LF Demod streamlining

one shared location for demoding lf for arm and client.  also added a
few raw demod commands.
This commit is contained in:
marshmellow42 2014-12-28 20:33:32 -05:00
commit eb191de615
7 changed files with 1142 additions and 507 deletions

View file

@ -35,6 +35,7 @@ ARMSRC = fpgaloader.c \
legicrf.c \
iso14443crc.c \
crc16.c \
lfdemod.c \
$(SRC_ISO14443a) \
$(SRC_ISO14443b) \
$(SRC_CRAPTO1) \

View file

@ -14,6 +14,7 @@
#include "hitag2.h"
#include "crc16.h"
#include "string.h"
#include "../common/lfdemod.h"
/**
@ -629,7 +630,7 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
if (ledcontrol)
LED_A_OFF();
}
/*
//translate wave to 11111100000 (1 for each short wave 0 for each long wave)
size_t fsk_demod(uint8_t * dest, size_t size)
{
@ -728,11 +729,106 @@ size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxCons
}//end for
return numBits;
}
*/
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = (uint8_t *)BigBuf;
size_t size=0; //, found=0;
uint32_t hi2=0, hi=0, lo=0;
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
while(!BUTTON_PRESS()) {
WDT_HIT();
if (ledcontrol) LED_A_ON();
DoAcquisition125k_internal(-1,true);
size = sizeof(BigBuf);
if (size < 2000) continue;
// FSK demodulator
int bitLen = HIDdemodFSK(dest,size,&hi2,&hi,&lo);
WDT_HIT();
if (bitLen>0 && lo>0){
// final loop, go over previously decoded manchester data and decode into usable tag ID
// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
if (hi2 != 0){ //extra large HID tags
Dbprintf("TAG ID: %x%08x%08x (%d)",
(unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
}else { //standard HID tags <38 bits
//Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
uint8_t bitlen = 0;
uint32_t fc = 0;
uint32_t cardnum = 0;
if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
uint32_t lo2=0;
lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
uint8_t idx3 = 1;
while(lo2>1){ //find last bit set to 1 (format len bit)
lo2=lo2>>1;
idx3++;
}
bitlen =idx3+19;
fc =0;
cardnum=0;
if(bitlen==26){
cardnum = (lo>>1)&0xFFFF;
fc = (lo>>17)&0xFF;
}
if(bitlen==37){
cardnum = (lo>>1)&0x7FFFF;
fc = ((hi&0xF)<<12)|(lo>>20);
}
if(bitlen==34){
cardnum = (lo>>1)&0xFFFF;
fc= ((hi&1)<<15)|(lo>>17);
}
if(bitlen==35){
cardnum = (lo>>1)&0xFFFFF;
fc = ((hi&1)<<11)|(lo>>21);
}
}
else { //if bit 38 is not set then 37 bit format is used
bitlen= 37;
fc =0;
cardnum=0;
if(bitlen==37){
cardnum = (lo>>1)&0x7FFFF;
fc = ((hi&0xF)<<12)|(lo>>20);
}
}
//Dbprintf("TAG ID: %x%08x (%d)",
// (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
(unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
}
if (findone){
if (ledcontrol) LED_A_OFF();
return;
}
// reset
hi2 = hi = lo = 0;
}
WDT_HIT();
}
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
/*
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
void CmdHIDdemodFSK2(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = (uint8_t *)BigBuf;
size_t size=0,idx=0; //, found=0;
uint32_t hi2=0, hi=0, lo=0;
@ -865,7 +961,9 @@ void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
*/
/*
uint32_t bytebits_to_byte(uint8_t* src, int numbits)
{
uint32_t num = 0;
@ -876,8 +974,69 @@ uint32_t bytebits_to_byte(uint8_t* src, int numbits)
}
return num;
}
*/
void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = (uint8_t *)BigBuf;
size_t size=0;
int idx=0;
uint32_t code=0, code2=0;
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
while(!BUTTON_PRESS()) {
WDT_HIT();
if (ledcontrol) LED_A_ON();
DoAcquisition125k_internal(-1,true);
size = sizeof(BigBuf);
//make sure buffer has data
if (size < 2000) continue;
//fskdemod and get start index
idx = IOdemodFSK(dest,size);
if (idx>0){
//valid tag found
//Index map
//0 10 20 30 40 50 60
//| | | | | | |
//01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
//-----------------------------------------------------------------------------
//00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
//
//XSF(version)facility:codeone+codetwo
//Handle the data
if(findone){ //only print binary if we are doing one
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
}
code = bytebits_to_byte(dest+idx,32);
code2 = bytebits_to_byte(dest+idx+32,32);
