replaced gzip with an own compressor tool (fpga_compress.c, based on zlib)

This allows to remove the gzip header support and the z_crc32.[ch] files
(which saves more than 2KBytes of the ARM's flash memory)
This commit is contained in:
pwpiwi 2015-04-26 10:49:03 +02:00
parent 25056d8b47
commit f39198789b
14 changed files with 3759 additions and 1057 deletions

View file

@ -9,85 +9,41 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "sleep.h"
#include "proxmark3.h"
#include "flash.h"
#include "uart.h"
#include "usb_cmd.h"
#include <stdint.h>
#include "zlib.h"
#define MAX(a,b) ((a)>(b)?(a):(b))
struct huffman_record {
int16_t symbol;
uint16_t count;
uint8_t code_size;
uint8_t code;
struct huffman_record *left;
struct huffman_record *right;
struct huffman_record *next;
};
typedef struct huffman_record huffman_record_t;
// zlib configuration
#define COMPRESS_LEVEL 9 // use best possible compression
#define FPGA_CONFIG_SIZE 42175
static uint8_t fpga_config[FPGA_CONFIG_SIZE];
static huffman_record_t leaf_nodes[256];
static uint8_t start_code[256];
static void usage(char *argv0)
{
fprintf(stderr, "Usage: %s [-d] <infile> <outfile>\n\n", argv0);
fprintf(stderr, "\t-d\tdecompress\n\n");
fprintf(stderr, "Usage: %s <infile> <outfile>\n\n", argv0);
}
void add_to_heap(huffman_record_t **heap, huffman_record_t *new_record)
static voidpf fpga_deflate_malloc(voidpf opaque, uInt items, uInt size)
{
huffman_record_t *succ = *heap;
huffman_record_t *pred = NULL;
// fprintf(stderr, "Adding symbol %d, count %d\n", new_record->symbol, new_record->count);
while (succ != NULL && new_record->count > succ->count) {
pred = succ;
succ = succ->next;
}
// insert new record
new_record->next = succ;
if (pred == NULL) { // first record in heap
*heap = new_record;
} else {
pred->next = new_record;
}
fprintf(stderr, "zlib requested %d bytes\n", items*size);
return malloc(items*size);
}
uint16_t set_codesize(huffman_record_t *tree_ptr, uint8_t depth)
{
uint16_t max_size = depth;
tree_ptr->code_size = depth;
if (tree_ptr->left != NULL) {
max_size = MAX(set_codesize(tree_ptr->left, depth+1), max_size);
}
if (tree_ptr->right != NULL) {
max_size = MAX(set_codesize(tree_ptr->right, depth+1), max_size);
}
return max_size;
}
int huffman_encode(FILE *infile, FILE *outfile)
static void fpga_deflate_free(voidpf opaque, voidpf address)
{
int i;
// init leaf_nodes:
for (i = 0; i < 256; i++) {
leaf_nodes[i].count = 0;
leaf_nodes[i].symbol = i;
leaf_nodes[i].left = NULL;
leaf_nodes[i].right = NULL;
leaf_nodes[i].next = NULL;
}
fprintf(stderr, "zlib frees memory\n");
return free(address);
}
int zlib_compress(FILE *infile, FILE *outfile)
{
int i, ret;
z_stream compressed_fpga_stream;
// read the input file into fpga_config[] and count occurrences of each symbol:
i = 0;
@ -95,7 +51,6 @@ int huffman_encode(FILE *infile, FILE *outfile)
uint8_t c;
c = fgetc(infile);
fpga_config[i++] = c;
leaf_nodes[c].count++;
if (i > FPGA_CONFIG_SIZE+1) {
fprintf(stderr, "Input file too big (> %d bytes). This is probably not a PM3 FPGA config file.", FPGA_CONFIG_SIZE);
fclose(infile);
@ -103,98 +58,60 @@ int huffman_encode(FILE *infile, FILE *outfile)
return -1;
}
}
// initialize zlib structures
compressed_fpga_stream.next_in = fpga_config;
compressed_fpga_stream.avail_in = i;
compressed_fpga_stream.zalloc = fpga_deflate_malloc;
compressed_fpga_stream.zfree = fpga_deflate_free;
