First try att merging with head

This commit is contained in:
Martin Holst Swende 2014-10-24 20:46:02 +02:00
commit f97d4e2378
105 changed files with 7541 additions and 1686 deletions

View file

@ -15,7 +15,7 @@ OBJDIR = obj
LDLIBS = -L/opt/local/lib -L/usr/local/lib -lreadline -lpthread ../liblua/liblua.a
LDFLAGS = $(COMMON_FLAGS)
CFLAGS = -std=c99 -I. -I../include -I../common -I/opt/local/include -I../liblua -Wall $(COMMON_FLAGS) -g -O4
CFLAGS = -std=c99 -lcrypto -I. -I../include -I../common -I/opt/local/include -I../liblua -Wall $(COMMON_FLAGS) -g -O4
LUAPLATFORM = generic
ifneq (,$(findstring MINGW,$(platform)))
@ -24,9 +24,9 @@ QTLDLIBS = -L$(QTDIR)/lib -lQtCore4 -lQtGui4
MOC = $(QTDIR)/bin/moc
LUAPLATFORM = mingw
else ifeq ($(platform),Darwin)
CXXFLAGS = -I/Library/Frameworks/QtGui.framework/Versions/Current/Headers -I/Library/Frameworks/QtCore.framework/Versions/Current/Headers
QTLDLIBS = -framework QtGui -framework QtCore
MOC = moc
CXXFLAGS = $(shell pkg-config --cflags QtCore QtGui 2>/dev/null) -Wall -O4
QTLDLIBS = $(shell pkg-config --libs QtCore QtGui 2>/dev/null)
MOC = $(shell pkg-config --variable=moc_location QtCore)
LUAPLATFORM = macosx
else
CXXFLAGS = $(shell pkg-config --cflags QtCore QtGui 2>/dev/null) -Wall -O4
@ -56,6 +56,12 @@ CORESRCS = uart.c \
CMDSRCS = nonce2key/crapto1.c\
nonce2key/crypto1.c\
nonce2key/nonce2key.c\
loclass/cipher.c \
loclass/cipherutils.c \
loclass/des.c \
loclass/ikeys.c \
loclass/elite_crack.c\
loclass/fileutils.c\
mifarehost.c\
crc16.c \
iso14443crc.c \
@ -74,8 +80,8 @@ CMDSRCS = nonce2key/crapto1.c\
cmdhfmf.c \
cmdhw.c \
cmdlf.c \
cmdlfhid.c \
cmdlfio.c \
cmdlfhid.c \
cmdlfem4x.c \
cmdlfhitag.c \
cmdlfti.c \

View file

@ -17,6 +17,7 @@
#include "ui.h"
#include "graph.h"
#include "cmdparser.h"
#include "util.h"
#include "cmdmain.h"
#include "cmddata.h"
@ -818,6 +819,41 @@ int CmdThreshold(const char *Cmd)
return 0;
}
int CmdDirectionalThreshold(const char *Cmd)
{
int8_t upThres = param_get8(Cmd, 0);
int8_t downThres = param_get8(Cmd, 1);
printf("Applying Up Threshold: %d, Down Threshold: %d\n", upThres, downThres);
int lastValue = GraphBuffer[0];
GraphBuffer[0] = 0; // Will be changed at the end, but init 0 as we adjust to last samples value if no threshold kicks in.
for (int i = 1; i < GraphTraceLen; ++i) {
// Apply first threshold to samples heading up
if (GraphBuffer[i] >= upThres && GraphBuffer[i] > lastValue)
{
lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it.
GraphBuffer[i] = 1;
}
// Apply second threshold to samples heading down
else if (GraphBuffer[i] <= downThres && GraphBuffer[i] < lastValue)
{
lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it.
GraphBuffer[i] = -1;
}
else
{
lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it.
GraphBuffer[i] = GraphBuffer[i-1];
}
}
GraphBuffer[0] = GraphBuffer[1]; // Aline with first edited sample.
RepaintGraphWindow();
return 0;
}
int CmdZerocrossings(const char *Cmd)
{
// Zero-crossings aren't meaningful unless the signal is zero-mean.
@ -874,6 +910,7 @@ static command_t CommandTable[] =
{"scale", CmdScale, 1, "<int> -- Set cursor display scale"},
{"threshold", CmdThreshold, 1, "<threshold> -- Maximize/minimize every value in the graph window depending on threshold"},
{"zerocrossings", CmdZerocrossings, 1, "Count time between zero-crossings"},
{"dirthreshold", CmdDirectionalThreshold, 1, "<thres up> <thres down> -- Max rising higher up-thres/ Min falling lower down-thres, keep rest as prev."},
{NULL, NULL, 0, NULL}
};

View file

@ -38,6 +38,7 @@ int CmdSamples(const char *Cmd);
int CmdSave(const char *Cmd);
int CmdScale(const char *Cmd);
int CmdThreshold(const char *Cmd);
int CmdDirectionalThreshold(const char *Cmd);
int CmdZerocrossings(const char *Cmd);
#endif

View file

@ -183,27 +183,29 @@ void iso14a_set_timeout(uint32_t timeout) {
int CmdHF14AReader(const char *Cmd)
{
UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_CONNECT, 0, 0}};
UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_CONNECT | ISO14A_NO_DISCONNECT, 0, 0}};
SendCommand(&c);
UsbCommand resp;
WaitForResponse(CMD_ACK,&resp);
iso14a_card_select_t *card = (iso14a_card_select_t *)resp.d.asBytes;
iso14a_card_select_t card;
memcpy(&card, (iso14a_card_select_t *)resp.d.asBytes, sizeof(iso14a_card_select_t));
if(resp.arg[0] == 0) {
uint64_t select_status = resp.arg[0]; // 0: couldn't read, 1: OK, with ATS, 2: OK, no ATS
if(select_status == 0) {
PrintAndLog("iso14443a card select failed");
return 0;
}
PrintAndLog("ATQA : %02x %02x", card->atqa[0], card->atqa[1]);
PrintAndLog(" UID : %s", sprint_hex(card->uid, card->uidlen));
PrintAndLog(" SAK : %02x [%d]", card->sak, resp.arg[0]);
PrintAndLog("ATQA : %02x %02x", card.atqa[1], card.atqa[0]);
PrintAndLog(" UID : %s", sprint_hex(card.uid, card.uidlen));
PrintAndLog(" SAK : %02x [%d]", card.sak, resp.arg[0]);
switch (card->sak) {
switch (card.sak) {
case 0x00: PrintAndLog("TYPE : NXP MIFARE Ultralight | Ultralight C"); break;
case 0x04: PrintAndLog("TYPE : NXP MIFARE (various !DESFire !DESFire EV1)"); break;
case 0x08: PrintAndLog("TYPE : NXP MIFARE CLASSIC 1k | Plus 2k SL1"); break;
case 0x09: PrintAndLog("TYPE : NXP MIFARE Mini 0.3k"); break;
case 0x10: PrintAndLog("TYPE : NXP MIFARE Plus 2k SL2"); break;
@ -217,67 +219,107 @@ int CmdHF14AReader(const char *Cmd)
case 0x98: PrintAndLog("TYPE : Gemplus MPCOS"); break;
default: ;
}
if(resp.arg[0] == 1) {
// try to request ATS even if tag claims not to support it
if (select_status == 2) {
uint8_t rats[] = { 0xE0, 0x80 }; // FSDI=8 (FSD=256), CID=0
c.arg[0] = ISO14A_RAW | ISO14A_APPEND_CRC | ISO14A_NO_DISCONNECT;
c.arg[1] = 2;
c.arg[2] = 0;
memcpy(c.d.asBytes, rats, 2);
SendCommand(&c);
WaitForResponse(CMD_ACK,&resp);
memcpy(&card.ats, resp.d.asBytes, resp.arg[0]);
card.ats_len = resp.arg[0]; // note: ats_len includes CRC Bytes
}
// disconnect
c.arg[0] = 0;
c.arg[1] = 0;
c.arg[2] = 0;
SendCommand(&c);
if(card.ats_len >= 3) { // a valid ATS consists of at least the length byte (TL) and 2 CRC bytes
bool ta1 = 0, tb1 = 0, tc1 = 0;
int pos;
PrintAndLog(" ATS : %s", sprint_hex(card->ats, card->ats_len));
if (card->ats_len > 0) {
PrintAndLog(" - TL : length is %d bytes", card->ats[0]);
if (select_status == 2) {
PrintAndLog("SAK incorrectly claims that card doesn't support RATS");
}
if (card->ats_len > 1) {
ta1 = (card->ats[1] & 0x10) == 0x10;
tb1 = (card->ats[1] & 0x20) == 0x20;
tc1 = (card->ats[1] & 0x40) == 0x40;
PrintAndLog(" ATS : %s", sprint_hex(card.ats, card.ats_len));
PrintAndLog(" - TL : length is %d bytes", card.ats[0]);
if (card.ats[0] != card.ats_len - 2) {
PrintAndLog("ATS may be corrupted. Length of ATS (%d bytes incl. 2 Bytes CRC) doesn't match TL", card.ats_len);
}
if (card.ats[0] > 1) { // there is a format byte (T0)
ta1 = (card.ats[1] & 0x10) == 0x10;
tb1 = (card.ats[1] & 0x20) == 0x20;
tc1 = (card.ats[1] & 0x40) == 0x40;
int16_t fsci = card.ats[1] & 0x0f;
PrintAndLog(" - T0 : TA1 is%s present, TB1 is%s present, "
"TC1 is%s present, FSCI is %d",
"TC1 is%s present, FSCI is %d (FSC = %ld)",
(ta1 ? "" : " NOT"), (tb1 ? "" : " NOT"), (tc1 ? "" : " NOT"),
(card->ats[1] & 0x0f));
fsci,
fsci < 5 ? (fsci - 2) * 8 :
fsci < 8 ? (fsci - 3) * 32 :
fsci == 8 ? 256 :
-1
);
}
pos = 2;
if (ta1 && card->ats_len > pos) {
if (ta1) {
char dr[16], ds[16];
dr[0] = ds[0] = '\0';
if (card->ats[pos] & 0x10) strcat(ds, "2, ");
if (card->ats[pos] & 0x20) strcat(ds, "4, ");
if (card->ats[pos] & 0x40) strcat(ds, "8, ");
if (card->ats[pos] & 0x01) strcat(dr, "2, ");
if (card->ats[pos] & 0x02) strcat(dr, "4, ");
if (card->ats[pos] & 0x04) strcat(dr, "8, ");
if (card.ats[pos] & 0x10) strcat(ds, "2, ");
if (card.ats[pos] & 0x20) strcat(ds, "4, ");
if (card.ats[pos] & 0x40) strcat(ds, "8, ");
if (card.ats[pos] & 0x01) strcat(dr, "2, ");
if (card.ats[pos] & 0x02) strcat(dr, "4, ");
if (card.ats[pos] & 0x04) strcat(dr, "8, ");
if (strlen(ds) != 0) ds[strlen(ds) - 2] = '\0';
if (strlen(dr) != 0) dr[strlen(dr) - 2] = '\0';
PrintAndLog(" - TA1 : different divisors are%s supported, "
"DR: [%s], DS: [%s]",
(card->ats[pos] & 0x80 ? " NOT" : ""), dr, ds);
(card.ats[pos] & 0x80 ? " NOT" : ""), dr, ds);
pos++;
}
if (tb1 && card->ats_len > pos) {
PrintAndLog(" - TB1 : SFGI = %d, FWI = %d",
(card->ats[pos] & 0x08),
(card->ats[pos] & 0x80) >> 4);
if (tb1) {
uint32_t sfgi = card.ats[pos] & 0x0F;
uint32_t fwi = card.ats[pos] >> 4;
PrintAndLog(" - TB1 : SFGI = %d (SFGT = %s%ld/fc), FWI = %d (FWT = %ld/fc)",
(sfgi),
sfgi ? "" : "(not needed) ",
sfgi ? (1 << 12) << sfgi : 0,
fwi,
(1 << 12) << fwi
);
pos++;
}
if (tc1 && card->ats_len > pos) {
if (tc1) {
PrintAndLog(" - TC1 : NAD is%s supported, CID is%s supported",
(card->ats[pos] & 0x01) ? "" : " NOT",
(card->ats[pos] & 0x02) ? "" : " NOT");
(card.ats[pos] & 0x01) ? "" : " NOT",
(card.ats[pos] & 0x02) ? "" : " NOT");
pos++;
}
if (card->ats_len > pos) {
if (card.ats[0] > pos) {
char *tip = "";
if (card->ats_len - pos > 7) {
if (memcmp(card->ats + pos, "\xC1\x05\x2F\x2F\x01\xBC\xD6", 7) == 0) {
if (card.ats[0] - pos >= 7) {
if (memcmp(card.ats + pos, "\xC1\x05\x2F\x2F\x01\xBC\xD6", 7) == 0) {
tip = "-> MIFARE Plus X 2K or 4K";
} else if (memcmp(card->ats + pos, "\xC1\x05\x2F\x2F\x00\x35\xC7", 7) == 0) {
} else if (memcmp(card.ats + pos, "\xC1\x05\x2F\x2F\x00\x35\xC7", 7) == 0) {
tip = "-> MIFARE Plus S 2K or 4K";
}
}
PrintAndLog(" - HB : %s%s", sprint_hex(card->ats + pos, card->ats_len - pos - 2), tip);
if (card->ats[pos] == 0xC1) {
PrintAndLog(" - HB : %s%s", sprint_hex(card.ats + pos, card.ats[0] - pos), tip);
if (card.ats[pos] == 0xC1) {
PrintAndLog(" c1 -> Mifare or (multiple) virtual cards of various type");
PrintAndLog(" %02x -> Length is %d bytes",
card->ats[pos + 1], card->ats[pos + 1]);
switch (card->ats[pos + 2] & 0xf0) {
card.ats[pos + 1], card.ats[pos + 1]);
switch (card.ats[pos + 2] & 0xf0) {
case 0x10:
PrintAndLog(" 1x -> MIFARE DESFire");
break;
@ -285,7 +327,7 @@ int CmdHF14AReader(const char *Cmd)
PrintAndLog(" 2x -> MIFARE Plus");
break;
}
switch (card->ats[pos + 2] & 0x0f) {
switch (card.ats[pos + 2] & 0x0f) {
case 0x00:
PrintAndLog(" x0 -> <1 kByte");
break;
@ -302,7 +344,7 @@ int CmdHF14AReader(const char *Cmd)
PrintAndLog(" x0 -> 8 kByte");
break;
}
switch (card->ats[pos + 3] & 0xf0) {
switch (card.ats[pos + 3] & 0xf0) {
case 0x00:
PrintAndLog(" 0x -> Engineering sample");
break;
@ -310,7 +352,7 @@ int CmdHF14AReader(const char *Cmd)
PrintAndLog(" 2x -> Released");
break;
}
switch (card->ats[pos + 3] & 0x0f) {
switch (card.ats[pos + 3] & 0x0f) {
case 0x00:
PrintAndLog(" x0 -> Generation 1");
break;
@ -321,7 +363,7 @@ int CmdHF14AReader(const char *Cmd)
PrintAndLog(" x2 -> Generation 3");
break;
}
switch (card->ats[pos + 4] & 0x0f) {
switch (card.ats[pos + 4] & 0x0f) {
case 0x00:
PrintAndLog(" x0 -> Only VCSL supported");
break;
@ -335,10 +377,10 @@ int CmdHF14AReader(const char *Cmd)
}
}
} else {
PrintAndLog("proprietary non iso14443a-4 card found, RATS not supported");
}
PrintAndLog("proprietary non iso14443-4 card found, RATS not supported");
}
return resp.arg[0];
return select_status;
}
// Collect ISO14443 Type A UIDs
@ -357,23 +399,20 @@ int CmdHF14ACUIDs(const char *Cmd)
UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_CONNECT, 0, 0}};
SendCommand(&c);
UsbCommand resp;
WaitForResponse(CMD_ACK,&resp);
UsbCommand resp;
WaitForResponse(CMD_ACK,&resp);
uint8_t *uid = resp.d.asBytes;
iso14a_card_select_t *card = (iso14a_card_select_t *)(uid + 12);
iso14a_card_select_t *card = (iso14a_card_select_t *) resp.d.asBytes;
// check if command failed
if (resp.arg[0] == 0) {
PrintAndLog("Card select failed.");
} else {
// check if UID is 4 bytes
if ((card->atqa[1] & 0xC0) == 0) {
PrintAndLog("%02X%02X%02X%02X",
*uid, *(uid + 1), *(uid + 2), *(uid + 3));
} else {
PrintAndLog("UID longer than 4 bytes");
char uid_string[20];
for (uint16_t i = 0; i < card->uidlen; i++) {
sprintf(&uid_string[2*i], "%02X", card->uid[i]);
}
PrintAndLog("%s", uid_string);
}
}
PrintAndLog("End: %u", time(NULL));