short version = bytebits_to_byte(dest+idx+27,8); //14,4
uint8_t facilitycode = bytebits_to_byte(dest+idx+19,8) ;
uint16_t number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2);
// if we're only looking for one tag
if (findone){
if (ledcontrol) LED_A_OFF();
//LED_A_OFF();
return;
}
}
WDT_HIT();
}
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
/*
void CmdIOdemodFSK2(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = (uint8_t *)BigBuf;
size_t size=0, idx=0;
@ -958,6 +1117,7 @@ void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
*/
/*------------------------------
* T5555/T5557/T5567 routines

View file

@ -70,6 +70,7 @@ CMDSRCS = nonce2key/crapto1.c\
graph.c \
ui.c \
cmddata.c \
lfdemod.c \
cmdhf.c \
cmdhf14a.c \
cmdhf14b.c \

View file

@ -11,8 +11,7 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
//#include <inttypes.h>
#include <limits.h>
#include "proxmark3.h"
#include "data.h"
@ -22,6 +21,7 @@
#include "util.h"
#include "cmdmain.h"
#include "cmddata.h"
#include "../common/lfdemod.h"
static int CmdHelp(const char *Cmd);
@ -90,6 +90,8 @@ int Cmdaskdemod(const char *Cmd)
else if (GraphBuffer[i] < low)
low = GraphBuffer[i];
}
high=abs(high*.75);
low=abs(low*.75);
if (c != 0 && c != 1) {
PrintAndLog("Invalid argument: %s", Cmd);
return 0;
@ -123,32 +125,7 @@ int Cmdaskdemod(const char *Cmd)
return 0;
}
void printBitStream(int BitStream[], uint32_t bitLen){
uint32_t i = 0;
if (bitLen<16) return;
if (bitLen>512) bitLen=512;
for (i = 0; i < (bitLen-16); i+=16) {
PrintAndLog("%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i",
BitStream[i],
BitStream[i+1],
BitStream[i+2],
BitStream[i+3],
BitStream[i+4],
BitStream[i+5],
BitStream[i+6],
BitStream[i+7],
BitStream[i+8],
BitStream[i+9],
BitStream[i+10],
BitStream[i+11],
BitStream[i+12],
BitStream[i+13],
BitStream[i+14],
BitStream[i+15]);
}
return;
}
void printBitStream2(uint8_t BitStream[], uint32_t bitLen){
void printBitStream(uint8_t BitStream[], uint32_t bitLen){
uint32_t i = 0;
if (bitLen<16) {
PrintAndLog("Too few bits found: %d",bitLen);
@ -176,219 +153,183 @@ void printBitStream2(uint8_t BitStream[], uint32_t bitLen){
}
return;
}
//by marshmellow
//takes 1s and 0s and searches for EM410x format - output EM ID
int Em410xDecode(const char *Cmd)
void printEM410x(uint64_t id)
{
//no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
// otherwise could be a void with no arguments
//set defaults
int high=0, low=0;
uint64_t lo=0; //hi=0,
uint32_t i = 0;
uint32_t initLoopMax = 1000;
if (initLoopMax>GraphTraceLen) initLoopMax=GraphTraceLen;
for (;i < initLoopMax; ++i) //1000 samples should be plenty to find high and low values
{
if (GraphBuffer[i] > high)
high = GraphBuffer[i];
else if (GraphBuffer[i] < low)
low = GraphBuffer[i];
}
if (((high !=1)||(low !=0))){ //allow only 1s and 0s
PrintAndLog("no data found");
return 0;
}
uint8_t parityTest=0;
// 111111111 bit pattern represent start of frame
int frame_marker_mask[] = {1,1,1,1,1,1,1,1,1};
uint32_t idx = 0;
uint32_t ii=0;
uint8_t resetCnt = 0;
while( (idx + 64) < GraphTraceLen) {
restart:
// search for a start of frame marker
if ( memcmp(GraphBuffer+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{ // frame marker found
idx+=9;//sizeof(frame_marker_mask);
for (i=0; i<10;i++){
for(ii=0; ii<5; ++ii){
parityTest += GraphBuffer[(i*5)+ii+idx];
}
if (parityTest== ((parityTest>>1)<<1)){
parityTest=0;
for (ii=0; ii<4;++ii){
//hi = (hi<<1)|(lo>>31);
lo=(lo<<1LL)|(GraphBuffer[(i*5)+ii+idx]);
}
//PrintAndLog("DEBUG: EM parity passed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d,lo: %d",parityTest,i,ii,idx,GraphBuffer[idx+ii+(i*5)-5],GraphBuffer[idx+ii+(i*5)-4],GraphBuffer[idx+ii+(i*5)-3],GraphBuffer[idx+ii+(i*5)-2],GraphBuffer[idx+ii+(i*5)-1],lo);
}else {//parity failed
//PrintAndLog("DEBUG: EM parity failed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d",parityTest,i,ii,idx,GraphBuffer[idx+ii+(i*5)-5],GraphBuffer[idx+ii+(i*5)-4],GraphBuffer[idx+ii+(i*5)-3],GraphBuffer[idx+ii+(i*5)-2],GraphBuffer[idx+ii+(i*5)-1]);
parityTest=0;
idx-=8;
if (resetCnt>5)return 0;
resetCnt++;
goto restart;//continue;
}
}
//skip last 5 bit parity test for simplicity.