fprintf(stderr, "\nStatistics: (symbol: count)\n");
for (i = 0; i < 256; i++) {
fprintf(stderr, "%3d: %5d\n", i, leaf_nodes[i].count);
}
// build the Huffman tree:
huffman_record_t *heap_ptr = NULL;
for (i = 0; i < 256; i++) {
add_to_heap(&heap_ptr, &leaf_nodes[i]);
}
fprintf(stderr, "\nSorted statistics: (symbol: count)\n");
for (huffman_record_t *p = heap_ptr; p != NULL; p = p->next) {
fprintf(stderr, "%3d: %5d\n", p->symbol, p->count);
}
for (i = 0; i < 255; i++) {
// remove and combine the first two nodes
huffman_record_t *p1, *p2;
p1 = heap_ptr;
p2 = heap_ptr->next;
heap_ptr = p2->next;
huffman_record_t *new_node = malloc(sizeof(huffman_record_t));
new_node->left = p1;
new_node->right = p2;
new_node->count = p1->count + p2->count;
add_to_heap(&heap_ptr, new_node);
// estimate the size of the compressed output
unsigned int outsize_max = deflateBound(&compressed_fpga_stream, compressed_fpga_stream.avail_in);
uint8_t *outbuf = malloc(outsize_max);
compressed_fpga_stream.next_out = outbuf;
compressed_fpga_stream.avail_out = outsize_max;
fprintf(stderr, "Allocated %d bytes for output file (estimated upper bound)\n", outsize_max);
ret = deflateInit(&compressed_fpga_stream, COMPRESS_LEVEL);
if (ret == Z_OK) {
ret = deflate(&compressed_fpga_stream, Z_FINISH);
}
uint16_t max_codesize = set_codesize(heap_ptr, 0);
fprintf(stderr, "produced %d bytes of output\n", compressed_fpga_stream.total_out);
fprintf(stderr, "\nStatistics: (symbol: count, codesize)\n");
uint32_t compressed_size = 0;
for (i = 0; i < 256; i++) {
fprintf(stderr, "%3d: %5d, %d\n", leaf_nodes[i].symbol, leaf_nodes[i].count, leaf_nodes[i].code_size);
compressed_size += leaf_nodes[i].count * leaf_nodes[i].code_size;
}
fprintf(stderr, "Compressed size = %ld (%f% of original size)", (compressed_size+7)/8, (float)(compressed_size)/(FPGA_CONFIG_SIZE * 8) * 100);
fprintf(stderr, "Max Codesize = %d bits", max_codesize);
uint8_t code = 0;
for (i = max_codesize; i > 0; i--) {
code = (code + 1) >> 1;
start_code[i] = code;
for (uint16_t j = 0; j < 256; j++) {
if (leaf_nodes[j].code_size == i) {
leaf_nodes[j].code = code;
code++;
}
if (ret != Z_STREAM_END) {
fprintf(stderr, "Error in deflate(): %d %s\n", ret, compressed_fpga_stream.msg);
free(outbuf);
deflateEnd(&compressed_fpga_stream);
fclose(infile);
fclose(outfile);
return -1;
}
}
fprintf(stderr, "\nStatistics: (symbol: count, codesize, code)\n");
for (i = 0; i < 256; i++) {
fprintf(stderr, "%3d: %5d, %d, %02x\n", leaf_nodes[i].symbol, leaf_nodes[i].count, leaf_nodes[i].code_size, leaf_nodes[i].code);
}
for (i = 0; i < compressed_fpga_stream.total_out; i++) {
fputc(outbuf[i], outfile);
}
free(outbuf);
deflateEnd(&compressed_fpga_stream);
fclose(infile);
fclose(outfile);
return 0;
}
int huffman_decode(FILE *infile, FILE *outfile)
{
return 0;
}
int main(int argc, char **argv)
{
bool decode = false;
char *infilename;
char *outfilename;
if (argc < 3) {
if (argc != 3) {
usage(argv[0]);
return -1;
}
if (argc > 3) {
if (!strcmp(argv[1], "-d")) {
decode = true;
infilename = argv[2];
outfilename = argv[3];
} else {
usage(argv[0]);
return -1;
}
} else {
infilename = argv[1];
outfilename = argv[2];
@ -213,9 +130,5 @@ int main(int argc, char **argv)
return -1;
}
if (decode) {
return huffman_decode(infile, outfile);
} else {
return huffman_encode(infile, outfile);
}
return zlib_compress(infile, outfile);
}