint.h>
#include <stdbool.h>
#include <stddef.h>
typedef enum {
tnfEmptyRecord = 0x00,
tnfWellKnownRecord = 0x01,
tnfMIMEMediaRecord = 0x02,
tnfAbsoluteURIRecord = 0x03,
tnfExternalRecord = 0x04,
tnfUnknownRecord = 0x05,
tnfUnchangedRecord = 0x06
} TypeNameFormat_t;
typedef enum {
stNotPresent = 0x00,
stRSASSA_PSS_SHA_1 = 0x01,
stRSASSA_PKCS1_v1_5_WITH_SHA_1 = 0x02,
stDSA = 0x03,
stECDSA = 0x04,
stNA = 0x05
} ndefSigType_t;
typedef enum {
sfX_509 = 0x00,
sfX9_68 = 0x01,
sfNA = 0x02
} ndefCertificateFormat_t;
typedef struct {
bool MessageBegin;
bool MessageEnd;
bool ChunkFlag;
bool ShortRecordBit;
bool IDLenPresent;
TypeNameFormat_t TypeNameFormat;
size_t TypeLen;
size_t PayloadLen;
size_t IDLen;
size_t len;
size_t RecLen;
uint8_t *Type;
uint8_t *Payload;
uint8_t *ID;
} NDEFHeader_t;
extern int NDEFDecodeAndPrint(uint8_t *ndef, size_t ndefLen, bool verbose);
#endif // _NDEF_H_