//get Unique ID
if (id !=0){
uint64_t iii=1;
uint64_t id2lo=0; //id2hi=0,
//for (i=0;i<8;i++){ //for uint32 instead of uint64
// id2hi=(id2hi<<1)|((hi & (iii<<(i)))>>i);
//}
uint32_t ii=0;
uint32_t i=0;
for (ii=5; ii>0;ii--){
for (i=0;i<8;i++){
id2lo=(id2lo<<1LL)|((lo & (iii<<(i+((ii-1)*8))))>>(i+((ii-1)*8)));
id2lo=(id2lo<<1LL)|((id & (iii<<(i+((ii-1)*8))))>>(i+((ii-1)*8)));
}
}
//output em id
PrintAndLog("EM TAG ID : %010llx", lo);
PrintAndLog("EM TAG ID : %010llx", id);
PrintAndLog("Unique TAG ID: %010llx", id2lo); //id2hi,
PrintAndLog("DEZ 8 : %08lld",lo & 0xFFFFFF);
PrintAndLog("DEZ 10 : %010lld",lo & 0xFFFFFF);
PrintAndLog("DEZ 5.5 : %05lld.%05lld",(lo>>16LL) & 0xFFFF,(lo & 0xFFFF));
PrintAndLog("DEZ 3.5A : %03lld.%05lld",(lo>>32ll),(lo & 0xFFFF));
PrintAndLog("DEZ 14/IK2 : %014lld",lo);
PrintAndLog("DEZ 8 : %08lld",id & 0xFFFFFF);
PrintAndLog("DEZ 10 : %010lld",id & 0xFFFFFF);
PrintAndLog("DEZ 5.5 : %05lld.%05lld",(id>>16LL) & 0xFFFF,(id & 0xFFFF));
PrintAndLog("DEZ 3.5A : %03lld.%05lld",(id>>32ll),(id & 0xFFFF));
PrintAndLog("DEZ 14/IK2 : %014lld",id);
PrintAndLog("DEZ 15/IK3 : %015lld",id2lo);
PrintAndLog("Other : %05lld_%03lld_%08lld",(lo&0xFFFF),((lo>>16LL) & 0xFF),(lo & 0xFFFFFF));
return 0;
}else{
idx++;
}
PrintAndLog("Other : %05lld_%03lld_%08lld",(id&0xFFFF),((id>>16LL) & 0xFF),(id & 0xFFFFFF));
}
return;
}
int CmdEm410xDecode(const char *Cmd)
{
uint64_t id=0;
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
uint32_t i=0;
for (i=0;i<GraphTraceLen;++i){
BitStream[i]=(uint8_t)(GraphBuffer[i]+128);
}
id = Em410xDecode(BitStream,i);
printEM410x(id);
return 0;
}
int getFromGraphBuf(uint8_t *buff)
{
uint32_t i;
for (i=0;i<GraphTraceLen;++i)
buff[i]=(uint8_t)(GraphBuffer[i]+128);
return i;
}
//by marshmellow
//takes 2 arguments - clock and invert both as integers
//takes 2 arguments - clock and invert both as integers
//attempts to demodulate ask while decoding manchester
//prints binary found and saves in graphbuffer for further commands
int Cmdaskmandemod(const char *Cmd)
{
uint32_t i;
int invert=0; //invert default
int high = 0, low = 0;
int clk=DetectClock(0); //clock default
uint8_t BitStream[MAX_GRAPH_TRACE_LEN] = {0};
int invert=0;
int clk=0;
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
sscanf(Cmd, "%i %i", &clk, &invert);
if (clk<8) clk =64;
if (clk<32) clk=32;
if (invert != 0 && invert != 1) {
PrintAndLog("Invalid argument: %s", Cmd);
return 0;
}
uint32_t initLoopMax = 1000;
if (initLoopMax>GraphTraceLen) initLoopMax=GraphTraceLen;
// Detect high and lows
PrintAndLog("Using Clock: %d and invert=%d",clk,invert);
for (i = 0; i < initLoopMax; ++i) //1000 samples should be plenty to find high and low values
{
if (GraphBuffer[i] > high)
high = GraphBuffer[i];
else if (GraphBuffer[i] < low)
low = GraphBuffer[i];
}
if ((high < 30) && ((high !=1)||(low !=-1))){ //throw away static - allow 1 and -1 (in case of threshold command first)
uint32_t BitLen = getFromGraphBuf(BitStream);
int errCnt=0;
errCnt = askmandemod(BitStream, &BitLen,&clk,&invert);
if (errCnt==-1){ //if fatal error (or -1)
PrintAndLog("no data found");
return 0;
}
//13% fuzz in case highs and lows aren't clipped [marshmellow]
high=(int)(0.75*high);
low=(int)(0.75*low);
//PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