View file

@ -1,6 +1,7 @@
//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>, Hagen Fritsch
// Copyright (C) 2011 Gerhard de Koning Gans
// Copyright (C) 2014 Midnitesnake & Andy Davies & Martin Holst Swende
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
@ -12,6 +13,7 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include "iso14443crc.h" // Can also be used for iClass, using 0xE012 as CRC-type
#include "data.h"
//#include "proxusb.h"
@ -21,10 +23,143 @@
#include "cmdhficlass.h"
#include "common.h"
#include "util.h"
#include "cmdmain.h"
#include "loclass/des.h"
#include "loclass/cipherutils.h"
#include "loclass/cipher.h"
#include "loclass/ikeys.h"
#include "loclass/elite_crack.h"
#include "loclass/fileutils.h"
static int CmdHelp(const char *Cmd);
int xorbits_8(uint8_t val)
{
uint8_t res = val ^ (val >> 1); //1st pass
res = res ^ (res >> 1); // 2nd pass
res = res ^ (res >> 2); // 3rd pass
res = res ^ (res >> 4); // 4th pass
return res & 1;
}
int CmdHFiClassList(const char *Cmd)
{
bool ShowWaitCycles = false;
char param = param_getchar(Cmd, 0);
if (param != 0) {
PrintAndLog("List data in trace buffer.");
PrintAndLog("Usage: hf iclass list");
PrintAndLog("h - help");
PrintAndLog("sample: hf iclass list");
return 0;
}
uint8_t got[1920];
GetFromBigBuf(got,sizeof(got),0);
WaitForResponse(CMD_ACK,NULL);
PrintAndLog("Recorded Activity");
PrintAndLog("");
PrintAndLog("Start = Start of Start Bit, End = End of last modulation. Src = Source of Transfer");
PrintAndLog("All times are in carrier periods (1/13.56Mhz)");
PrintAndLog("");
PrintAndLog(" Start | End | Src | Data");
PrintAndLog("-----------|-----------|-----|--------");
int i;
uint32_t first_timestamp = 0;
uint32_t timestamp;
bool tagToReader;
uint32_t parityBits;
uint8_t len;
uint8_t *frame;
uint32_t EndOfTransmissionTimestamp = 0;
for( i=0; i < 1900;)
{
//First 32 bits contain
// isResponse (1 bit)
// timestamp (remaining)
//Then paritybits
//Then length
timestamp = *((uint32_t *)(got+i));
parityBits = *((uint32_t *)(got+i+4));
len = got[i+8];
frame = (got+i+9);
uint32_t next_timestamp = (*((uint32_t *)(got+i+9))) & 0x7fffffff;
tagToReader = timestamp & 0x80000000;
timestamp &= 0x7fffffff;
if(i==0) {
first_timestamp = timestamp;
}
// Break and stick with current result idf buffer was not completely full
if (frame[0] == 0x44 && frame[1] == 0x44 && frame[2] == 0x44 && frame[3] == 0x44) break;
char line[1000] = "";
if(len)//We have some data to display
{
int j,oddparity;
for(j = 0; j < len ; j++)
{
oddparity = 0x01 ^ xorbits_8(frame[j] & 0xFF);
if (tagToReader && (oddparity != ((parityBits >> (len - j - 1)) & 0x01))) {
sprintf(line+(j*4), "%02x! ", frame[j]);
} else {
sprintf(line+(j*4), "%02x ", frame[j]);
}
}
}else
{
if (ShowWaitCycles) {
sprintf(line, "fdt (Frame Delay Time): %d", (next_timestamp - timestamp));
}
}
char *crc = "";
if(len > 2)
{
uint8_t b1, b2;
if(!tagToReader && len == 4) {
// Rough guess that this is a command from the reader
// For iClass the command byte is not part of the CRC
ComputeCrc14443(CRC_ICLASS, &frame[1], len-3, &b1, &b2);
}
else {
// For other data.. CRC might not be applicable (UPDATE commands etc.)
ComputeCrc14443(CRC_ICLASS, frame, len-2, &b1, &b2);
}
if (b1 != frame[len-2] || b2 != frame[len-1]) {
crc = (tagToReader & (len < 8)) ? "" : " !crc";
}
}
i += (len + 9);
EndOfTransmissionTimestamp = (*((uint32_t *)(got+i))) & 0x7fffffff;
// Not implemented for iclass on the ARM-side
//if (!ShowWaitCycles) i += 9;
PrintAndLog(" %9d | %9d | %s | %s %s",
(timestamp - first_timestamp),
(EndOfTransmissionTimestamp - first_timestamp),
(len?(tagToReader ? "Tag" : "Rdr"):" "),
line, crc);
}
return 0;
}
int CmdHFiClassListOld(const char *Cmd)
{
uint8_t got[1920];
GetFromBigBuf(got,sizeof(got),0);
@ -50,7 +185,9 @@ int CmdHFiClassList(const char *Cmd)
isResponse = 0;
}
int metric = 0;
int parityBits = *((uint32_t *)(got+i+4));
// 4 bytes of additional information...
// maximum of 32 additional parity bit information
@ -160,11 +297,6 @@ int CmdHFiClassList(const char *Cmd)
return 0;
}
/*void iso14a_set_timeout(uint32_t timeout) {
UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_SET_TIMEOUT, 0, timeout}};
SendCommand(&c);
}*/
int CmdHFiClassSnoop(const char *Cmd)
{
UsbCommand c = {CMD_SNOOP_ICLASS};
@ -177,69 +309,352 @@ int CmdHFiClassSim(const char *Cmd)
uint8_t simType = 0;
uint8_t CSN[8] = {0, 0, 0, 0, 0, 0, 0, 0};
if (strlen(Cmd)<2) {
PrintAndLog("Usage: hf iclass sim <sim type> <CSN (16 hex symbols)>");
if (strlen(Cmd)<1) {
PrintAndLog("Usage: hf iclass sim [0 <CSN>] | x");
PrintAndLog(" options");
PrintAndLog(" 0 <CSN> simulate the given CSN");
PrintAndLog(" 1 simulate default CSN");
PrintAndLog(" 2 iterate CSNs, gather MACs");
PrintAndLog(" sample: hf iclass sim 0 031FEC8AF7FF12E0");
PrintAndLog(" sample: hf iclass sim 2");
return 0;
}
simType = param_get8(Cmd, 0);
if (param_gethex(Cmd, 1, CSN, 16)) {
PrintAndLog("A CSN should consist of 16 HEX symbols");
return 1;
if(simType == 0)
{
if (param_gethex(Cmd, 1, CSN, 16)) {
PrintAndLog("A CSN should consist of 16 HEX symbols");
return 1;
}
PrintAndLog("--simtype:%02x csn:%s", simType, sprint_hex(CSN, 8));
}
PrintAndLog("--simtype:%02x csn:%s", simType, sprint_hex(CSN, 8));
if(simType > 2)
{
PrintAndLog("Undefined simptype %d", simType);
return 1;
}
uint8_t numberOfCSNs=0;
UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType}};
memcpy(c.d.asBytes, CSN, 8);
SendCommand(&c);
if(simType == 2)
{
UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType,63}};
UsbCommand resp = {0};
/*UsbCommand * resp = WaitForResponseTimeout(CMD_ACK, 1500);
if (resp != NULL) {
uint8_t isOK = resp->arg[0] & 0xff;
PrintAndLog("isOk:%02x", isOK);
} else {
PrintAndLog("Command execute timeout");
}*/
uint8_t csns[64] = {
0x00,0x0B,0x0F,0xFF,0xF7,0xFF,0x12,0xE0 ,
0x00,0x13,0x94,0x7e,0x76,0xff,0x12,0xe0 ,
0x2a,0x99,0xac,0x79,0xec,0xff,0x12,0xe0 ,
0x17,0x12,0x01,0xfd,0xf7,0xff,0x12,0xe0 ,
0xcd,0x56,0x01,0x7c,0x6f,0xff,0x12,0xe0 ,
0x4b,0x5e,0x0b,0x72,0xef,0xff,0x12,0xe0 ,
0x00,0x73,0xd8,0x75,0x58,0xff,0x12,0xe0 ,
0x0c,0x90,0x32,0xf3,0x5d,0xff,0x12,0xe0 };
memcpy(c.d.asBytes, csns, 64);
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, -1)) {
PrintAndLog("Command timed out");
return 0;
}
uint8_t num_mac_responses = resp.arg[1];
PrintAndLog("Mac responses: %d MACs obtained (should be 8)", num_mac_responses);
size_t datalen = 8*24;
/*
* Now, time to dump to file. We'll use this format:
* <8-byte CSN><8-byte CC><4 byte NR><4 byte MAC>....
* So, it should wind up as
* 8 * 24 bytes.
*
* The returndata from the pm3 is on the following format
* <4 byte NR><4 byte MAC>
* CC are all zeroes, CSN is the same as was sent in
**/
void* dump = malloc(datalen);
memset(dump,0,datalen);//<-- Need zeroes for the CC-field
uint8_t i = 0;
for(i = 0 ; i < 8 ; i++)
{
memcpy(dump+i*24, csns+i*8,8); //CSN
//8 zero bytes here...
//Then comes NR_MAC (eight bytes from the response)
memcpy(dump+i*24+16,resp.d.asBytes+i*8,8);
}
/** Now, save to dumpfile **/
saveFile("iclass_mac_attack", "bin", dump,datalen);
free(dump);
}else
{
UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType,numberOfCSNs}};
memcpy(c.d.asBytes, CSN, 8);
SendCommand(&c);
}
return 0;
}
int CmdHFiClassReader(const char *Cmd)
{
uint8_t readerType = 0;
if (strlen(Cmd)<1) {
PrintAndLog("Usage: hf iclass reader <reader type>");
PrintAndLog(" sample: hf iclass reader 0");
return 0;
}
readerType = param_get8(Cmd, 0);
PrintAndLog("--readertype:%02x", readerType);
UsbCommand c = {CMD_READER_ICLASS, {readerType}};
//memcpy(c.d.asBytes, CSN, 8);
UsbCommand c = {CMD_READER_ICLASS, {0}};
SendCommand(&c);
UsbCommand resp;
while(!ukbhit()){
if (WaitForResponseTimeout(CMD_ACK,&resp,4500)) {
uint8_t isOK = resp.arg[0] & 0xff;
uint8_t * data = resp.d.asBytes;
/*UsbCommand * resp = WaitForResponseTimeout(CMD_ACK, 1500);
if (resp != NULL) {
uint8_t isOK = resp->arg[0] & 0xff;
PrintAndLog("isOk:%02x", isOK);
} else {
PrintAndLog("Command execute timeout");
}*/
PrintAndLog("isOk:%02x", isOK);
if(isOK > 0)
{
PrintAndLog("CSN: %s",sprint_hex(data,8));
}
if(isOK >= 1)
{
PrintAndLog("CC: %s",sprint_hex(data+8,8));
}else{
PrintAndLog("No CC obtained");
}
} else {
PrintAndLog("Command execute timeout");
}
}
return 0;
}
int CmdHFiClassReader_Replay(const char *Cmd)
{
uint8_t readerType = 0;
uint8_t MAC[4]={0x00, 0x00, 0x00, 0x00};
if (strlen(Cmd)<1) {
PrintAndLog("Usage: hf iclass replay <MAC>");
PrintAndLog(" sample: hf iclass replay 00112233");
return 0;
}
if (param_gethex(Cmd, 0, MAC, 8)) {
PrintAndLog("MAC must include 8 HEX symbols");
return 1;
}
UsbCommand c = {CMD_READER_ICLASS_REPLAY, {readerType}};
memcpy(c.d.asBytes, MAC, 4);
SendCommand(&c);
return 0;
}
int CmdHFiClassReader_Dump(const char *Cmd)
{
uint8_t readerType = 0;
uint8_t MAC[4]={0x00,0x00,0x00,0x00};
uint8_t KEY[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CSN[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CCNR[12]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
//uint8_t CC_temp[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t div_key[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t keytable[128] = {0};
int elite = 0;
uint8_t *used_key;
int i;
if (strlen(Cmd)<1)
{
PrintAndLog("Usage: hf iclass dump <Key> [e]");
PrintAndLog(" Key - A 16 byte master key");
PrintAndLog(" e - If 'e' is specified, the key is interpreted as the 16 byte");
PrintAndLog(" Custom Key (KCus), which can be obtained via reader-attack");
PrintAndLog(" See 'hf iclass sim 2'. This key should be on iclass-format");
PrintAndLog(" sample: hf iclass dump 0011223344556677");
return 0;
}
if (param_gethex(Cmd, 0, KEY, 16))
{
PrintAndLog("KEY must include 16 HEX symbols");
return 1;
}
if (param_getchar(Cmd, 1) == 'e')
{
PrintAndLog("Elite switch on");
elite = 1;
//calc h2
hash2(KEY, keytable);
printarr_human_readable("keytable", keytable, 128);
}
UsbCommand c = {CMD_READER_ICLASS, {0}};
c.arg[0] = FLAG_ICLASS_READER_ONLY_ONCE;
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK,&resp,4500)) {
uint8_t isOK = resp.arg[0] & 0xff;
uint8_t * data = resp.d.asBytes;
memcpy(CSN,data,8);
memcpy(CCNR,data+8,8);
PrintAndLog("isOk:%02x", isOK);
if(isOK > 0)
{
PrintAndLog("CSN: %s",sprint_hex(CSN,8));
}
if(isOK > 1)
{
if(elite)
{
uint8_t key_sel[8] = {0};
uint8_t key_sel_p[8] = { 0 };
//Get the key index (hash1)
uint8_t key_index[8] = {0};
hash1(CSN, key_index);
printvar("hash1", key_index,8);
for(i = 0; i < 8 ; i++)
key_sel[i] = keytable[key_index[i]] & 0xFF;
printvar("k_sel", key_sel,8);
//Permute from iclass format to standard format
permutekey_rev(key_sel,key_sel_p);
used_key = key_sel_p;
}else{
//Perhaps this should also be permuted to std format?
// Something like the code below? I have no std system
// to test this with /Martin
//uint8_t key_sel_p[8] = { 0 };
//permutekey_rev(KEY,key_sel_p);
//used_key = key_sel_p;
used_key = KEY;
}
printvar("Used key",used_key,8);
diversifyKey(CSN,used_key, div_key);
printvar("Div key", div_key, 8);
printvar("CC_NR:",CCNR,12);
doMAC(CCNR,12,div_key, MAC);
printvar("MAC", MAC, 4);
UsbCommand d = {CMD_READER_ICLASS_REPLAY, {readerType}};
memcpy(d.d.asBytes, MAC, 4);
SendCommand(&d);
}else{
PrintAndLog("Failed to obtain CC! Aborting");
}
} else {
PrintAndLog("Command execute timeout");
}
return 0;
}
int CmdHFiClass_iso14443A_write(const char *Cmd)
{
uint8_t readerType = 0;
uint8_t MAC[4]={0x00,0x00,0x00,0x00};
uint8_t KEY[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CSN[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CCNR[12]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t div_key[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t blockNo=0;
uint8_t bldata[8]={0};
if (strlen(Cmd)<3)
{
PrintAndLog("Usage: hf iclass write <Key> <Block> <Data>");
PrintAndLog(" sample: hf iclass write 0011223344556677 10 AAAAAAAAAAAAAAAA");
return 0;
}
if (param_gethex(Cmd, 0, KEY, 16))
{
PrintAndLog("KEY must include 16 HEX symbols");
return 1;
}
blockNo = param_get8(Cmd, 1);
if (blockNo>32)
{
PrintAndLog("Error: Maximum number of blocks is 32 for iClass 2K Cards!");
return 1;
}
if (param_gethex(Cmd, 2, bldata, 8))
{
PrintAndLog("Block data must include 8 HEX symbols");
return 1;
}
UsbCommand c = {CMD_ICLASS_ISO14443A_WRITE, {0}};
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK,&resp,4500)) {
uint8_t isOK = resp.arg[0] & 0xff;
uint8_t * data = resp.d.asBytes;
memcpy(CSN,data,8);
memcpy(CCNR,data+8,8);
PrintAndLog("DEBUG: %s",sprint_hex(CSN,8));
PrintAndLog("DEBUG: %s",sprint_hex(CCNR,8));
PrintAndLog("isOk:%02x", isOK);
} else {
PrintAndLog("Command execute timeout");
}
diversifyKey(CSN,KEY, div_key);
PrintAndLog("Div Key: %s",sprint_hex(div_key,8));
doMAC(CCNR, 12,div_key, MAC);
UsbCommand c2 = {CMD_ICLASS_ISO14443A_WRITE, {readerType,blockNo}};
memcpy(c2.d.asBytes, bldata, 8);
memcpy(c2.d.asBytes+8, MAC, 4);
SendCommand(&c2);
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
uint8_t isOK = resp.arg[0] & 0xff;
uint8_t * data = resp.d.asBytes;
if (isOK)
PrintAndLog("isOk:%02x data:%s", isOK, sprint_hex(data, 4));
else
PrintAndLog("isOk:%02x", isOK);
} else {
PrintAndLog("Command execute timeout");
}
return 0;
}
static command_t CommandTable[] =
{
{"help", CmdHelp, 1, "This help"},
{"list", CmdHFiClassList, 0, "List iClass history"},
{"snoop", CmdHFiClassSnoop, 0, "Eavesdrop iClass communication"},
{"sim", CmdHFiClassSim, 0, "Simulate iClass tag"},
{"reader", CmdHFiClassReader, 0, "Read an iClass tag"},
{"help", CmdHelp, 1, "This help"},
{"list", CmdHFiClassList, 0, "List iClass history"},
{"snoop", CmdHFiClassSnoop, 0, "Eavesdrop iClass communication"},
{"sim", CmdHFiClassSim, 0, "Simulate iClass tag"},
{"reader",CmdHFiClassReader, 0, "Read an iClass tag"},
{"replay",CmdHFiClassReader_Replay, 0, "Read an iClass tag via Reply Attack"},
{"dump", CmdHFiClassReader_Dump, 0, "Authenticate and Dump iClass tag"},
{"write", CmdHFiClass_iso14443A_write, 0, "Authenticate and Write iClass block"},
{NULL, NULL, 0, NULL}
};

View file

@ -18,5 +18,6 @@ int CmdHFiClassSnoop(const char *Cmd);
int CmdHFiClassSim(const char *Cmd);
int CmdHFiClassList(const char *Cmd);
int CmdHFiClassReader(const char *Cmd);
int CmdHFiClassReader_Replay(const char *Cmd);
#endif

File diff suppressed because it is too large Load diff

View file

@ -450,6 +450,28 @@ int CmdLFSimManchester(const char *Cmd)
return 0;
}
int CmdLFSnoop(const char *Cmd)
{
UsbCommand c = {CMD_LF_SNOOP_RAW_ADC_SAMPLES};
// 'h' means higher-low-frequency, 134 kHz
c.arg[0] = 0;
c.arg[1] = -1;
if (*Cmd == 0) {
// empty
} else if (*Cmd == 'l') {
sscanf(Cmd, "l %"lli, &c.arg[1]);
} else if(*Cmd == 'h') {
c.arg[0] = 1;
sscanf(Cmd, "h %"lli, &c.arg[1]);
} else if (sscanf(Cmd, "%"lli" %"lli, &c.arg[0], &c.arg[1]) < 1) {
PrintAndLog("use 'snoop' or 'snoop {l,h} [trigger threshold]', or 'snoop <divisor> [trigger threshold]'");
return 0;
}
SendCommand(&c);
WaitForResponse(CMD_ACK,NULL);
return 0;
}
int CmdVchDemod(const char *Cmd)
{
// Is this the entire sync pattern, or does this also include some
@ -540,6 +562,7 @@ static command_t CommandTable[] =
{"sim", CmdLFSim, 0, "[GAP] -- Simulate LF tag from buffer with optional GAP (in microseconds)"},
{"simbidir", CmdLFSimBidir, 0, "Simulate LF tag (with bidirectional data transmission between reader and tag)"},
{"simman", CmdLFSimManchester, 0, "<Clock> <Bitstream> [GAP] Simulate arbitrary Manchester LF tag"},
{"snoop", CmdLFSnoop, 0, "['l'|'h'|<divisor>] [trigger threshold]-- Snoop LF (l:125khz, h:134khz)"},
{"ti", CmdLFTI, 1, "{ TI RFIDs... }"},
{"hitag", CmdLFHitag, 1, "{ Hitag tags and transponders... }"},
{"vchdemod", CmdVchDemod, 1, "['clone'] -- Demodulate samples for VeriChip"},