View file

@ -1,311 +0,0 @@
//-----------------------------------------------------------------------------
// Copyright (C) 2018 Merlok
// Copyright (C) 2018 drHatson
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// iso14443-4 mifare commands
//-----------------------------------------------------------------------------
#include "mifare4.h"
#include <ctype.h>
#include <string.h>
#include "cmdhf14a.h"
#include "util.h"
#include "ui.h"
#include "crypto/libpcrypto.h"
AccessConditions_t MFAccessConditions[] = {
{0x00, "read AB; write AB; increment AB; decrement transfer restore AB"},
{0x01, "read AB; decrement transfer restore AB"},
{0x02, "read AB"},
{0x03, "read B; write B"},
{0x04, "read AB; writeB"},
{0x05, "read B"},
{0x06, "read AB; write B; increment B; decrement transfer restore AB"},
{0x07, "none"}
};
AccessConditions_t MFAccessConditionsTrailer[] = {
{0x00, "read A by A; read ACCESS by A; read B by A; write B by A"},
{0x01, "write A by A; read ACCESS by A write ACCESS by A; read B by A; write B by A"},
{0x02, "read ACCESS by A; read B by A"},
{0x03, "write A by B; read ACCESS by AB; write ACCESS by B; write B by B"},
{0x04, "write A by B; read ACCESS by AB; write B by B"},
{0x05, "read ACCESS by AB; write ACCESS by B"},
{0x06, "read ACCESS by AB"},
{0x07, "read ACCESS by AB"}
};
char *mfGetAccessConditionsDesc(uint8_t blockn, uint8_t *data) {
static char StaticNone[] = "none";
uint8_t data1 = ((data[1] >> 4) & 0x0f) >> blockn;
uint8_t data2 = ((data[2]) & 0x0f) >> blockn;
uint8_t data3 = ((data[2] >> 4) & 0x0f) >> blockn;
uint8_t cond = (data1 & 0x01) << 2 | (data2 & 0x01) << 1 | (data3 & 0x01);
if (blockn == 3) {
for (int i = 0; i < ARRAYLEN(MFAccessConditionsTrailer); i++)
if (MFAccessConditionsTrailer[i].cond == cond) {
return MFAccessConditionsTrailer[i].description;
}
} else {
for (int i = 0; i < ARRAYLEN(MFAccessConditions); i++)
if (MFAccessConditions[i].cond == cond) {
return MFAccessConditions[i].description;
}
};
return StaticNone;
};
int CalculateEncIVCommand(mf4Session *session, uint8_t *iv, bool verbose) {
memcpy(&iv[0], session->TI, 4);
memcpy(&iv[4], &session->R_Ctr, 2);
memcpy(&iv[6], &session->W_Ctr, 2);
memcpy(&iv[8], &session->R_Ctr, 2);
memcpy(&iv[10], &session->W_Ctr, 2);
memcpy(&iv[12], &session->R_Ctr, 2);
memcpy(&iv[14], &session->W_Ctr, 2);
return 0;
}
int CalculateEncIVResponse(mf4Session *session, uint8_t *iv, bool verbose) {
memcpy(&iv[0], &session->R_Ctr, 2);
memcpy(&iv[2], &session->W_Ctr, 2);
memcpy(&iv[4], &session->R_Ctr, 2);
memcpy(&iv[6], &session->W_Ctr, 2);
memcpy(&iv[8], &session->R_Ctr, 2);
memcpy(&iv[10], &session->W_Ctr, 2);
memcpy(&iv[12], session->TI, 4);
return 0;
}
int CalculateMAC(mf4Session *session, MACType_t mtype, uint8_t blockNum, uint8_t blockCount, uint8_t *data, int datalen, uint8_t *mac, bool verbose) {
if (!session || !session->Authenticated || !mac || !data || !datalen || datalen < 1)
return 1;
memset(mac, 0x00, 8);
uint16_t ctr = session->R_Ctr;
switch(mtype) {
case mtypWriteCmd:
case mtypWriteResp:
ctr = session->W_Ctr;
break;
case mtypReadCmd:
case mtypReadResp:
break;
}
uint8_t macdata[2049] = {data[0], (ctr & 0xFF), (ctr >> 8), 0};
int macdatalen = datalen;
memcpy(&macdata[3], session->TI, 4);
switch(mtype) {
case mtypReadCmd:
memcpy(&macdata[7], &data[1], datalen - 1);
macdatalen = datalen + 6;
break;
case mtypReadResp:
macdata[7] = blockNum;
macdata[8] = 0;
macdata[9] = blockCount;
memcpy(&macdata[10], &data[1], datalen - 1);
macdatalen = datalen + 9;
break;
case mtypWriteCmd:
memcpy(&macdata[7], &data[1], datalen - 1);
macdatalen = datalen + 6;
break;
case mtypWriteResp:
macdatalen = 1 + 6;
break;
}
if (verbose)
PrintAndLog("MAC data[%d]: %s", macdatalen, sprint_hex(macdata, macdatalen));
return aes_cmac8(NULL, session->Kmac, macdata, mac, macdatalen);
}
int MifareAuth4(mf4Session *session, uint8_t *keyn, uint8_t *key, bool activateField, bool leaveSignalON, bool verbose) {
uint8_t data[257] = {0};
int datalen = 0;
uint8_t RndA[17] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00};
uint8_t RndB[17] = {0};
if (session)
session->Authenticated = false;
uint8_t cmd1[] = {0x70, keyn[1], keyn[0], 0x00};
int res = ExchangeRAW14a(cmd1, sizeof(cmd1), activateField, true, data, sizeof(data), &datalen);
if (res) {
PrintAndLog("ERROR exchande raw error: %d", res);
DropField();
return 2;
}
if (verbose)
PrintAndLog("<phase1: %s", sprint_hex(data, datalen));
if (datalen < 1) {
PrintAndLog("ERROR: card response length: %d", datalen);
DropField();
return 3;
}
if (data[0] != 0x90) {
PrintAndLog("ERROR: card response error: %02x", data[2]);
DropField();
return 3;
}
if (datalen != 19) { // code 1b + 16b + crc 2b
PrintAndLog("ERROR: card response must be 19 bytes long instead of: %d", datalen);
DropField();
return 3;
}
aes_decode(NULL, key, &data[1], RndB, 16);
RndB[16] = RndB[0];
if (verbose)
PrintAndLog("RndB: %s", sprint_hex(RndB, 16));
uint8_t cmd2[33] = {0};
cmd2[0] = 0x72;
uint8_t raw[32] = {0};
memmove(raw, RndA, 16);
memmove(&raw[16], &RndB[1], 16);
aes_encode(NULL, key, raw, &cmd2[1], 32);
if (verbose)
PrintAndLog(">phase2: %s", sprint_hex(cmd2, 33));
res = ExchangeRAW14a(cmd2, sizeof(cmd2), false, true, data, sizeof(data), &datalen);
if (res) {
PrintAndLog("ERROR exchande raw error: %d", res);
DropField();
return 4;
}
if (verbose)
PrintAndLog("<phase2: %s", sprint_hex(data, datalen));
aes_decode(NULL, key, &data[1], raw, 32);
if (verbose) {
PrintAndLog("res: %s", sprint_hex(raw, 32));
PrintAndLog("RndA`: %s", sprint_hex(&raw[4], 16));
}
if (memcmp(&raw[4], &RndA[1], 16)) {
PrintAndLog("\nERROR: Authentication FAILED. rnd not equal");
if (verbose) {
PrintAndLog("RndA reader: %s", sprint_hex(&RndA[1], 16));
PrintAndLog("RndA card: %s", sprint_hex(&raw[4], 16));
}
DropField();
return 5;
}
if (verbose) {
PrintAndLog(" TI: %s", sprint_hex(raw, 4));
PrintAndLog("pic: %s", sprint_hex(&raw[20], 6));
PrintAndLog("pcd: %s", sprint_hex(&raw[26], 6));
}
uint8_t kenc[16] = {0};
memcpy(&kenc[0], &RndA[11], 5);
memcpy(&kenc[5], &RndB[11], 5);
for(int i = 0; i < 5; i++)
kenc[10 + i] = RndA[4 + i] ^ RndB[4 + i];
kenc[15] = 0x11;
aes_encode(NULL, key, kenc, kenc, 16);
if (verbose) {
PrintAndLog("kenc: %s", sprint_hex(kenc, 16));
}
uint8_t kmac[16] = {0};
memcpy(&kmac[0], &RndA[7], 5);
memcpy(&kmac[5], &RndB[7], 5);
for(int i = 0; i < 5; i++)
kmac[10 + i] = RndA[0 + i] ^ RndB[0 + i];
kmac[15] = 0x22;
aes_encode(NULL, key, kmac, kmac, 16);
if (verbose) {
PrintAndLog("kmac: %s", sprint_hex(kmac, 16));
}
if (!leaveSignalON)
DropField();
if (verbose)
PrintAndLog("");
if (session) {
session->Authenticated = true;
session->R_Ctr = 0;
session->W_Ctr = 0;
session->KeyNum = keyn[1] + (keyn[0] << 8);
memmove(session->RndA, RndA, 16);
memmove(session->RndB, RndB, 16);
memmove(session->Key, key, 16);
memmove(session->TI, raw, 4);
memmove(session->PICCap2, &raw[20], 6);
memmove(session->PCDCap2, &raw[26], 6);
memmove(session->Kenc, kenc, 16);
memmove(session->Kmac, kmac, 16);
}
PrintAndLog("Authentication OK");
return 0;
}
// Mifare Memory Structure: up to 32 Sectors with 4 blocks each (1k and 2k cards),
// plus evtl. 8 sectors with 16 blocks each (4k cards)
uint8_t mfNumBlocksPerSector(uint8_t sectorNo) {
if (sectorNo < 32)
return 4;
else
return 16;
}
uint8_t mfFirstBlockOfSector(uint8_t sectorNo) {
if (sectorNo < 32)
return sectorNo * 4;
else
return 32 * 4 + (sectorNo - 32) * 16;
}
uint8_t mfSectorTrailer(uint8_t blockNo) {
if (blockNo < 32*4) {
return (blockNo | 0x03);
} else {
return (blockNo | 0x0f);
}
}
bool mfIsSectorTrailer(uint8_t blockNo) {
return (blockNo == mfSectorTrailer(blockNo));
}
uint8_t mfSectorNum(uint8_t blockNo) {
if (blockNo < 32 * 4)
return blockNo / 4;
else
return 32 + (blockNo - 32 * 4) / 16;
}