int lastBit = 0; //set first clock check
uint32_t bitnum = 0; //output counter
uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
if (clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
uint32_t iii = 0;
uint32_t gLen = GraphTraceLen;
if (gLen > 500) gLen=500;
uint8_t errCnt =0;
uint32_t bestStart = GraphTraceLen;
uint32_t bestErrCnt = (GraphTraceLen/1000);
//PrintAndLog("DEBUG - lastbit - %d",lastBit);
//loop to find first wave that works
for (iii=0; iii < gLen; ++iii){
if ((GraphBuffer[iii]>=high)||(GraphBuffer[iii]<=low)){
lastBit=iii-clk;
//loop through to see if this start location works
for (i = iii; i < GraphTraceLen; ++i) {
if ((GraphBuffer[i] >= high) && ((i-lastBit)>(clk-tol))){
lastBit+=clk;
BitStream[bitnum] = invert;
bitnum++;
} else if ((GraphBuffer[i] <= low) && ((i-lastBit)>(clk-tol))){
//low found and we are expecting a bar
lastBit+=clk;
BitStream[bitnum] = 1-invert;
bitnum++;
} else {
//mid value found or no bar supposed to be here
if ((i-lastBit)>(clk+tol)){
//should have hit a high or low based on clock!!
//debug
//PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
if (bitnum > 0){
BitStream[bitnum]=77;
bitnum++;
}
errCnt++;
lastBit+=clk;//skip over until hit too many errors
if (errCnt>((GraphTraceLen/1000))){ //allow 1 error for every 1000 samples else start over
errCnt=0;
bitnum=0;//start over
break;
}
}
}
}
//we got more than 64 good bits and not all errors
if ((bitnum > (64+errCnt)) && (errCnt<(GraphTraceLen/1000))) {
//possible good read
if (errCnt==0) break; //great read - finish
if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish
if (errCnt<bestErrCnt){ //set this as new best run
bestErrCnt=errCnt;
bestStart = iii;
}
}
}
if (iii>=gLen){ //exhausted test
//if there was a ok test go back to that one and re-run the best run (then dump after that run)
if (bestErrCnt < (GraphTraceLen/1000)) iii=bestStart;
}
}
if (bitnum>16){
PrintAndLog("Data start pos:%d, lastBit:%d, stop pos:%d, numBits:%d",iii,lastBit,i,bitnum);
}
PrintAndLog("Using Clock: %d and invert=%d",clk,invert);
//PrintAndLog("Data start pos:%d, lastBit:%d, stop pos:%d, numBits:%d",iii,lastBit,i,bitnum);
//move BitStream back to GraphBuffer
/*
ClearGraph(0);
for (i=0; i < bitnum; ++i){
GraphBuffer[i]=BitStream[i];
}
GraphTraceLen=bitnum;
RepaintGraphWindow();
*/
//output
if (errCnt>0){
PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
}
PrintAndLog("ASK/Manchester decoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
printBitStream(BitStream,BitLen);
uint64_t lo =0;
lo = Em410xDecode(BitStream,BitLen);
printEM410x(lo);
return 0;
}
//by marshmellow
//biphase demod = 10 (or 01)=1 / 00 (or 11)=0
//by marshmellow
//manchester demod
//stricktly take 10 and 01 and convert to 0 and 1
int Cmdmandecoderaw(const char *Cmd)
{
int i =0;
int errCnt=0;
int bitnum=0;
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
int high=0,low=0;
for (;i<GraphTraceLen;++i){
if (GraphBuffer[i]>high) high=GraphBuffer[i];
else if(GraphBuffer[i]<low) low=GraphBuffer[i];
BitStream[i]=GraphBuffer[i];
}
if (high>1 || low <0 ){
PrintAndLog("Error: please raw demod the wave first then mancheseter raw decode");
return 0;
}
bitnum=i;
errCnt=manrawdemod(BitStream,&bitnum);
PrintAndLog("Manchester Decoded - # errors:%d - data:",errCnt);