View file

@ -21,6 +21,7 @@ int CmdLFRead(const char *Cmd);
int CmdLFSim(const char *Cmd);
int CmdLFSimBidir(const char *Cmd);
int CmdLFSimManchester(const char *Cmd);
int CmdLFSnoop(const char *Cmd);
int CmdVchDemod(const char *Cmd);
#endif

79
client/default_keys.dic Normal file
View file

@ -0,0 +1,79 @@
# Default Keys as already in Proxmark.exe:
ffffffffffff,//Defaultkey(firstkeyusedbyprogramifnouserdefinedkey)
000000000000,//Blankkey
a0a1a2a3a4a5,//NFCForumMADkey
b0b1b2b3b4b5,
aabbccddeeff,
4d3a99c351dd,
1a982c7e459a,
d3f7d3f7d3f7,
714c5c886e97,
587ee5f9350f,
a0478cc39091,
533cb6c723f6,
8fd0a4f256e9
# more Keys from mf_default_keys.lua
000000000001,
000000000002,
00000000000a,
00000000000b,
00000ffe2488,--VästtrafikenKeyB
010203040506,
0123456789ab,
0297927c0f77,--VästtrafikenKeyA
100000000000,
111111111111,
123456789abc,
12f2ee3478c1,
14d446e33363,
1999a3554a55,
200000000000,
222222222222,
26940b21ff5d,--RKFSLKeyA
27dd91f1fcf1,
2BA9621E0A36,--DirectoryandeventlogKeyB
333333333333,
33f974b42769,
34d1df9934c5,
434f4d4d4f41,--RKFJOJOGROUPKeyA
434f4d4d4f42,--RKFJOJOGROUPKeyB
43ab19ef5c31,
444444444444,
47524f555041,--RKFJOJOGROUPKeyA
47524f555042,--RKFJOJOGROUPKeyB
4AF9D7ADEBE4,--DirectoryandeventlogKeyA
505249564141,--RKFJOJOPRIVAKeyA
505249564142,--RKFJOJOPRIVAKeyB
505249565441,
505249565442,
54726176656c,--VästtrafikenKeyA
555555555555,
55f5a5dd38c9,
5c598c9c58b5,--RKFSLKeyB
666666666666,
722bfcc5375f,--RKFRejskortDanmarkKeyA
776974687573,--VästtrafikenKeyB
777777777777,
888888888888,
999999999999,
99c636334433,
a00000000000,
a053a292a4af,
a64598a77478,--RKFSLKeyA
a94133013401,
aaaaaaaaaaaa,
abcdef123456,--Keyfromladyada.net
b00000000000,
b127c6f41436,
bbbbbbbbbbbb,
bd493a3962b6,
c934fe34d934,
cccccccccccc,
dddddddddddd,
e4d2770a89be,--RKFSLKeyB
ee0042f88840,--VästtrafikenKeyB
eeeeeeeeeeee,
f1a97341a9fc,
f1d83f964314,--RKFRejskortDanmarkKeyB
fc00018778f7,--VästtrafikenKeyA
fc0001877bf7,--RKFÖstgötaTrafikenKeyA

255
client/loclass/cipher.c Normal file
View file

@ -0,0 +1,255 @@
/*****************************************************************************
* This file is part of iClassCipher. It is a reconstructon of the cipher engine
* used in iClass, and RFID techology.
*
* The implementation is based on the work performed by
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
* Milosch Meriac in the paper "Dismantling IClass".
*
* Copyright (C) 2014 Martin Holst Swende
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with IClassCipher. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
#include "cipher.h"
#include "cipherutils.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <stdint.h>
#include <time.h>
#include "fileutils.h"
uint8_t keytable[] = { 0,0,0,0,0,0,0,0};
/**
* Definition 1 (Cipher state). A cipher state of iClass s is an element of F 40/2
* consisting of the following four components:
* 1. the left register l = (l 0 . . . l 7 ) F 8/2 ;
* 2. the right register r = (r 0 . . . r 7 ) F 8/2 ;
* 3. the top register t = (t 0 . . . t 15 ) F 16/2 .
* 4. the bottom register b = (b 0 . . . b 7 ) F 8/2 .
**/
typedef struct {
uint8_t l;
uint8_t r;
uint8_t b;
uint16_t t;
} State;
/**
* Definition 2. The feedback function for the top register T : F 16/2 F 2
* is defined as
* T (x 0 x 1 . . . . . . x 15 ) = x 0 x 1 x 5 x 7 x 10 x 11 x 14 x 15 .
**/
bool T(State state)
{
bool x0 = state.t & 0x8000;
bool x1 = state.t & 0x4000;
bool x5 = state.t & 0x0400;
bool x7 = state.t & 0x0100;
bool x10 = state.t & 0x0020;
bool x11 = state.t & 0x0010;
bool x14 = state.t & 0x0002;
bool x15 = state.t & 0x0001;
return x0 ^ x1 ^ x5 ^ x7 ^ x10 ^ x11 ^ x14 ^ x15;
}
/**
* Similarly, the feedback function for the bottom register B : F 8/2 F 2 is defined as
* B(x 0 x 1 . . . x 7 ) = x 1 x 2 x 3 x 7 .
**/
bool B(State state)
{
bool x1 = state.b & 0x40;
bool x2 = state.b & 0x20;
bool x3 = state.b & 0x10;
bool x7 = state.b & 0x01;
return x1 ^ x2 ^ x3 ^ x7;
}
/**
* Definition 3 (Selection function). The selection function select : F 2 × F 2 ×
* F 8/2 F 3/2 is defined as select(x, y, r) = z 0 z 1 z 2 where
* z 0 = (r 0 r 2 ) (r 1 r 3 ) (r 2 r 4 )
* z 1 = (r 0 r 2 ) (r 5 r 7 ) r 1 r 6 x y
* z 2 = (r 3 r 5 ) (r 4 r 6 ) r 7 x
**/
uint8_t _select(bool x, bool y, uint8_t r)
{
bool r0 = r >> 7 & 0x1;
bool r1 = r >> 6 & 0x1;
bool r2 = r >> 5 & 0x1;
bool r3 = r >> 4 & 0x1;
bool r4 = r >> 3 & 0x1;
bool r5 = r >> 2 & 0x1;
bool r6 = r >> 1 & 0x1;
bool r7 = r & 0x1;
bool z0 = (r0 & r2) ^ (r1 & ~r3) ^ (r2 | r4);
bool z1 = (r0 | r2) ^ ( r5 | r7) ^ r1 ^ r6 ^ x ^ y;
bool z2 = (r3 & ~r5) ^ (r4 & r6 ) ^ r7 ^ x;
// The three bitz z0.. z1 are packed into a uint8_t:
// 00000ZZZ
//Return value is a uint8_t
uint8_t retval = 0;
retval |= (z0 << 2) & 4;
retval |= (z1 << 1) & 2;
retval |= z2 & 1;
// Return value 0 <= retval <= 7
return retval;
}
/**
* Definition 4 (Successor state). Let s = l, r, t, b be a cipher state, k (F 82 ) 8
* be a key and y F 2 be the input bit. Then, the successor cipher state s =
* l , r , t , b is defined as
* t := (T (t) r 0 r 4 )t 0 . . . t 14 l := (k [select(T (t),y,r)] b ) l r
* b := (B(b) r 7 )b 0 . . . b 6 r := (k [select(T (t),y,r)] b ) l
*
* @param s - state
* @param k - array containing 8 bytes
**/
State successor(uint8_t* k, State s, bool y)
{
bool r0 = s.r >> 7 & 0x1;
bool r4 = s.r >> 3 & 0x1;
bool r7 = s.r & 0x1;
State successor = {0,0,0,0};
successor.t = s.t >> 1;
successor.t |= (T(s) ^ r0 ^ r4) << 15;
successor.b = s.b >> 1;
successor.b |= (B(s) ^ r7) << 7;
bool Tt = T(s);
successor.l = ((k[_select(Tt,y,s.r)] ^ successor.b) + s.l+s.r ) & 0xFF;
successor.r = ((k[_select(Tt,y,s.r)] ^ successor.b) + s.l ) & 0xFF;
return successor;
}
/**
* We define the successor function suc which takes a key k (F 82 ) 8 , a state s and
* an input y F 2 and outputs the successor state s . We overload the function suc
* to multiple bit input x F n 2 which we define as
* @param k - array containing 8 bytes
**/
State suc(uint8_t* k,State s, BitstreamIn *bitstream)
{
if(bitsLeft(bitstream) == 0)
{
return s;
}
bool lastbit = tailBit(bitstream);
return successor(k,suc(k,s,bitstream), lastbit);
}
/**
* Definition 5 (Output). Define the function output which takes an internal
* state s =< l, r, t, b > and returns the bit r 5 . We also define the function output
* on multiple bits input which takes a key k, a state s and an input x F n 2 as
* output(k, s, ǫ) = ǫ
* output(k, s, x 0 . . . x n ) = output(s) · output(k, s , x 1 . . . x n )
* where s = suc(k, s, x 0 ).
**/
void output(uint8_t* k,State s, BitstreamIn* in, BitstreamOut* out)
{
if(bitsLeft(in) == 0)
{
return;
}
pushBit(out,(s.r >> 2) & 1);
//Remove first bit
uint8_t x0 = headBit(in);
State ss = successor(k,s,x0);
output(k,ss,in, out);
}
/**
* Definition 6 (Initial state). Define the function init which takes as input a
* key k (F 82 ) 8 and outputs the initial cipher state s =< l, r, t, b >
**/
State init(uint8_t* k)
{
State s = {
((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l
((k[0] ^ 0x4c) + 0x21) & 0xFF,// r
0x4c, // b
0xE012 // t
};
return s;
}
void MAC(uint8_t* k, BitstreamIn input, BitstreamOut out)
{
uint8_t zeroes_32[] = {0,0,0,0};
BitstreamIn input_32_zeroes = {zeroes_32,sizeof(zeroes_32)*8,0};
State initState = suc(k,init(k),&input);
output(k,initState,&input_32_zeroes,&out);
}
void doMAC(uint8_t *cc_nr_p, int length, uint8_t *div_key_p, uint8_t mac[4])
{
uint8_t *cc_nr;
uint8_t div_key[8];
cc_nr=(uint8_t*)malloc(length+1);
memcpy(cc_nr,cc_nr_p,length);
memcpy(div_key,div_key_p,8);
reverse_arraybytes(cc_nr,length);
BitstreamIn bitstream = {cc_nr,length * 8,0};
uint8_t dest []= {0,0,0,0,0,0,0,0};
BitstreamOut out = { dest, sizeof(dest)*8, 0 };
MAC(div_key,bitstream, out);
//The output MAC must also be reversed
reverse_arraybytes(dest, sizeof(dest));
memcpy(mac, dest, 4);
//printf("Calculated_MAC\t%02x%02x%02x%02x\n", dest[0],dest[1],dest[2],dest[3]);
free(cc_nr);
return;
}
int testMAC()
{
prnlog("[+] Testing MAC calculation...");
//From the "dismantling.IClass" paper:
uint8_t cc_nr[] = {0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0,0,0,0};
//From the paper
uint8_t div_key[8] = {0xE0,0x33,0xCA,0x41,0x9A,0xEE,0x43,0xF9};
uint8_t correct_MAC[4] = {0x1d,0x49,0xC9,0xDA};
uint8_t calculated_mac[4] = {0};
doMAC(cc_nr, 12,div_key, calculated_mac);
if(memcmp(calculated_mac, correct_MAC,4) == 0)
{
prnlog("[+] MAC calculation OK!");
}else
{
prnlog("[+] FAILED: MAC calculation failed:");
printarr(" Calculated_MAC", calculated_mac, 4);
printarr(" Correct_MAC ", correct_MAC, 4);
return 1;
}
return 0;
}

31
client/loclass/cipher.h Normal file
View file

@ -0,0 +1,31 @@
/*****************************************************************************
* This file is part of iClassCipher. It is a reconstructon of the cipher engine
* used in iClass, and RFID techology.
*
* The implementation is based on the work performed by
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
* Milosch Meriac in the paper "Dismantling IClass".
*
* Copyright (C) 2014 Martin Holst Swende
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with IClassCipher. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
#ifndef CIPHER_H
#define CIPHER_H
#include <stdint.h>
void doMAC(uint8_t *cc_nr_p, int length, uint8_t *div_key_p, uint8_t mac[4]);
int testMAC();
#endif // CIPHER_H

View file

@ -0,0 +1,273 @@
/*****************************************************************************
* This file is part of iClassCipher. It is a reconstructon of the cipher engine
* used in iClass, and RFID techology.
*
* The implementation is based on the work performed by
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
* Milosch Meriac in the paper "Dismantling IClass".
*
* Copyright (C) 2014 Martin Holst Swende
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with IClassCipher. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include "fileutils.h"
#include "cipherutils.h"
/**
*
* @brief Return and remove the first bit (x0) in the stream : <x0 x1 x2 x3 ... xn >
* @param stream
* @return
*/
bool headBit( BitstreamIn *stream)
{
int bytepos = stream->position >> 3; // divide by 8
int bitpos = (stream->position++) & 7; // mask out 00000111
return (*(stream->buffer + bytepos) >> (7-bitpos)) & 1;
}
/**
* @brief Return and remove the last bit (xn) in the stream: <x0 x1 x2 ... xn>
* @param stream
* @return
*/
bool tailBit( BitstreamIn *stream)
{
int bitpos = stream->numbits -1 - (stream->position++);
int bytepos= bitpos >> 3;
bitpos &= 7;
return (*(stream->buffer + bytepos) >> (7-bitpos)) & 1;
}
/**
* @brief Pushes bit onto the stream
* @param stream
* @param bit
*/
void pushBit( BitstreamOut* stream, bool bit)
{
int bytepos = stream->position >> 3; // divide by 8
int bitpos = stream->position & 7;
*(stream->buffer+bytepos) |= (bit & 1) << (7 - bitpos);
stream->position++;
stream->numbits++;
}
/**
* @brief Pushes the lower six bits onto the stream
* as b0 b1 b2 b3 b4 b5 b6
* @param stream
* @param bits
*/
void push6bits( BitstreamOut* stream, uint8_t bits)
{
pushBit(stream, bits & 0x20);
pushBit(stream, bits & 0x10);
pushBit(stream, bits & 0x08);
pushBit(stream, bits & 0x04);
pushBit(stream, bits & 0x02);
pushBit(stream, bits & 0x01);
}
/**
* @brief bitsLeft
* @param stream
* @return number of bits left in stream
*/
int bitsLeft( BitstreamIn *stream)
{
return stream->numbits - stream->position;
}
/**
* @brief numBits
* @param stream
* @return Number of bits stored in stream
*/
int numBits(BitstreamOut *stream)
{
return stream->numbits;
}
void x_num_to_bytes(uint64_t n, size_t len, uint8_t* dest)
{
while (len--) {
dest[len] = (uint8_t) n;
n >>= 8;
}
}
uint64_t x_bytes_to_num(uint8_t* src, size_t len)
{
uint64_t num = 0;
while (len--)
{
num = (num << 8) | (*src);
src++;
}
return num;
}
uint8_t reversebytes(uint8_t b) {
b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
return b;
}
void reverse_arraybytes(uint8_t* arr, size_t len)
{
uint8_t i;
for( i =0; i< len ; i++)
{
arr[i] = reversebytes(arr[i]);
}
}
void reverse_arraycopy(uint8_t* arr, uint8_t* dest, size_t len)
{
uint8_t i;
for( i =0; i< len ; i++)
{
dest[i] = reversebytes(arr[i]);
}
}
void printarr(char * name, uint8_t* arr, int len)
{
int cx;
size_t outsize = 40+strlen(name)+len*5;
char* output = malloc(outsize);
memset(output, 0,outsize);
int i ;
cx = snprintf(output,outsize, "uint8_t %s[] = {", name);
for(i =0 ; i< len ; i++)
{
cx += snprintf(output+cx,outsize-cx,"0x%02x,",*(arr+i));//5 bytes per byte
}
cx += snprintf(output+cx,outsize-cx,"};");
prnlog(output);
}
void printvar(char * name, uint8_t* arr, int len)
{
int cx;
size_t outsize = 40+strlen(name)+len*2;
char* output = malloc(outsize);
memset(output, 0,outsize);
int i ;
cx = snprintf(output,outsize,"%s = ", name);
for(i =0 ; i< len ; i++)
{
cx += snprintf(output+cx,outsize-cx,"%02x",*(arr+i));//2 bytes per byte
}
prnlog(output);
}
void printarr_human_readable(char * title, uint8_t* arr, int len)
{
int cx;
size_t outsize = 100+strlen(title)+len*4;
char* output = malloc(outsize);
memset(output, 0,outsize);
int i;
cx = snprintf(output,outsize, "\n\t%s\n", title);
for(i =0 ; i< len ; i++)
{
if(i % 16 == 0)
cx += snprintf(output+cx,outsize-cx,"\n%02x| ", i );
cx += snprintf(output+cx,outsize-cx, "%02x ",*(arr+i));
}
prnlog(output);
}
//-----------------------------
// Code for testing below
//-----------------------------
int testBitStream()
{
uint8_t input [] = {0xDE,0xAD,0xBE,0xEF,0xDE,0xAD,0xBE,0xEF};
uint8_t output [] = {0,0,0,0,0,0,0,0};
BitstreamIn in = { input, sizeof(input) * 8,0};
BitstreamOut out ={ output, 0,0}
;
while(bitsLeft(&in) > 0)
{
pushBit(&out, headBit(&in));
//printf("Bits left: %d\n", bitsLeft(&in));
//printf("Bits out: %d\n", numBits(&out));
}
if(memcmp(input, output, sizeof(input)) == 0)
{
prnlog(" Bitstream test 1 ok");
}else
{
prnlog(" Bitstream test 1 failed");
uint8_t i;
for(i = 0 ; i < sizeof(input) ; i++)
{
prnlog(" IN %02x, OUT %02x", input[i], output[i]);
}
return 1;
}
return 0;
}
int testReversedBitstream()
{
uint8_t input [] = {0xDE,0xAD,0xBE,0xEF,0xDE,0xAD,0xBE,0xEF};
uint8_t reverse [] = {0,0,0,0,0,0,0,0};
uint8_t output [] = {0,0,0,0,0,0,0,0};
BitstreamIn in = { input, sizeof(input) * 8,0};
BitstreamOut out ={ output, 0,0};
BitstreamIn reversed_in ={ reverse, sizeof(input)*8,0};
BitstreamOut reversed_out ={ reverse,0 ,0};
while(bitsLeft(&in) > 0)
{
pushBit(&reversed_out, tailBit(&in));
}
while(bitsLeft(&reversed_in) > 0)
{
pushBit(&out, tailBit(&reversed_in));
}
if(memcmp(input, output, sizeof(input)) == 0)
{
prnlog(" Bitstream test 2 ok");
}else
{
prnlog(" Bitstream test 2 failed");
uint8_t i;
for(i = 0 ; i < sizeof(input) ; i++)
{
prnlog(" IN %02x, MIDDLE: %02x, OUT %02x", input[i],reverse[i], output[i]);
}
return 1;
}
return 0;
}
int testCipherUtils(void)
{
prnlog("[+] Testing some internals...");
int retval = 0;
retval |= testBitStream();
retval |= testReversedBitstream();
return retval;
}