0
client/obj/mifare/.dummy Normal file
View file

View file

@ -19,7 +19,7 @@
#include "usb_cmd.h"
#include "cmdmain.h"
#include "util.h"
#include "mifarehost.h"
#include "mifare/mifarehost.h"
#include "../common/iso15693tools.h"
#include "iso14443crc.h"
#include "../common/crc16.h"

View file

@ -9,6 +9,20 @@
#include <stdint.h>
#include <stddef.h>
#define BITMASK(X) (1 << (X))
uint32_t reflect(uint32_t v, int b) {
uint32_t t = v;
for (int i = 0; i < b; ++i) {
if (t & 1)
v |= BITMASK((b - 1) - i);
else
v &= ~BITMASK((b - 1) - i);
t >>= 1;
}
return v;
}
void crc_init(crc_t *crc, int order, uint32_t polynom, uint32_t initial_value, uint32_t final_xor)
{
crc->order = order;
@ -54,3 +68,13 @@ uint32_t CRC8Maxim(uint8_t *buff, size_t size)
}
return crc_finish(&crc);
}
// width=8 poly=0x1d, init=0xc7 (0xe3 - WRONG! but it mentioned in MAD datasheet) refin=false refout=false xorout=0x00 name="CRC-8/MIFARE-MAD"
uint32_t CRC8Mad(uint8_t *buff, size_t size) {
crc_t crc;
crc_init(&crc, 8, reflect(0x1d, 8), reflect(0xc7, 8), 0);
for (int i = 0; i < size; ++i)
crc_update(&crc, reflect(buff[i], 8), 8);
return reflect(crc_finish(&crc), 8);
}

View file

@ -11,6 +11,7 @@
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
typedef struct crc {
uint32_t state;
@ -39,6 +40,10 @@ extern uint32_t crc_finish(crc_t *crc);
// Calculate CRC-8/Maxim checksum
uint32_t CRC8Maxim(uint8_t *buff, size_t size );
// Calculate CRC-8 Mifare MAD checksum
uint32_t CRC8Mad(uint8_t *buff, size_t size);
/* Static initialization of a crc structure */
#define CRC_INITIALIZER(_order, _polynom, _initial_value, _final_xor) { \
.state = ((_initial_value) & ((1L<<(_order))-1)), \

View file

@ -13,6 +13,12 @@
#include "common.h"
#define MF_KEY_A 0
#define MF_KEY_B 1
#define MF_MAD1_SECTOR 0x00
#define MF_MAD2_SECTOR 0x10
//-----------------------------------------------------------------------------
// ISO 14443A
//-----------------------------------------------------------------------------

View file

@ -1,4 +1,4 @@
VPATH = ../../common ../../common/crapto1 ../../client
VPATH = ../../common ../../common/crapto1 ../../client ../../client/mifare
CC = gcc
LD = gcc
CFLAGS += -std=c99 -D_ISOC99_SOURCE -I../../include -I../../common -I../../client -Wall -O3

View file

@ -3,7 +3,7 @@
#include <stdio.h>
#include <stdlib.h>
#include "crapto1/crapto1.h"
#include "mfkey.h"
#include "mifare/mfkey.h"
#include "util_posix.h"