printBitStream(BitStream,bitnum);
if (errCnt==0){
//put back in graphbuffer
ClearGraph(0);
for (i=0; i < bitnum; ++i){
for (i=0; i<bitnum;++i){
GraphBuffer[i]=BitStream[i];
}
}
GraphTraceLen=bitnum;
RepaintGraphWindow();
uint64_t id = 0;
id = Em410xDecode(BitStream,i);
printEM410x(id);
}
return 0;
}
//by marshmellow
//takes 2 arguments - clock and invert both as integers
//attempts to demodulate ask only
//prints binary found and saves in graphbuffer for further commands
int Cmdaskrawdemod(const char *Cmd)
{
uint32_t i;
int invert=0;
int clk=0;
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
sscanf(Cmd, "%i %i", &clk, &invert);
if (invert != 0 && invert != 1) {
PrintAndLog("Invalid argument: %s", Cmd);
return 0;
}
int BitLen = getFromGraphBuf(BitStream);
int errCnt=0;
errCnt = askrawdemod(BitStream, &BitLen,&clk,&invert);
if (errCnt==-1){ //throw away static - allow 1 and -1 (in case of threshold command first)
PrintAndLog("no data found");
return 0;
}
PrintAndLog("Using Clock: %d and invert=%d",clk,invert);
//PrintAndLog("Data start pos:%d, lastBit:%d, stop pos:%d, numBits:%d",iii,lastBit,i,bitnum);
//move BitStream back to GraphBuffer
ClearGraph(0);
for (i=0; i < BitLen; ++i){
GraphBuffer[i]=BitStream[i];
}
GraphTraceLen=BitLen;
RepaintGraphWindow();
//output
if (errCnt>0){
PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
}
PrintAndLog("ASK decoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
printBitStream2(BitStream,bitnum);
Em410xDecode(Cmd);
}
if (errCnt>0){
PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
}
PrintAndLog("ASK demoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
printBitStream(BitStream,BitLen);
return 0;
}
@ -536,139 +477,8 @@ int CmdDetectClockRate(const char *Cmd)
PrintAndLog("Auto-detected clock rate: %d", clock);
return 0;
}
//by marshmellow
//demod GraphBuffer wave to 0s and 1s for each wave - 0s for short waves 1s for long waves
size_t fsk_wave_demod(int size)
{
uint32_t last_transition = 0;
uint32_t idx = 1;
uint32_t maxVal = 0;
// we don't care about actual value, only if it's more or less than a
// threshold essentially we capture zero crossings for later analysis
for(idx=1; idx<size; idx++){
if(maxVal<GraphBuffer[idx]) maxVal = GraphBuffer[idx];
}
// set close to the top of the wave threshold with 13% margin for error
// less likely to get a false transition up there.
// (but have to be careful not to go too high and miss some short waves)
uint32_t threshold_value = (uint32_t)(maxVal*.87);
idx=1;
// int threshold_value = 100;
// sync to first lo-hi transition, and threshold
// PrintAndLog("FSK init complete size: %d",size);//debug
// Need to threshold first sample
if(GraphBuffer[0] < threshold_value) GraphBuffer[0] = 0;
else GraphBuffer[0] = 1;
size_t numBits = 0;
// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
// or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
for(idx = 1; idx < size; idx++) {
// threshold current value
if (GraphBuffer[idx] < threshold_value) GraphBuffer[idx] = 0;
else GraphBuffer[idx] = 1;
// Check for 0->1 transition
if (GraphBuffer[idx-1] < GraphBuffer[idx]) { // 0 -> 1 transition
if (idx-last_transition<6){
// do nothing with extra garbage (shouldn't be any) noise tolerance?