View file

@ -0,0 +1,59 @@
/*****************************************************************************
* This file is part of iClassCipher. It is a reconstructon of the cipher engine
* used in iClass, and RFID techology.
*
* The implementation is based on the work performed by
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
* Milosch Meriac in the paper "Dismantling IClass".
*
* Copyright (C) 2014 Martin Holst Swende
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with IClassCipher. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
#ifndef CIPHERUTILS_H
#define CIPHERUTILS_H
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
typedef struct {
uint8_t * buffer;
uint8_t numbits;
uint8_t position;
} BitstreamIn;
typedef struct {
uint8_t * buffer;
uint8_t numbits;
uint8_t position;
}BitstreamOut;
bool headBit( BitstreamIn *stream);
bool tailBit( BitstreamIn *stream);
void pushBit( BitstreamOut *stream, bool bit);
int bitsLeft( BitstreamIn *stream);
int testCipherUtils(void);
int testMAC();
void push6bits( BitstreamOut* stream, uint8_t bits);
void EncryptDES(bool key[56], bool outBlk[64], bool inBlk[64], int verbose) ;
void x_num_to_bytes(uint64_t n, size_t len, uint8_t* dest);
uint64_t x_bytes_to_num(uint8_t* src, size_t len);
uint8_t reversebytes(uint8_t b);
void reverse_arraybytes(uint8_t* arr, size_t len);
void reverse_arraycopy(uint8_t* arr, uint8_t* dest, size_t len);
void printarr(char * name, uint8_t* arr, int len);
void printvar(char * name, uint8_t* arr, int len);
void printarr_human_readable(char * title, uint8_t* arr, int len);
#endif // CIPHERUTILS_H

1014
client/loclass/des.c Normal file

File diff suppressed because it is too large Load diff

256
client/loclass/des.h Normal file
View file

@ -0,0 +1,256 @@
/**
* \file des.h
*
* \brief DES block cipher
*
* Copyright (C) 2006-2013, Brainspark B.V.
*
* This file is part of PolarSSL (http://www.polarssl.org)
* Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef POLARSSL_DES_H
#define POLARSSL_DES_H
//#include "config.h"
#include <string.h>
#if defined(_MSC_VER) && !defined(EFIX64) && !defined(EFI32)
#include <basetsd.h>
typedef UINT32 uint32_t;
#else
#include <inttypes.h>
#endif
#define DES_ENCRYPT 1
#define DES_DECRYPT 0
#define POLARSSL_ERR_DES_INVALID_INPUT_LENGTH -0x0032 /**< The data input has an invalid length. */
#define DES_KEY_SIZE 8
#if !defined(POLARSSL_DES_ALT)
// Regular implementation
//
#ifdef __cplusplus
extern "C" {
#endif
/**
* \brief DES context structure
*/
typedef struct
{
int mode; /*!< encrypt/decrypt */
uint32_t sk[32]; /*!< DES subkeys */
}
des_context;
/**
* \brief Triple-DES context structure
*/
typedef struct
{
int mode; /*!< encrypt/decrypt */
uint32_t sk[96]; /*!< 3DES subkeys */
}
des3_context;
/**
* \brief Set key parity on the given key to odd.
*
* DES keys are 56 bits long, but each byte is padded with
* a parity bit to allow verification.
*
* \param key 8-byte secret key
*/
void des_key_set_parity( unsigned char key[DES_KEY_SIZE] );
/**
* \brief Check that key parity on the given key is odd.
*
* DES keys are 56 bits long, but each byte is padded with
* a parity bit to allow verification.
*
* \param key 8-byte secret key
*
* \return 0 is parity was ok, 1 if parity was not correct.
*/
int des_key_check_key_parity( const unsigned char key[DES_KEY_SIZE] );
/**
* \brief Check that key is not a weak or semi-weak DES key
*
* \param key 8-byte secret key
*
* \return 0 if no weak key was found, 1 if a weak key was identified.
*/
int des_key_check_weak( const unsigned char key[DES_KEY_SIZE] );
/**
* \brief DES key schedule (56-bit, encryption)
*
* \param ctx DES context to be initialized
* \param key 8-byte secret key
*
* \return 0
*/
int des_setkey_enc( des_context *ctx, const unsigned char key[DES_KEY_SIZE] );
/**
* \brief DES key schedule (56-bit, decryption)
*
* \param ctx DES context to be initialized
* \param key 8-byte secret key
*
* \return 0
*/
int des_setkey_dec( des_context *ctx, const unsigned char key[DES_KEY_SIZE] );
/**
* \brief Triple-DES key schedule (112-bit, encryption)
*
* \param ctx 3DES context to be initialized
* \param key 16-byte secret key
*
* \return 0
*/
int des3_set2key_enc( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 2] );
/**
* \brief Triple-DES key schedule (112-bit, decryption)
*
* \param ctx 3DES context to be initialized
* \param key 16-byte secret key
*
* \return 0
*/
int des3_set2key_dec( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 2] );
/**
* \brief Triple-DES key schedule (168-bit, encryption)
*
* \param ctx 3DES context to be initialized
* \param key 24-byte secret key
*
* \return 0
*/
int des3_set3key_enc( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 3] );
/**
* \brief Triple-DES key schedule (168-bit, decryption)
*
* \param ctx 3DES context to be initialized
* \param key 24-byte secret key
*
* \return 0
*/
int des3_set3key_dec( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 3] );
/**
* \brief DES-ECB block encryption/decryption
*
* \param ctx DES context
* \param input 64-bit input block
* \param output 64-bit output block
*
* \return 0 if successful
*/
int des_crypt_ecb( des_context *ctx,
const unsigned char input[8],
unsigned char output[8] );
#if defined(POLARSSL_CIPHER_MODE_CBC)
/**
* \brief DES-CBC buffer encryption/decryption
*
* \param ctx DES context
* \param mode DES_ENCRYPT or DES_DECRYPT
* \param length length of the input data
* \param iv initialization vector (updated after use)
* \param input buffer holding the input data
* \param output buffer holding the output data
*/
int des_crypt_cbc( des_context *ctx,
int mode,
size_t length,
unsigned char iv[8],
const unsigned char *input,
unsigned char *output );
#endif /* POLARSSL_CIPHER_MODE_CBC */
/**
* \brief 3DES-ECB block encryption/decryption
*
* \param ctx 3DES context
* \param input 64-bit input block
* \param output 64-bit output block
*
* \return 0 if successful
*/
int des3_crypt_ecb( des3_context *ctx,
const unsigned char input[8],
unsigned char output[8] );
#if defined(POLARSSL_CIPHER_MODE_CBC)
/**
* \brief 3DES-CBC buffer encryption/decryption
*
* \param ctx 3DES context
* \param mode DES_ENCRYPT or DES_DECRYPT
* \param length length of the input data
* \param iv initialization vector (updated after use)
* \param input buffer holding the input data
* \param output buffer holding the output data
*
* \return 0 if successful, or POLARSSL_ERR_DES_INVALID_INPUT_LENGTH
*/
int des3_crypt_cbc( des3_context *ctx,
int mode,
size_t length,
unsigned char iv[8],
const unsigned char *input,
unsigned char *output );
#endif /* POLARSSL_CIPHER_MODE_CBC */
#ifdef __cplusplus
}
#endif
#else /* POLARSSL_DES_ALT */
#include "des_alt.h"
#endif /* POLARSSL_DES_ALT */
#ifdef __cplusplus
extern "C" {
#endif
/**
* \brief Checkup routine
*
* \return 0 if successful, or 1 if the test failed
*/
int des_self_test( int verbose );
#ifdef __cplusplus
}
#endif
#endif /* des.h */