} else if(idx-last_transition < 9) {
GraphBuffer[numBits]=1;
// Other fsk demods reverse this making the short waves 1 and long waves 0
// this is really backwards... smaller waves will typically be 0 and larger 1 [marshmellow]
// but will leave as is and invert when needed later
} else{
GraphBuffer[numBits]=0;
}
last_transition = idx;
numBits++;
// PrintAndLog("numbits %d",numBits);
}
}
return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
}
uint32_t myround(float f)
{
if (f >= UINT_MAX) return UINT_MAX;
return (uint32_t) (f + (float)0.5);
}
//by marshmellow (from holiman's base)
//translate 11111100000 to 10
size_t aggregate_bits(int size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert) //,uint8_t l2h_crossing_value
{
int lastval=GraphBuffer[0];
uint32_t idx=0;
size_t numBits=0;
uint32_t n=1;
uint32_t n2=0;
for( idx=1; idx < size; idx++) {
if (GraphBuffer[idx]==lastval) {
n++;
continue;
}
// if lastval was 1, we have a 1->0 crossing
if ( GraphBuffer[idx-1]==1 ) {
n=myround((float)(n+1)/((float)(rfLen)/(float)8)); //-2 noise tolerance
// n=(n+1) / h2l_crossing_value;
//truncating could get us into trouble
//now we will try with actual clock (RF/64 or RF/50) variable instead
//then devide with float casting then truncate after more acurate division
//and round to nearest int
//like n = (((float)n)/(float)rfLen/(float)10);
} else {// 0->1 crossing
n=myround((float)(n+1)/((float)(rfLen-2)/(float)10)); // as int 120/6 = 20 as float 120/(64/10) = 18 (18.75)
//n=(n+1) / l2h_crossing_value;
}
if (n == 0) n = 1; //this should never happen... should we error if it does?
if (n < maxConsequtiveBits) // Consecutive //when the consecutive bits are low - the noise tolerance can be high
//if it is high then we must be careful how much noise tolerance we allow
{
if (invert==0){ // do not invert bits
for (n2=0; n2<n; n2++){
GraphBuffer[numBits+n2]=GraphBuffer[idx-1];
}
//memset(GraphBuffer+numBits, GraphBuffer[idx-1] , n);
}else{ // invert bits
for (n2=0; n2<n; n2++){
GraphBuffer[numBits+n2]=GraphBuffer[idx-1]^1;
}
//memset(GraphBuffer+numBits, GraphBuffer[idx-1]^1 , n);
}
numBits += n;
}
n=0;
lastval=GraphBuffer[idx];
}//end for
return numBits;
}
//by marshmellow (from holiman's base)
// full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
size_t fskdemod(uint8_t rfLen, uint8_t invert)
{
//uint8_t h2l_crossing_value = 6;
//uint8_t l2h_crossing_value = 5;
// if (rfLen==64) //currently only know settings for RF/64 change from default if option entered
// {
// h2l_crossing_value=8; //or 8 as 64/8 = 8
// l2h_crossing_value=6; //or 6.4 as 64/10 = 6.4
// }
size_t size = GraphTraceLen;
// FSK demodulator
size = fsk_wave_demod(size);
size = aggregate_bits(size,rfLen,192,invert);
// size = aggregate_bits(size, h2l_crossing_value, l2h_crossing_value,192, invert); //192=no limit to same values
//done messing with GraphBuffer - repaint
RepaintGraphWindow();
return size;
}
uint32_t bytebits_to_byte(int* src, int numbits)
/*
uint32_t bytebits_to_byte(uint8_t *src, int numbits)
{
uint32_t num = 0;
for(int i = 0 ; i < numbits ; i++)
@ -678,12 +488,14 @@ uint32_t bytebits_to_byte(int* src, int numbits)
}
return num;
}
*/
//by marshmellow
//fsk demod and print binary
//fsk raw demod and print binary
//takes 2 arguments - Clock and invert
//defaults: clock = 50, invert=0
int CmdFSKrawdemod(const char *Cmd)
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
//set defaults
uint8_t rfLen = 50;
uint8_t invert=0;
@ -700,158 +512,117 @@ int CmdFSKrawdemod(const char *Cmd)
invert=param_get8(Cmd,1);
}
PrintAndLog("Args invert: %d \nClock:%d",invert,rfLen);
size_t size = fskdemod(rfLen,invert);
uint32_t i=0;
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
uint32_t BitLen = getFromGraphBuf(BitStream);
int size = fskdemod(BitStream,BitLen,rfLen,invert);
PrintAndLog("FSK decoded bitstream:");
ClearGraph(0);
for (i=0;i<size;++i){
GraphBuffer[i]=BitStream[i];
}
GraphTraceLen=size;
RepaintGraphWindow();
// Now output the bitstream to the scrollback by line of 16 bits
if(size > (7*32)+2) size = (7*32)+2; //only output a max of 7 blocks of 32 bits most tags will have full bit stream inside that sample size
printBitStream(GraphBuffer,size);
ClearGraph(1);
printBitStream(BitStream,size);
return 0;
}
//by marshmellow
//by marshmellow (based on existing demod + holiman's refactor)
//HID Prox demod - FSK RF/50 with preamble of 00011101 (then manchester encoded)
//print full HID Prox ID and some bit format details if found
int CmdFSKdemodHID(const char *Cmd)
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
//set defaults
uint8_t rfLen = 50;
uint8_t invert=0;//param_get8(Cmd, 0);
size_t idx=0;
uint32_t hi2=0, hi=0, lo=0;
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
uint32_t BitLen = getFromGraphBuf(BitStream);
//get binary from fsk wave
size_t size = fskdemod(rfLen,invert);
// final loop, go over previously decoded fsk data and now manchester decode into usable tag ID
// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
int frame_marker_mask[] = {1,1,1,0,0,0};
int numshifts = 0;
idx = 0;
while( idx + 6 < size) {
// search for a start of frame marker
if ( memcmp(GraphBuffer+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{ // frame marker found
idx+=6;//sizeof(frame_marker_mask); //size of int is >6
while(GraphBuffer[idx] != GraphBuffer[idx+1] && idx < size-2)
{
// Keep going until next frame marker (or error)
// Shift in a bit. Start by shifting high registers
hi2 = (hi2<<1)|(hi>>31);
hi = (hi<<1)|(lo>>31);
//Then, shift in a 0 or one into low
if (GraphBuffer[idx] && !GraphBuffer[idx+1]) // 1 0
lo=(lo<<1)|0;
else // 0 1
lo=(lo<<1)|1;
numshifts++;
idx += 2;
size_t size = HIDdemodFSK(BitStream,BitLen,&hi2,&hi,&lo);
if (size<0){
PrintAndLog("Error demoding fsk");
return 0;
}
if (hi2 != 0){ //extra large HID tags
PrintAndLog("TAG ID: %x%08x%08x (%d)",
(unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
}
else { //standard HID tags <38 bits
//Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
uint8_t bitlen = 0;
uint32_t fc = 0;
uint32_t cardnum = 0;
if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
uint32_t lo2=0;
lo2=(((hi & 15) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
uint8_t idx3 = 1;
while(lo2>1){ //find last bit set to 1 (format len bit)
lo2=lo2>>1;
idx3++;
}
//PrintAndLog("Num shifts: %d ", numshifts);
// Hopefully, we read a tag and hit upon the next frame marker
if(idx + 6 < size)
{
if ( memcmp(GraphBuffer+(idx), frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{
if (hi2 != 0){ //extra large HID tags
PrintAndLog("TAG ID: %x%08x%08x (%d)",
(unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
}
else { //standard HID tags <38 bits
//Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
uint8_t bitlen = 0;
uint32_t fc = 0;
uint32_t cardnum = 0;
if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
uint32_t lo2=0;
lo2=(((hi & 15) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
uint8_t idx3 = 1;
while(lo2>1){ //find last bit set to 1 (format len bit)
lo2=lo2>>1;
idx3++;
}
bitlen =idx3+19;
fc =0;
cardnum=0;
if(bitlen==26){
cardnum = (lo>>1)&0xFFFF;
fc = (lo>>17)&0xFF;
}
if(bitlen==37){
cardnum = (lo>>1)&0x7FFFF;
fc = ((hi&0xF)<<12)|(lo>>20);
}
if(bitlen==34){
cardnum = (lo>>1)&0xFFFF;
fc= ((hi&1)<<15)|(lo>>17);
}
if(bitlen==35){
cardnum = (lo>>1)&0xFFFFF;
fc = ((hi&1)<<11)|(lo>>21);
}
}
else { //if bit 38 is not set then 37 bit format is used
bitlen= 37;
fc =0;
cardnum=0;
if(bitlen==37){
cardnum = (lo>>1)&0x7FFFF;
fc = ((hi&0xF)<<12)|(lo>>20);
}
}
PrintAndLog("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
(unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
ClearGraph(1);
return 0;
}
}
bitlen =idx3+19;
fc =0;
cardnum=0;
if(bitlen==26){
cardnum = (lo>>1)&0xFFFF;
fc = (lo>>17)&0xFF;
}
if(bitlen==37){
cardnum = (lo>>1)&0x7FFFF;
fc = ((hi&0xF)<<12)|(lo>>20);
}
if(bitlen==34){
cardnum = (lo>>1)&0xFFFF;
fc= ((hi&1)<<15)|(lo>>17);