View file

@ -0,0 +1,656 @@
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <stdio.h>
#include <time.h>
#include "cipherutils.h"
#include "cipher.h"
#include "ikeys.h"
#include "elite_crack.h"
#include "fileutils.h"
#include "des.h"
/**
* @brief Permutes a key from standard NIST format to Iclass specific format
* from http://www.proxmark.org/forum/viewtopic.php?pid=11220#p11220
*
* If you permute [6c 8d 44 f9 2a 2d 01 bf] you get [8a 0d b9 88 bb a7 90 ea] as shown below.
*
* 1 0 1 1 1 1 1 1 bf
* 0 0 0 0 0 0 0 1 01
* 0 0 1 0 1 1 0 1 2d
* 0 0 1 0 1 0 1 0 2a
* 1 1 1 1 1 0 0 1 f9
* 0 1 0 0 0 1 0 0 44
* 1 0 0 0 1 1 0 1 8d
* 0 1 1 0 1 1 0 0 6c
*
* 8 0 b 8 b a 9 e
* a d 9 8 b 7 0 a
*
* @param key
* @param dest
*/
void permutekey(uint8_t key[8], uint8_t dest[8])
{
int i;
for(i = 0 ; i < 8 ; i++)
{
dest[i] = (((key[7] & (0x80 >> i)) >> (7-i)) << 7) |
(((key[6] & (0x80 >> i)) >> (7-i)) << 6) |
(((key[5] & (0x80 >> i)) >> (7-i)) << 5) |
(((key[4] & (0x80 >> i)) >> (7-i)) << 4) |
(((key[3] & (0x80 >> i)) >> (7-i)) << 3) |
(((key[2] & (0x80 >> i)) >> (7-i)) << 2) |
(((key[1] & (0x80 >> i)) >> (7-i)) << 1) |
(((key[0] & (0x80 >> i)) >> (7-i)) << 0);
}
return;
}
/**
* Permutes a key from iclass specific format to NIST format
* @brief permutekey_rev
* @param key
* @param dest
*/
void permutekey_rev(uint8_t key[8], uint8_t dest[8])
{
int i;
for(i = 0 ; i < 8 ; i++)
{
dest[7-i] = (((key[0] & (0x80 >> i)) >> (7-i)) << 7) |
(((key[1] & (0x80 >> i)) >> (7-i)) << 6) |
(((key[2] & (0x80 >> i)) >> (7-i)) << 5) |
(((key[3] & (0x80 >> i)) >> (7-i)) << 4) |
(((key[4] & (0x80 >> i)) >> (7-i)) << 3) |
(((key[5] & (0x80 >> i)) >> (7-i)) << 2) |
(((key[6] & (0x80 >> i)) >> (7-i)) << 1) |
(((key[7] & (0x80 >> i)) >> (7-i)) << 0);
}
}
/**
* Helper function for hash1
* @brief rr
* @param val
* @return
*/
uint8_t rr(uint8_t val)
{
return val >> 1 | (( val & 1) << 7);
}
/**
* Helper function for hash1
* @brief rl
* @param val
* @return
*/
uint8_t rl(uint8_t val)
{
return val << 1 | (( val & 0x80) >> 7);
}
/**
* Helper function for hash1
* @brief swap
* @param val
* @return
*/
uint8_t swap(uint8_t val)
{
return ((val >> 4) & 0xFF) | ((val &0xFF) << 4);
}
/**
* Hash1 takes CSN as input, and determines what bytes in the keytable will be used
* when constructing the K_sel.
* @param csn the CSN used
* @param k output
*/
void hash1(uint8_t csn[] , uint8_t k[])
{
k[0] = csn[0]^csn[1]^csn[2]^csn[3]^csn[4]^csn[5]^csn[6]^csn[7];
k[1] = csn[0]+csn[1]+csn[2]+csn[3]+csn[4]+csn[5]+csn[6]+csn[7];
k[2] = rr(swap( csn[2]+k[1] ));
k[3] = rr(swap( csn[3]+k[0] ));
k[4] = ~rr(swap( csn[4]+k[2] ))+1;
k[5] = ~rr(swap( csn[5]+k[3] ))+1;
k[6] = rr( csn[6]+(k[4]^0x3c) );
k[7] = rl( csn[7]+(k[5]^0xc3) );
int i;
for(i = 7; i >=0; i--)
k[i] = k[i] & 0x7F;
}
/**
Definition 14. Define the rotate key function rk : (F 82 ) 8 × N (F 82 ) 8 as
rk(x [0] . . . x [7] , 0) = x [0] . . . x [7]
rk(x [0] . . . x [7] , n + 1) = rk(rl(x [0] ) . . . rl(x [7] ), n)
**/
void rk(uint8_t *key, uint8_t n, uint8_t *outp_key)
{
memcpy(outp_key, key, 8);
uint8_t j;
while(n-- > 0)
for(j=0; j < 8 ; j++)
outp_key[j] = rl(outp_key[j]);
return;
}
static des_context ctx_enc = {DES_ENCRYPT,{0}};
static des_context ctx_dec = {DES_DECRYPT,{0}};
void desdecrypt_iclass(uint8_t *iclass_key, uint8_t *input, uint8_t *output)
{
uint8_t key_std_format[8] = {0};
permutekey_rev(iclass_key, key_std_format);
des_setkey_dec( &ctx_dec, key_std_format);
des_crypt_ecb(&ctx_dec,input,output);
}
void desencrypt_iclass(uint8_t *iclass_key, uint8_t *input, uint8_t *output)
{
uint8_t key_std_format[8] = {0};
permutekey_rev(iclass_key, key_std_format);
des_setkey_enc( &ctx_enc, key_std_format);
des_crypt_ecb(&ctx_enc,input,output);
}
/**
* @brief Insert uint8_t[8] custom master key to calculate hash2 and return key_select.
* @param key unpermuted custom key
* @param hash1 hash1
* @param key_sel output key_sel=h[hash1[i]]
*/
void hash2(uint8_t *key64, uint8_t *outp_keytable)
{
/**
*Expected:
* High Security Key Table
00 F1 35 59 A1 0D 5A 26 7F 18 60 0B 96 8A C0 25 C1
10 BF A1 3B B0 FF 85 28 75 F2 1F C6 8F 0E 74 8F 21
20 14 7A 55 16 C8 A9 7D B3 13 0C 5D C9 31 8D A9 B2
30 A3 56 83 0F 55 7E DE 45 71 21 D2 6D C1 57 1C 9C
40 78 2F 64 51 42 7B 64 30 FA 26 51 76 D3 E0 FB B6
50 31 9F BF 2F 7E 4F 94 B4 BD 4F 75 91 E3 1B EB 42
60 3F 88 6F B8 6C 2C 93 0D 69 2C D5 20 3C C1 61 95
70 43 08 A0 2F FE B3 26 D7 98 0B 34 7B 47 70 A0 AB
**** The 64-bit HS Custom Key Value = 5B7C62C491C11B39 ******/
uint8_t key64_negated[8] = {0};
uint8_t z[8][8]={{0},{0}};
uint8_t temp_output[8]={0};
//calculate complement of key
int i;
for(i=0;i<8;i++)
key64_negated[i]= ~key64[i];
// Once again, key is on iclass-format
desencrypt_iclass(key64, key64_negated, z[0]);
prnlog("\nHigh security custom key (Kcus):");
printvar("z0 ", z[0],8);
uint8_t y[8][8]={{0},{0}};
// y[0]=DES_dec(z[0],~key)
// Once again, key is on iclass-format
desdecrypt_iclass(z[0], key64_negated, y[0]);
printvar("y0 ", y[0],8);
for(i=1; i<8; i++)
{
// z [i] = DES dec (rk(K cus , i), z [i1] )
rk(key64, i, temp_output);
//y [i] = DES enc (rk(K cus , i), y [i1] )
desdecrypt_iclass(temp_output,z[i-1], z[i]);
desencrypt_iclass(temp_output,y[i-1], y[i]);
}
if(outp_keytable != NULL)
{
for(i = 0 ; i < 8 ; i++)
{
memcpy(outp_keytable+i*16,y[i],8);
memcpy(outp_keytable+8+i*16,z[i],8);
}
}else
{
printarr_human_readable("hash2", outp_keytable,128);
}
}
/**
* @brief Reads data from the iclass-reader-attack dump file.
* @param dump, data from a iclass reader attack dump. The format of the dumpdata is expected to be as follows:
* <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC><8 byte HASH1><1 byte NUM_BYTES_TO_RECOVER><3 bytes BYTES_TO_RECOVER>
* .. N times...
*
* So the first attack, with 3 bytes to recover would be : ... 03000145
* And a later attack, with 1 byte to recover (byte 0x5)would be : ...01050000
* And an attack, with 2 bytes to recover (byte 0x5 and byte 0x07 )would be : ...02050700
*
* @param cc_nr an array to store cc_nr into (12 bytes)
* @param csn an arracy ot store CSN into (8 bytes)
* @param received_mac an array to store MAC into (4 bytes)
* @param i the number to read. Should be less than 127, or something is wrong...
* @return
*/
int _readFromDump(uint8_t dump[], dumpdata* item, uint8_t i)
{
size_t itemsize = sizeof(dumpdata);
//dumpdata item = {0};
memcpy(item,dump+i*itemsize, itemsize);
if(true)
{
printvar("csn", item->csn,8);
printvar("cc_nr", item->cc_nr,12);
printvar("mac", item->mac,4);
}
return 0;
}
static uint32_t startvalue = 0;
/**
* @brief Performs brute force attack against a dump-data item, containing csn, cc_nr and mac.
*This method calculates the hash1 for the CSN, and determines what bytes need to be bruteforced
*on the fly. If it finds that more than three bytes need to be bruteforced, it aborts.
*It updates the keytable with the findings, also using the upper half of the 16-bit ints
*to signal if the particular byte has been cracked or not.
*
* @param dump The dumpdata from iclass reader attack.
* @param keytable where to write found values.
* @return
*/
int bruteforceItem(dumpdata item, uint16_t keytable[])
{
int errors = 0;
uint8_t key_sel_p[8] = { 0 };
uint8_t div_key[8] = {0};
int found = false;
uint8_t key_sel[8] = {0};
uint8_t calculated_MAC[4] = { 0 };
//Get the key index (hash1)
uint8_t key_index[8] = {0};
hash1(item.csn, key_index);
/*
* Determine which bytes to retrieve. A hash is typically
* 01010000454501
* We go through that hash, and in the corresponding keytable, we put markers
* on what state that particular index is:
* - CRACKED (this has already been cracked)
* - BEING_CRACKED (this is being bruteforced now)
* - CRACK_FAILED (self-explaining...)
*
* The markers are placed in the high area of the 16 bit key-table.
* Only the lower eight bits correspond to the (hopefully cracked) key-value.
**/
uint8_t bytes_to_recover[3] = {0};
uint8_t numbytes_to_recover = 0 ;
int i;
for(i =0 ; i < 8 ; i++)
{
if(keytable[key_index[i]] & (CRACKED | BEING_CRACKED)) continue;
bytes_to_recover[numbytes_to_recover++] = key_index[i];
keytable[key_index[i]] |= BEING_CRACKED;
if(numbytes_to_recover > 3)
{
prnlog("The CSN requires > 3 byte bruteforce, not supported");
printvar("CSN", item.csn,8);
printvar("HASH1", key_index,8);
//Before we exit, reset the 'BEING_CRACKED' to zero
keytable[bytes_to_recover[0]] &= ~BEING_CRACKED;
keytable[bytes_to_recover[1]] &= ~BEING_CRACKED;
keytable[bytes_to_recover[2]] &= ~BEING_CRACKED;
return 1;
}
}
/*
*A uint32 has room for 4 bytes, we'll only need 24 of those bits to bruteforce up to three bytes,
*/
uint32_t brute = startvalue;
/*
Determine where to stop the bruteforce. A 1-byte attack stops after 256 tries,
(when brute reaches 0x100). And so on...
bytes_to_recover = 1 --> endmask = 0x0000100
bytes_to_recover = 2 --> endmask = 0x0010000
bytes_to_recover = 3 --> endmask = 0x1000000
*/
uint32_t endmask = 1 << 8*numbytes_to_recover;
for(i =0 ; i < numbytes_to_recover && numbytes_to_recover > 1; i++)
prnlog("Bruteforcing byte %d", bytes_to_recover[i]);
while(!found && !(brute & endmask))
{
//Update the keytable with the brute-values
for(i =0 ; i < numbytes_to_recover; i++)
{
keytable[bytes_to_recover[i]] &= 0xFF00;
keytable[bytes_to_recover[i]] |= (brute >> (i*8) & 0xFF);
}
// Piece together the key
key_sel[0] = keytable[key_index[0]] & 0xFF;key_sel[1] = keytable[key_index[1]] & 0xFF;
key_sel[2] = keytable[key_index[2]] & 0xFF;key_sel[3] = keytable[key_index[3]] & 0xFF;
key_sel[4] = keytable[key_index[4]] & 0xFF;key_sel[5] = keytable[key_index[5]] & 0xFF;
key_sel[6] = keytable[key_index[6]] & 0xFF;key_sel[7] = keytable[key_index[7]] & 0xFF;
//Permute from iclass format to standard format
permutekey_rev(key_sel,key_sel_p);
//Diversify
diversifyKey(item.csn, key_sel_p, div_key);
//Calc mac
doMAC(item.cc_nr,12, div_key,calculated_MAC);
if(memcmp(calculated_MAC, item.mac, 4) == 0)
{
for(i =0 ; i < numbytes_to_recover; i++)
prnlog("=> %d: 0x%02x", bytes_to_recover[i],0xFF & keytable[bytes_to_recover[i]]);
found = true;
break;
}
brute++;
if((brute & 0xFFFF) == 0)
{
printf("%d",(brute >> 16) & 0xFF);
fflush(stdout);
}
}
if(! found)
{
prnlog("Failed to recover %d bytes using the following CSN",numbytes_to_recover);
printvar("CSN",item.csn,8);
errors++;
//Before we exit, reset the 'BEING_CRACKED' to zero
for(i =0 ; i < numbytes_to_recover; i++)
{
keytable[bytes_to_recover[i]] &= 0xFF;
keytable[bytes_to_recover[i]] |= CRACK_FAILED;
}
}else
{
for(i =0 ; i < numbytes_to_recover; i++)
{
keytable[bytes_to_recover[i]] &= 0xFF;
keytable[bytes_to_recover[i]] |= CRACKED;
}
}
return errors;
}
/**
* From dismantling iclass-paper:
* Assume that an adversary somehow learns the first 16 bytes of hash2(K_cus ), i.e., y [0] and z [0] .
* Then he can simply recover the master custom key K_cus by computing
* K_cus = ~DES(z[0] , y[0] ) .
*
* Furthermore, the adversary is able to verify that he has the correct K cus by
* checking whether z [0] = DES enc (K_cus , ~K_cus ).
* @param keytable an array (128 bytes) of hash2(kcus)
* @param master_key where to put the master key
* @return 0 for ok, 1 for failz
*/
int calculateMasterKey(uint8_t first16bytes[], uint64_t master_key[] )
{
des_context ctx_e = {DES_ENCRYPT,{0}};
uint8_t z_0[8] = {0};
uint8_t y_0[8] = {0};
uint8_t z_0_rev[8] = {0};
uint8_t key64[8] = {0};
uint8_t key64_negated[8] = {0};
uint8_t result[8] = {0};
// y_0 and z_0 are the first 16 bytes of the keytable
memcpy(y_0,first16bytes,8);
memcpy(z_0,first16bytes+8,8);
// Our DES-implementation uses the standard NIST
// format for keys, thus must translate from iclass
// format to NIST-format
permutekey_rev(z_0, z_0_rev);
// ~K_cus = DESenc(z[0], y[0])
des_setkey_enc( &ctx_e, z_0_rev );
des_crypt_ecb(&ctx_e, y_0, key64_negated);
int i;
for(i = 0; i < 8 ; i++)
{
key64[i] = ~key64_negated[i];
}
// Can we verify that the key is correct?
// Once again, key is on iclass-format
uint8_t key64_stdformat[8] = {0};
permutekey_rev(key64, key64_stdformat);
des_setkey_enc( &ctx_e, key64_stdformat );
des_crypt_ecb(&ctx_e, key64_negated, result);
prnlog("\nHigh security custom key (Kcus):");
printvar("Std format ", key64_stdformat,8);
printvar("Iclass format", key64,8);
if(master_key != NULL)
memcpy(master_key, key64, 8);
if(memcmp(z_0,result,4) != 0)
{
prnlog("Failed to verify calculated master key (k_cus)! Something is wrong.");
return 1;
}else{
prnlog("Key verified ok!\n");
}
return 0;
}
/**
* @brief Same as bruteforcefile, but uses a an array of dumpdata instead
* @param dump
* @param dumpsize
* @param keytable
* @return
*/
int bruteforceDump(uint8_t dump[], size_t dumpsize, uint16_t keytable[])
{
uint8_t i;
int errors = 0;
size_t itemsize = sizeof(dumpdata);
clock_t t1 = clock();
dumpdata* attack = (dumpdata* ) malloc(itemsize);
for(i = 0 ; i * itemsize < dumpsize ; i++ )
{
memcpy(attack,dump+i*itemsize, itemsize);
errors += bruteforceItem(*attack, keytable);
}
free(attack);
clock_t t2 = clock();
float diff = (((float)t2 - (float)t1) / CLOCKS_PER_SEC );
prnlog("\nPerformed full crack in %f seconds",diff);
// Pick out the first 16 bytes of the keytable.
// The keytable is now in 16-bit ints, where the upper 8 bits
// indicate crack-status. Those must be discarded for the
// master key calculation
uint8_t first16bytes[16] = {0};
for(i = 0 ; i < 16 ; i++)
{
first16bytes[i] = keytable[i] & 0xFF;
if(!(keytable[i] & CRACKED))
{
prnlog("Error, we are missing byte %d, custom key calculation will fail...", i);
}
}
errors += calculateMasterKey(first16bytes, NULL);
return errors;
}
/**
* Perform a bruteforce against a file which has been saved by pm3
*
* @brief bruteforceFile
* @param filename
* @return
*/
int bruteforceFile(const char *filename, uint16_t keytable[])
{
FILE *f = fopen(filename, "rb");
if(!f) {
prnlog("Failed to read from file '%s'", filename);
return 1;
}
fseek(f, 0, SEEK_END);
long fsize = ftell(f);
fseek(f, 0, SEEK_SET);
uint8_t *dump = malloc(fsize);
size_t bytes_read = fread(dump, fsize, 1, f);
fclose(f);
if (bytes_read < fsize)
{
prnlog("Error, could only read %d bytes (should be %d)",bytes_read, fsize );
}
return bruteforceDump(dump,fsize,keytable);
}
/**
*
* @brief Same as above, if you don't care about the returned keytable (results only printed on screen)
* @param filename
* @return
*/
int bruteforceFileNoKeys(const char *filename)
{
uint16_t keytable[128] = {0};
return bruteforceFile(filename, keytable);
}
// ---------------------------------------------------------------------------------
// ALL CODE BELOW THIS LINE IS PURELY TESTING
// ---------------------------------------------------------------------------------
// ----------------------------------------------------------------------------
// TEST CODE BELOW
// ----------------------------------------------------------------------------
int _testBruteforce()
{
int errors = 0;
if(true){
// First test
prnlog("[+] Testing crack from dumpfile...");
/**
Expected values for the dumpfile:
High Security Key Table
00 F1 35 59 A1 0D 5A 26 7F 18 60 0B 96 8A C0 25 C1
10 BF A1 3B B0 FF 85 28 75 F2 1F C6 8F 0E 74 8F 21
20 14 7A 55 16 C8 A9 7D B3 13 0C 5D C9 31 8D A9 B2
30 A3 56 83 0F 55 7E DE 45 71 21 D2 6D C1 57 1C 9C
40 78 2F 64 51 42 7B 64 30 FA 26 51 76 D3 E0 FB B6
50 31 9F BF 2F 7E 4F 94 B4 BD 4F 75 91 E3 1B EB 42
60 3F 88 6F B8 6C 2C 93 0D 69 2C D5 20 3C C1 61 95
70 43 08 A0 2F FE B3 26 D7 98 0B 34 7B 47 70 A0 AB
**** The 64-bit HS Custom Key Value = 5B7C62C491C11B39 ****
**/
uint16_t keytable[128] = {0};
//save some time...
startvalue = 0x7B0000;
errors |= bruteforceFile("iclass_dump.bin",keytable);
}
return errors;
}
int _test_iclass_key_permutation()
{
uint8_t testcase[8] = {0x6c,0x8d,0x44,0xf9,0x2a,0x2d,0x01,0xbf};
uint8_t testcase_output[8] = {0};
uint8_t testcase_output_correct[8] = {0x8a,0x0d,0xb9,0x88,0xbb,0xa7,0x90,0xea};
uint8_t testcase_output_rev[8] = {0};
permutekey(testcase, testcase_output);
permutekey_rev(testcase_output, testcase_output_rev);
if(memcmp(testcase_output, testcase_output_correct,8) != 0)
{
prnlog("Error with iclass key permute!");
printarr("testcase_output", testcase_output, 8);
printarr("testcase_output_correct", testcase_output_correct, 8);
return 1;
}
if(memcmp(testcase, testcase_output_rev, 8) != 0)
{
prnlog("Error with reverse iclass key permute");
printarr("testcase", testcase, 8);
printarr("testcase_output_rev", testcase_output_rev, 8);
return 1;
}
prnlog("[+] Iclass key permutation OK!");
return 0;
}
int testElite()
{
prnlog("[+] Testing iClass Elite functinality...");
prnlog("[+] Testing hash2");
uint8_t k_cus[8] = {0x5B,0x7C,0x62,0xC4,0x91,0xC1,0x1B,0x39};
/**
*Expected:
* High Security Key Table
00 F1 35 59 A1 0D 5A 26 7F 18 60 0B 96 8A C0 25 C1
10 BF A1 3B B0 FF 85 28 75 F2 1F C6 8F 0E 74 8F 21
20 14 7A 55 16 C8 A9 7D B3 13 0C 5D C9 31 8D A9 B2
30 A3 56 83 0F 55 7E DE 45 71 21 D2 6D C1 57 1C 9C
40 78 2F 64 51 42 7B 64 30 FA 26 51 76 D3 E0 FB B6
50 31 9F BF 2F 7E 4F 94 B4 BD 4F 75 91 E3 1B EB 42
60 3F 88 6F B8 6C 2C 93 0D 69 2C D5 20 3C C1 61 95
70 43 08 A0 2F FE B3 26 D7 98 0B 34 7B 47 70 A0 AB
**** The 64-bit HS Custom Key Value = 5B7C62C491C11B39 ****
*/
uint8_t keytable[128] = {0};
hash2(k_cus, keytable);
printarr_human_readable("Hash2", keytable, 128);
if(keytable[3] == 0xA1 && keytable[0x30] == 0xA3 && keytable[0x6F] == 0x95)
{
prnlog("[+] Hash2 looks fine...");
}
prnlog("[+] Testing key diversification ...");
int errors = 0 ;
errors +=_test_iclass_key_permutation();
errors += _testBruteforce();
return errors;
}

View file

@ -0,0 +1,108 @@
#ifndef ELITE_CRACK_H
#define ELITE_CRACK_H
void permutekey(uint8_t key[8], uint8_t dest[8]);
/**
* Permutes a key from iclass specific format to NIST format
* @brief permutekey_rev
* @param key
* @param dest
*/
void permutekey_rev(uint8_t key[8], uint8_t dest[8]);
//Crack status, see below
#define CRACKED 0x0100
#define BEING_CRACKED 0x0200
#define CRACK_FAILED 0x0400
/**
* Perform a bruteforce against a file which has been saved by pm3
*
* @brief bruteforceFile
* @param filename
* @param keytable an arrah (128 x 16 bit ints). This is where the keydata is stored.
* OBS! the upper part of the 16 bits store crack-status,
* @return
*/
int bruteforceFile(const char *filename, uint16_t keytable[]);
/**
*
* @brief Same as above, if you don't care about the returned keytable (results only printed on screen)
* @param filename
* @return
*/
int bruteforceFileNoKeys(const char *filename);
/**
* @brief Same as bruteforcefile, but uses a an array of dumpdata instead
* @param dump
* @param dumpsize
* @param keytable
* @return
*/
int bruteforceDump(uint8_t dump[], size_t dumpsize, uint16_t keytable[]);
/**
This is how we expect each 'entry' in a dumpfile to look
**/
typedef struct {
uint8_t csn[8];
uint8_t cc_nr[12];
uint8_t mac[4];
}dumpdata;
/**
* @brief Performs brute force attack against a dump-data item, containing csn, cc_nr and mac.
*This method calculates the hash1 for the CSN, and determines what bytes need to be bruteforced
*on the fly. If it finds that more than three bytes need to be bruteforced, it aborts.
*It updates the keytable with the findings, also using the upper half of the 16-bit ints
*to signal if the particular byte has been cracked or not.
*
* @param dump The dumpdata from iclass reader attack.
* @param keytable where to write found values.
* @return
*/
int bruteforceItem(dumpdata item, uint16_t keytable[]);
/**
* Hash1 takes CSN as input, and determines what bytes in the keytable will be used
* when constructing the K_sel.
* @param csn the CSN used
* @param k output
*/
void hash1(uint8_t csn[] , uint8_t k[]);
void hash2(uint8_t *key64, uint8_t *outp_keytable);
/**
* From dismantling iclass-paper:
* Assume that an adversary somehow learns the first 16 bytes of hash2(K_cus ), i.e., y [0] and z [0] .
* Then he can simply recover the master custom key K_cus by computing
* K_cus = ~DES(z[0] , y[0] ) .
*
* Furthermore, the adversary is able to verify that he has the correct K cus by
* checking whether z [0] = DES enc (K_cus , ~K_cus ).
* @param keytable an array (128 bytes) of hash2(kcus)
* @param master_key where to put the master key
* @return 0 for ok, 1 for failz
*/
int calculateMasterKey(uint8_t first16bytes[], uint64_t master_key[] );
/**
* @brief Test function
* @return
*/
int testElite();
/**
Here are some pretty optimal values that can be used to recover necessary data in only
eight auth attempts.
// CSN HASH1 Bytes recovered //
{ {0x00,0x0B,0x0F,0xFF,0xF7,0xFF,0x12,0xE0} , {0x01,0x01,0x00,0x00,0x45,0x01,0x45,0x45 } ,{0,1 }},
{ {0x00,0x13,0x94,0x7e,0x76,0xff,0x12,0xe0} , {0x02,0x0c,0x01,0x00,0x45,0x01,0x45,0x45} , {2,12}},
{ {0x2a,0x99,0xac,0x79,0xec,0xff,0x12,0xe0} , {0x07,0x45,0x0b,0x00,0x45,0x01,0x45,0x45} , {7,11}},
{ {0x17,0x12,0x01,0xfd,0xf7,0xff,0x12,0xe0} , {0x03,0x0f,0x00,0x00,0x45,0x01,0x45,0x45} , {3,15}},
{ {0xcd,0x56,0x01,0x7c,0x6f,0xff,0x12,0xe0} , {0x04,0x00,0x08,0x00,0x45,0x01,0x45,0x45} , {4,8}},
{ {0x4b,0x5e,0x0b,0x72,0xef,0xff,0x12,0xe0} , {0x0e,0x06,0x08,0x00,0x45,0x01,0x45,0x45} , {6,14}},
{ {0x00,0x73,0xd8,0x75,0x58,0xff,0x12,0xe0} , {0x0b,0x09,0x0f,0x00,0x45,0x01,0x05,0x45} , {9,5}},
{ {0x0c,0x90,0x32,0xf3,0x5d,0xff,0x12,0xe0} , {0x0d,0x0f,0x0a,0x00,0x45,0x01,0x05,0x45} , {10,13}},
**/
#endif

View file

@ -0,0 +1,65 @@
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <stdarg.h>
#include "fileutils.h"
#include "ui.h"
/**
* @brief checks if a file exists
* @param filename
* @return
*/
int fileExists(const char *filename) {
struct stat st;
int result = stat(filename, &st);
return result == 0;
}
int saveFile(const char *preferredName, const char *suffix, const void* data, size_t datalen)
{
int size = sizeof(char) * (strlen(preferredName)+strlen(suffix)+5);
char * fileName = malloc(size);
memset(fileName,0,size);
int num = 1;
sprintf(fileName,"%s.%s", preferredName, suffix);
while(fileExists(fileName))
{
sprintf(fileName,"%s-%d.%s", preferredName, num, suffix);
num++;
}
/* We should have a valid filename now, e.g. dumpdata-3.bin */
/*Opening file for writing in binary mode*/
FILE *fileHandle=fopen(fileName,"wb");
if(!fileHandle) {
prnlog("Failed to write to file '%s'", fileName);
return 1;
}
fwrite(data, 1, datalen, fileHandle);
fclose(fileHandle);
prnlog("Saved data to '%s'", fileName);
free(fileName);
return 0;
}
/**
* Utility function to print to console. This is used consistently within the library instead
* of printf, but it actually only calls printf (and adds a linebreak).
* The reason to have this method is to
* make it simple to plug this library into proxmark, which has this function already to
* write also to a logfile. When doing so, just delete this function.
* @param fmt
*/
void prnlog(char *fmt, ...)
{
va_list args;
va_start(args,fmt);
PrintAndLog(fmt, args);
//vprintf(fmt,args);
va_end(args);
//printf("\n");
}

View file

@ -0,0 +1,24 @@
#ifndef FILEUTILS_H
#define FILEUTILS_H
/**
* @brief Utility function to save data to a file. This method takes a preferred name, but if that
* file already exists, it tries with another name until it finds something suitable.
* E.g. dumpdata-15.txt
* @param preferredName
* @param suffix the file suffix. Leave out the ".".
* @param data The binary data to write to the file
* @param datalen the length of the data
* @return 0 for ok, 1 for failz
*/
int saveFile(const char *preferredName, const char *suffix, const void* data, size_t datalen);
/**
* Utility function to print to console. This is used consistently within the library instead
* of printf, but it actually only calls printf. The reason to have this method is to
*make it simple to plug this library into proxmark, which has this function already to
* write also to a logfile. When doing so, just point this function to use PrintAndLog
* @param fmt
*/
void prnlog(char *fmt, ...);
#endif // FILEUTILS_H

878
client/loclass/ikeys.c Normal file
View file

@ -0,0 +1,878 @@
/*****************************************************************************
* This file is part of iClassCipher. It is a reconstructon of the cipher engine
* used in iClass, and RFID techology.
*
* The implementation is based on the work performed by
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
* Milosch Meriac in the paper "Dismantling IClass".
*
* This is a reference implementation of iclass key diversification. I'm sure it can be
* optimized heavily. It is written for ease of understanding and correctness, please take it
* and tweak it and make a super fast version instead, using this for testing and verification.
* Copyright (C) 2014 Martin Holst Swende
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with IClassCipher. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
/**
From "Dismantling iclass":
This section describes in detail the built-in key diversification algorithm of iClass.
Besides the obvious purpose of deriving a card key from a master key, this
algorithm intends to circumvent weaknesses in the cipher by preventing the
usage of certain weak keys. In order to compute a diversified key, the iClass
reader first encrypts the card identity id with the master key K, using single
DES. The resulting ciphertext is then input to a function called hash0 which
outputs the diversified key k.
k = hash0(DES enc (id, K))
Here the DES encryption of id with master key K outputs a cryptogram c
of 64 bits. These 64 bits are divided as c = x, y, z [0] , . . . , z [7] F 82 × F 82 × (F 62 ) 8
which is used as input to the hash0 function. This function introduces some
obfuscation by performing a number of permutations, complement and modulo
operations, see Figure 2.5. Besides that, it checks for and removes patterns like
similar key bytes, which could produce a strong bias in the cipher. Finally, the
output of hash0 is the diversified card key k = k [0] , . . . , k [7] (F 82 ) 8 .
**/
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <stdio.h>
#include <inttypes.h>
#include "fileutils.h"
#include "cipherutils.h"
#include "des.h"
uint8_t pi[35] = {0x0F,0x17,0x1B,0x1D,0x1E,0x27,0x2B,0x2D,0x2E,0x33,0x35,0x39,0x36,0x3A,0x3C,0x47,0x4B,0x4D,0x4E,0x53,0x55,0x56,0x59,0x5A,0x5C,0x63,0x65,0x66,0x69,0x6A,0x6C,0x71,0x72,0x74,0x78};
static des_context ctx_enc = {DES_ENCRYPT,{0}};
static des_context ctx_dec = {DES_DECRYPT,{0}};
static int debug_print = 0;
/**
* @brief The key diversification algorithm uses 6-bit bytes.
* This implementation uses 64 bit uint to pack seven of them into one
* variable. When they are there, they are placed as follows:
* XXXX XXXX N0 .... N7, occupying the lsat 48 bits.
*
* This function picks out one from such a collection
* @param all
* @param n bitnumber
* @return
*/
uint8_t getSixBitByte(uint64_t c, int n)
{
return (c >> (42-6*n)) & 0x3F;
}
/**
* @brief Puts back a six-bit 'byte' into a uint64_t.
* @param c buffer
* @param z the value to place there
* @param n bitnumber.
*/
void pushbackSixBitByte(uint64_t *c, uint8_t z, int n)
{
//0x XXXX YYYY ZZZZ ZZZZ ZZZZ
// ^z0 ^z7
//z0: 1111 1100 0000 0000
uint64_t masked = z & 0x3F;
uint64_t eraser = 0x3F;
masked <<= 42-6*n;
eraser <<= 42-6*n;
//masked <<= 6*n;
//eraser <<= 6*n;
eraser = ~eraser;
(*c) &= eraser;
(*c) |= masked;
}
/**
* @brief Swaps the z-values.
* If the input value has format XYZ0Z1...Z7, the output will have the format
* XYZ7Z6...Z0 instead
* @param c
* @return
*/
uint64_t swapZvalues(uint64_t c)
{
uint64_t newz = 0;
pushbackSixBitByte(&newz, getSixBitByte(c,0),7);
pushbackSixBitByte(&newz, getSixBitByte(c,1),6);
pushbackSixBitByte(&newz, getSixBitByte(c,2),5);
pushbackSixBitByte(&newz, getSixBitByte(c,3),4);
pushbackSixBitByte(&newz, getSixBitByte(c,4),3);
pushbackSixBitByte(&newz, getSixBitByte(c,5),2);
pushbackSixBitByte(&newz, getSixBitByte(c,6),1);
pushbackSixBitByte(&newz, getSixBitByte(c,7),0);
newz |= (c & 0xFFFF000000000000);
return newz;
}
/**
* @return 4 six-bit bytes chunked into a uint64_t,as 00..00a0a1a2a3
*/
uint64_t ck(int i, int j, uint64_t z)
{
if(i == 1 && j == -1)
{
// ck(1, 1, z [0] . . . z [3] ) = z [0] . . . z [3]
return z;
}else if( j == -1)
{
// ck(i, 1, z [0] . . . z [3] ) = ck(i 1, i 2, z [0] . . . z [3] )
return ck(i-1,i-2, z);
}
if(getSixBitByte(z,i) == getSixBitByte(z,j))
{
//ck(i, j 1, z [0] . . . z [i] ← j . . . z [3] )
uint64_t newz = 0;
int c;
for(c = 0; c < 4 ;c++)
{
uint8_t val = getSixBitByte(z,c);
if(c == i)
{
pushbackSixBitByte(&newz, j, c);
}else
{
pushbackSixBitByte(&newz, val, c);
}
}
return ck(i,j-1,newz);
}else
{
return ck(i,j-1,z);
}
}
/**
Definition 8.
Let the function check : (F 62 ) 8 (F 62 ) 8 be defined as
check(z [0] . . . z [7] ) = ck(3, 2, z [0] . . . z [3] ) · ck(3, 2, z [4] . . . z [7] )
where ck : N × N × (F 62 ) 4 (F 62 ) 4 is defined as
ck(1, 1, z [0] . . . z [3] ) = z [0] . . . z [3]
ck(i, 1, z [0] . . . z [3] ) = ck(i 1, i 2, z [0] . . . z [3] )
ck(i, j, z [0] . . . z [3] ) =
ck(i, j 1, z [0] . . . z [i] j . . . z [3] ), if z [i] = z [j] ;
ck(i, j 1, z [0] . . . z [3] ), otherwise
otherwise.
**/
uint64_t check(uint64_t z)
{
//These 64 bits are divided as c = x, y, z [0] , . . . , z [7]
// ck(3, 2, z [0] . . . z [3] )
uint64_t ck1 = ck(3,2, z );
// ck(3, 2, z [4] . . . z [7] )
uint64_t ck2 = ck(3,2, z << 24);
//The ck function will place the values
// in the middle of z.
ck1 &= 0x00000000FFFFFF000000;
ck2 &= 0x00000000FFFFFF000000;
return ck1 | ck2 >> 24;
}
void permute(BitstreamIn *p_in, uint64_t z,int l,int r, BitstreamOut* out)
{
if(bitsLeft(p_in) == 0)
{
return;
}
bool pn = tailBit(p_in);
if( pn ) // pn = 1
{
uint8_t zl = getSixBitByte(z,l);
push6bits(out, zl+1);
permute(p_in, z, l+1,r, out);
}else // otherwise
{
uint8_t zr = getSixBitByte(z,r);
push6bits(out, zr);
permute(p_in,z,l,r+1,out);
}
}
void printbegin()
{
if(debug_print <2)
return ;
prnlog(" | x| y|z0|z1|z2|z3|z4|z5|z6|z7|");
}
void printState(char* desc, uint64_t c)
{
if(debug_print < 2)
return ;
printf("%s : ", desc);
uint8_t x = (c & 0xFF00000000000000 ) >> 56;
uint8_t y = (c & 0x00FF000000000000 ) >> 48;
printf(" %02x %02x", x,y);
int i ;
for(i =0 ; i < 8 ; i++)
{
printf(" %02x", getSixBitByte(c,i));
}
printf("\n");
}
/**
* @brief
*Definition 11. Let the function hash0 : F 82 × F 82 × (F 62 ) 8 (F 82 ) 8 be defined as
* hash0(x, y, z [0] . . . z [7] ) = k [0] . . . k [7] where
* z'[i] = (z[i] mod (63-i)) + i i = 0...3
* z'[i+4] = (z[i+4] mod (64-i)) + i i = 0...3
* = check(z');
* @param c
* @param k this is where the diversified key is put (should be 8 bytes)
* @return
*/
void hash0(uint64_t c, uint8_t k[8])
{
c = swapZvalues(c);
printbegin();
printState("origin",c);
//These 64 bits are divided as c = x, y, z [0] , . . . , z [7]
// x = 8 bits
// y = 8 bits
// z0-z7 6 bits each : 48 bits
uint8_t x = (c & 0xFF00000000000000 ) >> 56;
uint8_t y = (c & 0x00FF000000000000 ) >> 48;
int n;
uint8_t zn, zn4, _zn, _zn4;
uint64_t zP = 0;
for(n = 0; n < 4 ; n++)
{
zn = getSixBitByte(c,n);
zn4 = getSixBitByte(c,n+4);
_zn = (zn % (63-n)) + n;
_zn4 = (zn4 % (64-n)) + n;
pushbackSixBitByte(&zP, _zn,n);
pushbackSixBitByte(&zP, _zn4,n+4);
}
printState("0|0|z'",zP);
uint64_t zCaret = check(zP);
printState("0|0|z^",zP);
uint8_t p = pi[x % 35];
if(x & 1) //Check if x7 is 1
{
p = ~p;
}
if(debug_print >= 2) prnlog("p:%02x", p);
BitstreamIn p_in = { &p, 8,0 };
uint8_t outbuffer[] = {0,0,0,0,0,0,0,0};
BitstreamOut out = {outbuffer,0,0};
permute(&p_in,zCaret,0,4,&out);//returns 48 bits? or 6 8-bytes
//Out is now a buffer containing six-bit bytes, should be 48 bits
// if all went well
//Shift z-values down onto the lower segment
uint64_t zTilde = x_bytes_to_num(outbuffer,8);
zTilde >>= 16;
printState("0|0|z~", zTilde);
int i;
int zerocounter =0 ;
for(i =0 ; i < 8 ; i++)
{
// the key on index i is first a bit from y
// then six bits from z,
// then a bit from p
// Init with zeroes
k[i] = 0;
// First, place yi leftmost in k
//k[i] |= (y << i) & 0x80 ;
// First, place y(7-i) leftmost in k
k[i] |= (y << (7-i)) & 0x80 ;
uint8_t zTilde_i = getSixBitByte(zTilde, i);
// zTildeI is now on the form 00XXXXXX
// with one leftshift, it'll be
// 0XXXXXX0
// So after leftshift, we can OR it into k
// However, when doing complement, we need to
// again MASK 0XXXXXX0 (0x7E)
zTilde_i <<= 1;
//Finally, add bit from p or p-mod
//Shift bit i into rightmost location (mask only after complement)
uint8_t p_i = p >> i & 0x1;
if( k[i] )// yi = 1
{
//printf("k[%d] +1\n", i);
k[i] |= ~zTilde_i & 0x7E;
k[i] |= p_i & 1;
k[i] += 1;
}else // otherwise
{
k[i] |= zTilde_i & 0x7E;
k[i] |= (~p_i) & 1;
}
if((k[i] & 1 )== 0)
{
zerocounter ++;
}
}
}
/**
* @brief Performs Elite-class key diversification
* @param csn
* @param key
* @param div_key
*/
void diversifyKey(uint8_t csn[8], uint8_t key[8], uint8_t div_key[8])
{
// Prepare the DES key
des_setkey_enc( &ctx_enc, key);
uint8_t crypted_csn[8] = {0};
// Calculate DES(CSN, KEY)
des_crypt_ecb(&ctx_enc,csn, crypted_csn);
//Calculate HASH0(DES))
uint64_t crypt_csn = x_bytes_to_num(crypted_csn, 8);
//uint64_t crypted_csn_swapped = swapZvalues(crypt_csn);
hash0(crypt_csn,div_key);
}
void testPermute()
{
uint64_t x = 0;
pushbackSixBitByte(&x,0x00,0);
pushbackSixBitByte(&x,0x01,1);
pushbackSixBitByte(&x,0x02,2);
pushbackSixBitByte(&x,0x03,3);
pushbackSixBitByte(&x,0x04,4);
pushbackSixBitByte(&x,0x05,5);
pushbackSixBitByte(&x,0x06,6);
pushbackSixBitByte(&x,0x07,7);
uint8_t mres[8] = { getSixBitByte(x, 0),
getSixBitByte(x, 1),
getSixBitByte(x, 2),
getSixBitByte(x, 3),
getSixBitByte(x, 4),
getSixBitByte(x, 5),
getSixBitByte(x, 6),
getSixBitByte(x, 7)};
printarr("input_perm", mres,8);
uint8_t p = ~pi[0];
BitstreamIn p_in = { &p, 8,0 };
uint8_t outbuffer[] = {0,0,0,0,0,0,0,0};
BitstreamOut out = {outbuffer,0,0};
permute(&p_in, x,0,4, &out);
uint64_t permuted = x_bytes_to_num(outbuffer,8);
//printf("zTilde 0x%"PRIX64"\n", zTilde);
permuted >>= 16;
uint8_t res[8] = { getSixBitByte(permuted, 0),
getSixBitByte(permuted, 1),
getSixBitByte(permuted, 2),
getSixBitByte(permuted, 3),
getSixBitByte(permuted, 4),
getSixBitByte(permuted, 5),
getSixBitByte(permuted, 6),
getSixBitByte(permuted, 7)};
printarr("permuted", res, 8);
}
//These testcases are
//{ UID , TEMP_KEY, DIV_KEY} using the specific key
typedef struct
{
uint8_t uid[8];
uint8_t t_key[8];
uint8_t div_key[8];
} Testcase;
int testDES(Testcase testcase, des_context ctx_enc, des_context ctx_dec)
{
uint8_t des_encrypted_csn[8] = {0};
uint8_t decrypted[8] = {0};
uint8_t div_key[8] = {0};
int retval = des_crypt_ecb(&ctx_enc,testcase.uid,des_encrypted_csn);
retval |= des_crypt_ecb(&ctx_dec,des_encrypted_csn,decrypted);
if(memcmp(testcase.uid,decrypted,8) != 0)
{
//Decryption fail
prnlog("Encryption <-> Decryption FAIL");
printarr("Input", testcase.uid, 8);
printarr("Decrypted", decrypted, 8);
retval = 1;
}
if(memcmp(des_encrypted_csn,testcase.t_key,8) != 0)
{
//Encryption fail
prnlog("Encryption != Expected result");
printarr("Output", des_encrypted_csn, 8);
printarr("Expected", testcase.t_key, 8);
retval = 1;
}
uint64_t crypted_csn = x_bytes_to_num(des_encrypted_csn,8);
hash0(crypted_csn, div_key);
if(memcmp(div_key, testcase.div_key ,8) != 0)
{
//Key diversification fail
prnlog("Div key != expected result");
printarr(" csn ", testcase.uid,8);
printarr("{csn} ", des_encrypted_csn,8);
printarr("hash0 ", div_key, 8);
printarr("Expected", testcase.div_key, 8);
retval = 1;
}
return retval;
}
bool des_getParityBitFromKey(uint8_t key)
{//The top 7 bits is used
bool parity = ((key & 0x80) >> 7)
^ ((key & 0x40) >> 6) ^ ((key & 0x20) >> 5)
^ ((key & 0x10) >> 4) ^ ((key & 0x08) >> 3)
^ ((key & 0x04) >> 2) ^ ((key & 0x02) >> 1);
return !parity;
}
void des_checkParity(uint8_t* key)
{
int i;
int fails =0;
for(i =0 ; i < 8 ; i++)
{
bool parity = des_getParityBitFromKey(key[i]);
if(parity != (key[i] & 0x1))
{
fails++;
prnlog("[+] parity1 fail, byte %d [%02x] was %d, should be %d",i,key[i],(key[i] & 0x1),parity);
}
}
if(fails)
{
prnlog("[+] parity fails: %d", fails);
}else
{
prnlog("[+] Key syntax is with parity bits inside each byte");
}
}
Testcase testcases[] ={
{{0x8B,0xAC,0x60,0x1F,0x53,0xB8,0xED,0x11},{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x05,0x07}},
{{0xAE,0x51,0xE5,0x62,0xE7,0x9A,0x99,0x39},{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01},{0x04,0x02,0x06,0x08,0x01,0x03,0x05,0x07}},
{{0x9B,0x21,0xE4,0x31,0x6A,0x00,0x29,0x62},{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x02},{0x06,0x04,0x02,0x08,0x01,0x03,0x05,0x07}},
{{0x65,0x24,0x0C,0x41,0x4F,0xC2,0x21,0x93},{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x04},{0x0A,0x04,0x06,0x08,0x01,0x03,0x05,0x07}},
{{0x7F,0xEB,0xAE,0x93,0xE5,0x30,0x08,0xBD},{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x08},{0x12,0x04,0x06,0x08,0x01,0x03,0x05,0x07}},
{{0x49,0x7B,0x70,0x74,0x9B,0x35,0x1B,0x83},{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x10},{0x22,0x04,0x06,0x08,0x01,0x03,0x05,0x07}},
{{0x02,0x3C,0x15,0x6B,0xED,0xA5,0x64,0x6C},{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x20},{0x42,0x04,0x06,0x08,0x01,0x03,0x05,0x07}},
{{0xE8,0x37,0xE0,0xE2,0xC6,0x45,0x24,0xF3},{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x40},{0x02,0x06,0x04,0x08,0x01,0x03,0x05,0x07}},
{{0xAB,0xBD,0x30,0x05,0x29,0xC8,0xF7,0x12},{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x80},{0x02,0x08,0x06,0x04,0x01,0x03,0x05,0x07}},
{{0x17,0xE8,0x97,0xF0,0x99,0xB6,0x79,0x31},{0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00},{0x02,0x0C,0x06,0x08,0x01,0x03,0x05,0x07}},
{{0x49,0xA4,0xF0,0x8F,0x5F,0x96,0x83,0x16},{0x00,0x00,0x00,0x00,0x00,0x00,0x02,0x00},{0x02,0x14,0x06,0x08,0x01,0x03,0x05,0x07}},
{{0x60,0xF5,0x7E,0x54,0xAA,0x41,0x83,0xD4},{0x00,0x00,0x00,0x00,0x00,0x00,0x04,0x00},{0x02,0x24,0x06,0x08,0x01,0x03,0x05,0x07}},
{{0x1D,0xF6,0x3B,0x6B,0x85,0x55,0xF0,0x4B},{0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00},{0x02,0x44,0x06,0x08,0x01,0x03,0x05,0x07}},
{{0x1F,0xDC,0x95,0x1A,0xEA,0x6B,0x4B,0xB4},{0x00,0x00,0x00,0x00,0x00,0x00,0x10,0x00},{0x02,0x04,0x08,0x06,0x01,0x03,0x05,0x07}},
{{0xEC,0x93,0x72,0xF0,0x3B,0xA9,0xF5,0x0B},{0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x00},{0x02,0x04,0x0A,0x08,0x01,0x03,0x05,0x07}},
{{0xDE,0x57,0x5C,0xBE,0x2D,0x55,0x03,0x12},{0x00,0x00,0x00,0x00,0x00,0x00,0x40,0x00},{0x02,0x04,0x0E,0x08,0x01,0x03,0x05,0x07}},
{{0x1E,0xD2,0xB5,0xCE,0x90,0xC9,0xC1,0xCC},{0x00,0x00,0x00,0x00,0x00,0x00,0x80,0x00},{0x02,0x04,0x16,0x08,0x01,0x03,0x05,0x07}},
{{0xD8,0x65,0x96,0x4E,0xE7,0x74,0x99,0xB8},{0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00},{0x02,0x04,0x26,0x08,0x01,0x03,0x05,0x07}},
{{0xE3,0x7A,0x29,0x83,0x31,0xD5,0x3A,0x54},{0x00,0x00,0x00,0x00,0x00,0x02,0x00,0x00},{0x02,0x04,0x46,0x08,0x01,0x03,0x05,0x07}},
{{0x3A,0xB5,0x1A,0x34,0x34,0x25,0x12,0xF0},{0x00,0x00,0x00,0x00,0x00,0x04,0x00,0x00},{0x02,0x04,0x06,0x0A,0x01,0x03,0x05,0x07}},
{{0xF2,0x88,0xEE,0x6F,0x70,0x6F,0xC2,0x52},{0x00,0x00,0x00,0x00,0x00,0x08,0x00,0x00},{0x02,0x04,0x06,0x0C,0x01,0x03,0x05,0x07}},
{{0x76,0xEF,0xEB,0x80,0x52,0x43,0x83,0x57},{0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x00},{0x02,0x04,0x06,0x10,0x01,0x03,0x05,0x07}},
{{0x1C,0x09,0x8E,0x3B,0x23,0x23,0x52,0xB5},{0x00,0x00,0x00,0x00,0x00,0x20,0x00,0x00},{0x02,0x04,0x06,0x18,0x01,0x03,0x05,0x07}},
{{0xA9,0x13,0xA2,0xBE,0xCF,0x1A,0xC4,0x9A},{0x00,0x00,0x00,0x00,0x00,0x40,0x00,0x00},{0x02,0x04,0x06,0x28,0x01,0x03,0x05,0x07}},
{{0x25,0x56,0x4B,0xB0,0xC8,0x2A,0xD4,0x27},{0x00,0x00,0x00,0x00,0x00,0x80,0x00,0x00},{0x02,0x04,0x06,0x48,0x01,0x03,0x05,0x07}},
{{0xB1,0x04,0x57,0x3F,0xA7,0x16,0x62,0xD4},{0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x03,0x01,0x05,0x07}},
{{0x45,0x46,0xED,0xCC,0xE7,0xD3,0x8E,0xA3},{0x00,0x00,0x00,0x00,0x02,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x05,0x03,0x01,0x07}},
{{0x22,0x6D,0xB5,0x35,0xE0,0x5A,0xE0,0x90},{0x00,0x00,0x00,0x00,0x04,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x09,0x03,0x05,0x07}},
{{0xB8,0xF5,0xE5,0x44,0xC5,0x98,0x4A,0xBD},{0x00,0x00,0x00,0x00,0x08,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x11,0x03,0x05,0x07}},
{{0xAC,0x78,0x0A,0x23,0x9E,0xF6,0xBC,0xA0},{0x00,0x00,0x00,0x00,0x10,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x21,0x03,0x05,0x07}},
{{0x46,0x6B,0x2D,0x70,0x41,0x17,0xBF,0x3D},{0x00,0x00,0x00,0x00,0x20,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x41,0x03,0x05,0x07}},
{{0x64,0x44,0x24,0x71,0xA2,0x56,0xDF,0xB5},{0x00,0x00,0x00,0x00,0x40,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x05,0x03,0x07}},
{{0xC4,0x00,0x52,0x24,0xA2,0xD6,0x16,0x7A},{0x00,0x00,0x00,0x00,0x80,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x07,0x05,0x03}},
{{0xD8,0x4A,0x80,0x1E,0x95,0x5B,0x70,0xC4},{0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x0B,0x05,0x07}},
{{0x08,0x56,0x6E,0xB5,0x64,0xD6,0x47,0x4E},{0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x13,0x05,0x07}},
{{0x41,0x6F,0xBA,0xA4,0xEB,0xAE,0xA0,0x55},{0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x23,0x05,0x07}},
{{0x62,0x9D,0xDE,0x72,0x84,0x4A,0x53,0xD5},{0x00,0x00,0x00,0x08,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x43,0x05,0x07}},
{{0x39,0xD3,0x2B,0x66,0xB8,0x08,0x40,0x2E},{0x00,0x00,0x00,0x10,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x07,0x05}},
{{0xAF,0x67,0xA9,0x18,0x57,0x21,0xAF,0x8D},{0x00,0x00,0x00,0x20,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x09,0x07}},
{{0x34,0xBC,0x9D,0xBC,0xC4,0xC2,0x3B,0xC8},{0x00,0x00,0x00,0x40,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x0D,0x07}},
{{0xB6,0x50,0xF9,0x81,0xF6,0xBF,0x90,0x3C},{0x00,0x00,0x00,0x80,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x15,0x07}},
{{0x71,0x41,0x93,0xA1,0x59,0x81,0xA5,0x52},{0x00,0x00,0x01,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x25,0x07}},
{{0x6B,0x00,0xBD,0x74,0x1C,0x3C,0xE0,0x1A},{0x00,0x00,0x02,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x45,0x07}},
{{0x76,0xFD,0x0B,0xD0,0x41,0xD2,0x82,0x5D},{0x00,0x00,0x04,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x05,0x09}},
{{0xC6,0x3A,0x1C,0x25,0x63,0x5A,0x2F,0x0E},{0x00,0x00,0x08,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x05,0x0B}},
{{0xD9,0x0E,0xD7,0x30,0xE2,0xAD,0xA9,0x87},{0x00,0x00,0x10,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x05,0x0F}},
{{0x6B,0x81,0xC6,0xD1,0x05,0x09,0x87,0x1E},{0x00,0x00,0x20,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x05,0x17}},
{{0xB4,0xA7,0x1E,0x02,0x54,0x37,0x43,0x35},{0x00,0x00,0x40,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x05,0x27}},
{{0x45,0x14,0x7C,0x7F,0xE0,0xDE,0x09,0x65},{0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x05,0x47}},
{{0x78,0xB0,0xF5,0x20,0x8B,0x7D,0xF3,0xDD},{0x00,0x01,0x00,0x00,0x00,0x00,0x00,0x00},{0xFE,0x04,0x06,0x08,0x01,0x03,0x05,0x07}},
{{0x88,0xB3,0x3C,0xE1,0xF7,0x87,0x42,0xA1},{0x00,0x02,0x00,0x00,0x00,0x00,0x00,0x00},{0x02,0xFC,0x06,0x08,0x01,0x03,0x05,0x07}},
{{0x11,0x2F,0xB2,0xF7,0xE2,0xB2,0x4F,0x6E},{0x00,0x04,0x00,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0xFA,0x08,0x01,0x03,0x05,0x07}},
{{0x25,0x56,0x4E,0xC6,0xEB,0x2D,0x74,0x5B},{0x00,0x08,0x00,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0xF8,0x01,0x03,0x05,0x07}},
{{0x7E,0x98,0x37,0xF9,0x80,0x8F,0x09,0x82},{0x00,0x10,0x00,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0xFF,0x03,0x05,0x07}},
{{0xF9,0xB5,0x62,0x3B,0xD8,0x7B,0x3C,0x3F},{0x00,0x20,0x00,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0xFD,0x05,0x07}},
{{0x29,0xC5,0x2B,0xFA,0xD1,0xFC,0x5C,0xC7},{0x00,0x40,0x00,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0xFB,0x07}},
{{0xC1,0xA3,0x09,0x71,0xBD,0x8E,0xAF,0x2F},{0x00,0x80,0x00,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x05,0xF9}},
{{0xB6,0xDD,0xD1,0xAD,0xAA,0x15,0x6F,0x29},{0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00},{0x01,0x03,0x05,0x02,0x07,0x04,0x06,0x08}},
{{0x65,0x34,0x03,0x19,0x17,0xB3,0xA3,0x96},{0x02,0x00,0x00,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x01,0x06,0x08,0x03,0x05,0x07}},
{{0xF9,0x38,0x43,0x56,0x52,0xE5,0xB1,0xA9},{0x04,0x00,0x00,0x00,0x00,0x00,0x00,0x00},{0x01,0x02,0x04,0x06,0x08,0x03,0x05,0x07}},
{{0xA4,0xA0,0xAF,0xDA,0x48,0xB0,0xA1,0x10},{0x08,0x00,0x00,0x00,0x00,0x00,0x00,0x00},{0x01,0x02,0x04,0x06,0x03,0x08,0x05,0x07}},
{{0x55,0x15,0x8A,0x0D,0x48,0x29,0x01,0xD8},{0x10,0x00,0x00,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x01,0x06,0x03,0x05,0x08,0x07}},
{{0xC4,0x81,0x96,0x7D,0xA3,0xB7,0x73,0x50},{0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00},{0x01,0x02,0x03,0x05,0x04,0x06,0x08,0x07}},
{{0x36,0x73,0xDF,0xC1,0x1B,0x98,0xA8,0x1D},{0x40,0x00,0x00,0x00,0x00,0x00,0x00,0x00},{0x01,0x02,0x03,0x04,0x05,0x06,0x08,0x07}},
{{0xCE,0xE0,0xB3,0x1B,0x41,0xEB,0x15,0x12},{0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00},{0x01,0x02,0x03,0x04,0x06,0x05,0x08,0x07}},
{{0},{0},{0}}
};
int testKeyDiversificationWithMasterkeyTestcases()
{
int error = 0;
int i;
uint8_t empty[8]={0};
prnlog("[+} Testing encryption/decryption");
for (i = 0; memcmp(testcases+i,empty,8) ; i++) {
error += testDES(testcases[i],ctx_enc, ctx_dec);
}
if(error)
{
prnlog("[+] %d errors occurred (%d testcases)", error, i);
}else
{
prnlog("[+] Hashing seems to work (%d testcases)", i);
}
return error;
}
void print64bits(char*name, uint64_t val)
{
printf("%s%08x%08x\n",name,(uint32_t) (val >> 32) ,(uint32_t) (val & 0xFFFFFFFF));
}
uint64_t testCryptedCSN(uint64_t crypted_csn, uint64_t expected)
{
int retval = 0;
uint8_t result[8] = {0};
if(debug_print) prnlog("debug_print %d", debug_print);
if(debug_print) print64bits(" {csn} ", crypted_csn );
uint64_t crypted_csn_swapped = swapZvalues(crypted_csn);
if(debug_print) print64bits(" {csn-revz} ", crypted_csn_swapped);
hash0(crypted_csn, result);
uint64_t resultbyte = x_bytes_to_num(result,8 );
if(debug_print) print64bits(" hash0 " , resultbyte );
if(resultbyte != expected )
{
if(debug_print) {
prnlog("\n[+] FAIL!");
print64bits(" expected " , expected );
}
retval = 1;
}else
{
if(debug_print) prnlog(" [OK]");
}
return retval;
}
int testDES2(uint64_t csn, uint64_t expected)
{
uint8_t result[8] = {0};
uint8_t input[8] = {0};
print64bits(" csn ", csn);
x_num_to_bytes(csn, 8,input);
des_crypt_ecb(&ctx_enc,input, result);
uint64_t crypt_csn = x_bytes_to_num(result, 8);
print64bits(" {csn} ", crypt_csn );
print64bits(" expected ", expected );
if( expected == crypt_csn )
{
prnlog("[+] OK");
return 0;
}else
{
return 1;
}
}
/**
* These testcases come from http://www.proxmark.org/forum/viewtopic.php?pid=10977#p10977
* @brief doTestsWithKnownInputs
* @return
*/
int doTestsWithKnownInputs()
{
// KSel from http://www.proxmark.org/forum/viewtopic.php?pid=10977#p10977
int errors = 0;
prnlog("[+] Testing DES encryption");
// uint8_t key[8] = {0x6c,0x8d,0x44,0xf9,0x2a,0x2d,0x01,0xbf};
prnlog("[+] Testing foo");
uint8_t key[8] = {0x6c,0x8d,0x44,0xf9,0x2a,0x2d,0x01,0xbf};
des_setkey_enc( &ctx_enc, key);
testDES2(0xbbbbaaaabbbbeeee,0xd6ad3ca619659e6b);
prnlog("[+] Testing hashing algorithm");
errors += testCryptedCSN(0x0102030405060708,0x0bdd6512073c460a);
errors += testCryptedCSN(0x1020304050607080,0x0208211405f3381f);
errors += testCryptedCSN(0x1122334455667788,0x2bee256d40ac1f3a);
errors += testCryptedCSN(0xabcdabcdabcdabcd,0xa91c9ec66f7da592);
errors += testCryptedCSN(0xbcdabcdabcdabcda,0x79ca5796a474e19b);
errors += testCryptedCSN(0xcdabcdabcdabcdab,0xa8901b9f7ec76da4);
errors += testCryptedCSN(0xdabcdabcdabcdabc,0x357aa8e0979a5b8d);
errors += testCryptedCSN(0x21ba6565071f9299,0x34e80f88d5cf39ea);
errors += testCryptedCSN(0x14e2adfc5bb7e134,0x6ac90c6508bd9ea3);
if(errors)
{
prnlog("[+] %d errors occurred (9 testcases)", errors);
}else
{
prnlog("[+] Hashing seems to work (9 testcases)" );
}
return errors;
}
int readKeyFile(uint8_t key[8])
{
FILE *f;
f = fopen("iclass_key.bin", "rb");
if (f)
{
if(fread(key, sizeof(key), 1, f) == 1) return 0;
}
return 1;
}
int doKeyTests(uint8_t debuglevel)
{
debug_print = debuglevel;
prnlog("[+] Checking if the master key is present (iclass_key.bin)...");
uint8_t key[8] = {0};
if(readKeyFile(key))
{
prnlog("[+] Master key not present, will not be able to do all testcases");
}else
{
//Test if it's the right key...
uint8_t i;
uint8_t j = 0;
for(i =0 ; i < sizeof(key) ; i++)
j += key[i];
if(j != 185)
{
prnlog("[+] A key was loaded, but it does not seem to be the correct one. Aborting these tests");
}else
{
prnlog("[+] Key present");
prnlog("[+] Checking key parity...");
des_checkParity(key);
des_setkey_enc( &ctx_enc, key);
des_setkey_dec( &ctx_dec, key);
// Test hashing functions
prnlog("[+] The following tests require the correct 8-byte master key");
testKeyDiversificationWithMasterkeyTestcases();
}
}
prnlog("[+] Testing key diversification with non-sensitive keys...");
doTestsWithKnownInputs();
return 0;
}
/**
void checkParity2(uint8_t* key)
{
uint8_t stored_parity = key[7];
printf("Parity byte: 0x%02x\n", stored_parity);
int i;
int byte;
int fails =0;
BitstreamIn bits = {key, 56, 0};
bool parity = 0;
for(i =0 ; i < 56; i++)
{
if ( i > 0 && i % 7 == 0)
{
parity = !parity;
bool pbit = stored_parity & (0x80 >> (byte));
if(parity != pbit)
{
printf("parity2 fail byte %d, should be %d, was %d\n", (i / 7), parity, pbit);
fails++;
}
parity =0 ;
byte = i / 7;
}
parity = parity ^ headBit(&bits);
}
if(fails)
{
printf("parity2 fails: %d\n", fails);
}else
{
printf("Key syntax is with parity bits grouped in the last byte!\n");
}
}
void modifyKey_put_parity_last(uint8_t * key, uint8_t* output)
{
uint8_t paritybits = 0;
bool parity =0;
BitstreamOut out = { output, 0,0};
unsigned int bbyte, bbit;
for(bbyte=0; bbyte <8 ; bbyte++ )
{
for(bbit =0 ; bbit< 7 ; bbit++)
{
bool bit = *(key+bbyte) & (1 << (7-bbit));
pushBit(&out,bit);
parity ^= bit;
}
bool paritybit = *(key+bbyte) & 1;
paritybits |= paritybit << (7-bbyte);
parity = 0;
}
output[7] = paritybits;
printf("Parity byte: %02x\n", paritybits);
}
* @brief Modifies a key with parity bits last, so that it is formed with parity
* bits inside each byte
* @param key
* @param output
void modifyKey_put_parity_allover(uint8_t * key, uint8_t* output)
{
bool parity =0;
BitstreamOut out = { output, 0,0};
BitstreamIn in = {key, 0,0};
unsigned int bbyte, bbit;
for(bbit =0 ; bbit < 56 ; bbit++)
{
if( bbit > 0 && bbit % 7 == 0)
{
pushBit(&out,!parity);
parity = 0;
}
bool bit = headBit(&in);
pushBit(&out,bit );
parity ^= bit;
}
pushBit(&out, !parity);
if( des_key_check_key_parity(output))
{
printf("modifyKey_put_parity_allover fail, DES key invalid parity!");
}
}
*/

32
client/loclass/ikeys.h Normal file
View file

@ -0,0 +1,32 @@
#ifndef IKEYS_H
#define IKEYS_H
/**
* @brief
*Definition 11. Let the function hash0 : F 82 × F 82 × (F 62 ) 8 (F 82 ) 8 be defined as
* hash0(x, y, z [0] . . . z [7] ) = k [0] . . . k [7] where
* z'[i] = (z[i] mod (63-i)) + i i = 0...3
* z'[i+4] = (z[i+4] mod (64-i)) + i i = 0...3
* = check(z');
* @param c
* @param k this is where the diversified key is put (should be 8 bytes)
* @return
*/
void hash0(uint64_t c, uint8_t k[8]);
int doKeyTests(uint8_t debuglevel);
/**
* @brief Performs Elite-class key diversification
* @param csn
* @param key
* @param div_key
*/
void diversifyKey(uint8_t csn[8], uint8_t key[8], uint8_t div_key[8]);
/**
* @brief Permutes a key from standard NIST format to Iclass specific format
* @param key
* @param dest
*/
#endif // IKEYS_H

96
client/loclass/main.c Normal file
View file

@ -0,0 +1,96 @@
/*****************************************************************************
* This file is part of iClassCipher. It is a reconstructon of the cipher engine
* used in iClass, and RFID techology.
*
* The implementation is based on the work performed by
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
* Milosch Meriac in the paper "Dismantling IClass".
*
* Copyright (C) 2014 Martin Holst Swende
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with IClassCipher. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
#include <stdio.h>
#include <cipherutils.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <ctype.h>
#include "cipherutils.h"
#include "cipher.h"
#include "ikeys.h"
#include "fileutils.h"
#include "elite_crack.h"
int unitTests()
{
int errors = testCipherUtils();
errors += testMAC();
errors += doKeyTests(0);
errors += testElite();
return errors;
}
int showHelp()
{
prnlog("Usage: iclazz [options]");
prnlog("Options:");
prnlog("-t Perform self-test");
prnlog("-h Show this help");
prnlog("-f <filename> Bruteforce iclass dumpfile");
prnlog(" An iclass dumpfile is assumed to consist of an arbitrary number of malicious CSNs, and their protocol responses");
prnlog(" The the binary format of the file is expected to be as follows: ");
prnlog(" <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC>");
prnlog(" <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC>");
prnlog(" <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC>");
prnlog(" ... totalling N*24 bytes");
prnlog(" Check iclass_dump.bin for an example");
return 0;
}
int main (int argc, char **argv)
{
prnlog("IClass Cipher version 1.2, Copyright (C) 2014 Martin Holst Swende\n");
prnlog("Comes with ABSOLUTELY NO WARRANTY");
prnlog("This is free software, and you are welcome to use, abuse and repackage, please keep the credits\n");
char *fileName = NULL;
int c;
while ((c = getopt (argc, argv, "thf:")) != -1)
switch (c)
{
case 't':
return unitTests();
case 'h':
return showHelp();
case 'f':
fileName = optarg;
return bruteforceFileNoKeys(fileName);
case '?':
if (optopt == 'f')
fprintf (stderr, "Option -%c requires an argument.\n", optopt);
else if (isprint (optopt))
fprintf (stderr, "Unknown option `-%c'.\n", optopt);
else
fprintf (stderr,
"Unknown option character `\\x%x'.\n",
optopt);
return 1;
//default:
//showHelp();
}
showHelp();
return 0;
}

View file

@ -8,10 +8,17 @@ bin = require('bin')
---
-- A debug printout-function
local function dbg(args)
if DEBUG then
if type(args) == "table" then
local i = 1
while args[i] do
print("###", args[i])
i = i+1
end
else
print("###", args)
end
end
end
end
---
-- This is only meant to be used when errors occur
local function oops(err)
@ -40,20 +47,38 @@ local function save_HTML(javascript, filename)
end
local function save_BIN(data, filename)
-- Open the output file
local outfile = io.open(filename, "wb")
if outfile == nil then
return oops(string.format("Could not write to file %s",tostring(filename)))
end
-- Write the data into it
local i = 1
while data[i] do
outfile:write(data[i])
i = i+1
end
io.close(outfile)
return filename
end
local function convert_ascii_dump_to_JS(infile)
local t = infile:read("*all")
local output = "[";
for line in string.gmatch(t, "[^\n]+") do
output = output .. "'"..line.."',\n"
if string.byte(line,1) ~= string.byte("+",1) then
output = output .. "'"..line.."',\n"
end
end
output = output .. "]"
return output
end
local function convert_binary_dump_to_JS(infile, blockLen)
local bindata = infile:read("*all")
len = string.len(bindata)
@ -78,6 +103,21 @@ local function convert_binary_dump_to_JS(infile, blockLen)
return js
end
local function convert_ascii_dump_to_BIN(infile)
local t = infile:read("*all")
local output = {};
for line in string.gmatch(t, "[^\n]+") do
if string.byte(line) ~= string.byte("+") then
for c in (line or ''):gmatch('..') do
output[#output+1] = string.char( tonumber(c,16) )
end
end
end
return output
end
---
-- Converts a .eml-file into a HTML/Javascript file.
-- @param input the file to convert
@ -118,7 +158,27 @@ local function convert_bin_to_html(input, output, blockLen)
return save_HTML(javascript, output )
end
--- Converts a eml dump into a binary file
-- @param input the file containing the eml-dump (defaults to dumpdata.eml)
-- @param output the file to write to ( defaults to dumpdata.bin)
local function convert_eml_to_bin(input, output)
input = input or 'dumpdata.eml'
output = output or 'dumpdata.bin'
local infile = io.open(input, "rb")
if infile == nil then
return oops(string.format("Could not read file %s",tostring(input)))
end
-- Read file, get BIN
local data = convert_ascii_dump_to_BIN(infile)
io.close(infile)
return save_BIN(data, output )
end
return {
convert_bin_to_html = convert_bin_to_html,
convert_eml_to_html = convert_eml_to_html,
convert_eml_to_html = convert_eml_to_html,
convert_eml_to_bin = convert_eml_to_bin,
}

View file

@ -126,6 +126,21 @@ local _keys = {
'eeeeeeeeeeee',
'0123456789ab',
'123456789abc',
--[[
The keys below are taken from from https://github.com/4ZM/mfterm/blob/master/dictionary.txt
--]]
'abcdef123456', -- Key from ladyada.net
'000000000001',
'000000000002',
'00000000000a',
'00000000000b',
'100000000000',
'200000000000',
'a00000000000',
'b00000000000',
}
---
@ -148,4 +163,4 @@ local function uniq(list)
return foobar
end
return uniq(_keys)
return uniq(_keys)

57
client/lualibs/utils.lua Normal file
View file

@ -0,0 +1,57 @@
--[[
This may be moved to a separate library at some point (Holiman)
--]]
local Utils =
{
-- Asks the user for Yes or No
confirm = function(message, ...)
local answer
message = message .. " [y/n] ?"
repeat
io.write(message)
io.flush()
answer=io.read()
if answer == 'Y' or answer == "y" then
return true
elseif answer == 'N' or answer == 'n' then
return false
end
until false
end,
---
-- Asks the user for input
input = function (message , default)
local answer
if default ~= nil then
message = message .. " (default: ".. default.. " )"
end
message = message .." \n > "
io.write(message)
io.flush()
answer=io.read()
if answer == '' then answer = default end
return answer
end,
--
-- Converts DECIMAL to HEX
ConvertDec2Hex = function(IN)
local B,K,OUT,I,D=16,"0123456789ABCDEF","",0
while IN>0 do
I=I+1
IN,D=math.floor(IN/B),math.mod(IN,B)+1
OUT=string.sub(K,D,D)..OUT
end
return OUT
end,
---
-- Convert Byte array to string of hex
ConvertBytes2String = function(bytes)
s = {}
for i = 1, #(bytes) do
s[i] = string.format("%02X",bytes[i])
end
return table.concat(s)
end,
}
return Utils

View file

View file

@ -13,7 +13,7 @@ by the emulator
Arguments:
-h This help
-i <file> Specifies the dump-file (input). If omitted, 'dumpdata.bin' is used
-o <filename> Speciies the output file. If omitted, <uid>.eml is used.
-o <filename> Specifies the output file. If omitted, <uid>.eml is used.
]]

View file

@ -0,0 +1,60 @@
local getopt = require('getopt')
local bin = require('bin')
local dumplib = require('html_dumplib')
example =[[
1. script run emul2dump
2. script run emul2dump -i myfile.eml
3. script run emul2dump -i myfile.eml -o myfile.bin
]]
author = "Iceman"
usage = "script run emul2dump [-i <file>] [-o <file>]"
desc =[[
This script takes an dumpfile on EML (ASCII) format and converts it to the PM3 dumpbin file to be used with "hf mf restore"
Arguments:
-h This help
-i <filename> Specifies the dump-file (input). If omitted, 'dumpdata.eml' is used
-o <filename> Specifies the output file. If omitted, <currdate>.bin is used.
]]
---
-- This is only meant to be used when errors occur
function oops(err)
print("ERROR: ",err)
end
---
-- Usage help
function help()
print(desc)
print("Example usage")
print(example)
end
--
-- Exit message
function ExitMsg(msg)
print( string.rep('--',20) )
print( string.rep('--',20) )
print(msg)
print()
end
local function main(args)
local input = "dumpdata.eml"
local output = os.date("%Y-%m-%d_%H%M%S.bin");
-- Arguments for the script
for o, a in getopt.getopt(args, 'hi:o:') do
if o == "h" then return help() end
if o == "i" then input = a end
if o == "o" then output = a end
end
local filename, err = dumplib.convert_eml_to_bin(input,output)
if err then return oops(err) end
ExitMsg(("Wrote a BIN dump to the file %s"):format(filename))
end
main(args)

View file

@ -0,0 +1,196 @@
local cmds = require('commands')
local getopt = require('getopt')
local bin = require('bin')
local lib14a = require('read14a')
local utils = require('utils')
example =[[
1. script run formatMifare
2. script run formatMifare -k aabbccddeeff -n 112233445566 -a FF0780
]]
author = "Iceman"
usage = "script run formatMifare -k <key>"
desc =[[
This script will generate 'hf mf wrbl' commands for each block to format a Mifare card.
Alla datablocks gets 0x00
As default the script sets the keys A/B to 0xFFFFFFFFFFFF
and the access bytes will become 0x78,0x77,0x88
The GDB will become 0x00
The script will skip the manufactoring block 0.
Arguments:
-h - this help
-k <key> - the current six byte key with write access
-n <key> - the new key that will be written to the card
-a <access> - the new access bytes that will be written to the card
]]
local TIMEOUT = 2000 -- Shouldn't take longer than 2 seconds
local DEBUG = true -- the debug flag
local CmdString = 'hf mf wrbl %d B %s %s'
local numBlocks = 64
local numSectors = 16
---
-- A debug printout-function
function dbg(args)
if not DEBUG then
return
end
if type(args) == "table" then
local i = 1
while result[i] do
dbg(result[i])
i = i+1
end
else
print("###", args)
end
end
---
-- This is only meant to be used when errors occur
function oops(err)
print("ERROR: ",err)
end
---
-- Usage help
function help()
print(desc)
print("Example usage")
print(example)
end
--
-- Exit message
function ExitMsg(msg)
print( string.rep('--',20) )
print( string.rep('--',20) )
print(msg)
print()
end
--
-- Read information from a card
function GetCardInfo()
result, err = lib14a.read1443a(false)
if not result then
print(err)
return
end
print(("Found: %s"):format(result.name))
core.clearCommandBuffer()
if 0x18 == result.sak then --NXP MIFARE Classic 4k | Plus 4k
-- IFARE Classic 4K offers 4096 bytes split into forty sectors,
-- of which 32 are same size as in the 1K with eight more that are quadruple size sectors.
numSectors = 40
elseif 0x08 == result.sak then -- NXP MIFARE CLASSIC 1k | Plus 2k
-- 1K offers 1024 bytes of data storage, split into 16 sector
numSectors = 16
elseif 0x09 == result.sak then -- NXP MIFARE Mini 0.3k
-- MIFARE Classic mini offers 320 bytes split into five sectors.
numSectors = 5
elseif 0x10 == result.sak then-- "NXP MIFARE Plus 2k"
numSectors = 32
else
print("I don't know how many sectors there are on this type of card, defaulting to 16")
end
--[[
The mifare Classic 1k card has 16 sectors of 4 data blocks each.
The first 32 sectors of a mifare Classic 4k card consists of 4 data blocks and the remaining
8 sectors consist of 16 data blocks.
--]]
-- Defaults to 16 * 4 = 64 - 1 = 63
numBlocks = numSectors * 4 - 1
if numSectors > 32 then
numBlocks = 32*4+ (numSectors-32)*16 -1
end
end
local function main(args)
print( string.rep('--',20) )
print( string.rep('--',20) )
print()
local OldKey
local NewKey
local Accessbytes
-- Arguments for the script
for o, a in getopt.getopt(args, 'hk:n:a:') do
if o == "h" then return help() end
if o == "k" then OldKey = a end
if o == "n" then NewKey = a end
if o == "a" then Accessbytes = a end
end
-- validate input args.
OldKey = OldKey or 'FFFFFFFFFFFF'
if #(OldKey) ~= 12 then
return oops( string.format('Wrong length of write key (was %d) expected 12', #OldKey))
end
NewKey = NewKey or 'FFFFFFFFFFFF'
if #(NewKey) ~= 12 then
return oops( string.format('Wrong length of new key (was %d) expected 12', #NewKey))
end
--Accessbytes = Accessbytes or '787788'
Accessbytes = Accessbytes or 'FF0780'
if #(Accessbytes) ~= 6 then
return oops( string.format('Wrong length of accessbytes (was %d) expected 12', #Accessbytes))
end
GetCardInfo()
-- Show info
print( string.format('Estimating number of blocks: %d', numBlocks))
print( string.format('Old key: %s', OldKey))
print( string.format('New key: %s', NewKey))
print( string.format('New Access: %s', Accessbytes))
print( string.rep('--',20) )
-- Set new block data
local EMPTY_BL = string.rep('00',16)
local EMPTY_SECTORTRAIL = string.format('%s%s%s%s',NewKey,Accessbytes,'00',NewKey)
dbg( string.format('New sector-trailer : %s',EMPTY_SECTORTRAIL))
dbg( string.format('New emptyblock: %s',EMPTY_BL))
dbg('')
-- Ask
local dialogResult = utils.confirm("Do you want to erase this card")
if dialogResult == false then
return ExitMsg('Quiting it is then. Your wish is my command...')
end
print( string.rep('--',20) )
-- main loop
for block=0,numBlocks,1 do
local reminder = (block+1) % 4
local cmd
if reminder == 0 then
cmd = CmdString:format(block, OldKey , EMPTY_SECTORTRAIL)
else
cmd = CmdString:format(block, OldKey , EMPTY_BL)
end
if block ~= 0 then
print(cmd)
--core.console(cmd)
end
if core.ukbhit() then
print("aborted by user")
break
end
end
end
main(args)