}
if(bitlen==35){
cardnum = (lo>>1)&0xFFFFF;
fc = ((hi&1)<<11)|(lo>>21);
}
// reset
hi2 = hi = lo = 0;
numshifts = 0;
}else
{
idx++;
}
else { //if bit 38 is not set then 37 bit format is used
bitlen= 37;
fc =0;
cardnum=0;
if(bitlen==37){
cardnum = (lo>>1)&0x7FFFF;
fc = ((hi&0xF)<<12)|(lo>>20);
}
}
PrintAndLog("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
(unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
return 0;
}
if (idx + sizeof(frame_marker_mask) >= size){
PrintAndLog("start bits for hid not found");
PrintAndLog("FSK decoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
printBitStream(GraphBuffer,size);
}
ClearGraph(1);
return 0;
}
//by marshmellow
//IO-Prox demod - FSK RF/64 with preamble of 000000001
//print ioprox ID and some format details
int CmdFSKdemodIO(const char *Cmd)
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
//set defaults
uint8_t rfLen = 64;
uint8_t invert=1;
size_t idx=0;
uint8_t testMax=0;
int idx=0;
//test samples are not just noise
if (GraphTraceLen < 64) return 0;
for(idx=0;idx<64;idx++){
if (testMax<GraphBuffer[idx]) testMax=GraphBuffer[idx];
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
uint32_t BitLen = getFromGraphBuf(BitStream);
//get binary from fsk wave
idx = IOdemodFSK(BitStream,BitLen);
if (idx<0){
PrintAndLog("Error demoding fsk");
return 0;
}
if (idx==0){
PrintAndLog("IO Prox Data not found - FSK Data:");
printBitStream(BitStream,92);
}
idx=0;
//get full binary from fsk wave
size_t size = fskdemod(rfLen,invert);
//if not just noise
//PrintAndLog("testMax %d",testMax);
if (testMax>40){
//Index map
//0 10 20 30 40 50 60
//| | | | | | |
@ -861,43 +632,22 @@ int CmdFSKdemodIO(const char *Cmd)
//
//XSF(version)facility:codeone+codetwo (raw)
//Handle the data
int mask[] = {0,0,0,0,0,0,0,0,0,1};
for( idx=0; idx < (size - 74); idx++) {
if ( memcmp(GraphBuffer + idx, mask, sizeof(mask))==0) {
//frame marker found
if (GraphBuffer[idx+17]==1 && GraphBuffer[idx+26]==1 && GraphBuffer[idx+35]==1 && GraphBuffer[idx+44]==1 && GraphBuffer[idx+53]==1){
//confirmed proper separator bits found
PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx], GraphBuffer[idx+1], GraphBuffer[idx+2], GraphBuffer[idx+3], GraphBuffer[idx+4], GraphBuffer[idx+5], GraphBuffer[idx+6], GraphBuffer[idx+7], GraphBuffer[idx+8]);
PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx+9], GraphBuffer[idx+10], GraphBuffer[idx+11],GraphBuffer[idx+12],GraphBuffer[idx+13],GraphBuffer[idx+14],GraphBuffer[idx+15],GraphBuffer[idx+16],GraphBuffer[idx+17]);
PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx+18], GraphBuffer[idx+19], GraphBuffer[idx+20],GraphBuffer[idx+21],GraphBuffer[idx+22],GraphBuffer[idx+23],GraphBuffer[idx+24],GraphBuffer[idx+25],GraphBuffer[idx+26]);
PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx+27], GraphBuffer[idx+28], GraphBuffer[idx+29],GraphBuffer[idx+30],GraphBuffer[idx+31],GraphBuffer[idx+32],GraphBuffer[idx+33],GraphBuffer[idx+34],GraphBuffer[idx+35]);
PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx+36], GraphBuffer[idx+37], GraphBuffer[idx+38],GraphBuffer[idx+39],GraphBuffer[idx+40],GraphBuffer[idx+41],GraphBuffer[idx+42],GraphBuffer[idx+43],GraphBuffer[idx+44]);
PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx+45], GraphBuffer[idx+46], GraphBuffer[idx+47],GraphBuffer[idx+48],GraphBuffer[idx+49],GraphBuffer[idx+50],GraphBuffer[idx+51],GraphBuffer[idx+52],GraphBuffer[idx+53]);
PrintAndLog("%d%d%d%d%d%d%d%d %d%d",GraphBuffer[idx+54],GraphBuffer[idx+55],GraphBuffer[idx+56],GraphBuffer[idx+57],GraphBuffer[idx+58],GraphBuffer[idx+59],GraphBuffer[idx+60],GraphBuffer[idx+61],GraphBuffer[idx+62],GraphBuffer[idx+63]);
uint32_t code = bytebits_to_byte(GraphBuffer+idx,32);
uint32_t code2 = bytebits_to_byte(GraphBuffer+idx+32,32);
short version = bytebits_to_byte(GraphBuffer+idx+27,8); //14,4
uint8_t facilitycode = bytebits_to_byte(GraphBuffer+idx+19,8) ;
uint16_t number = (bytebits_to_byte(GraphBuffer+idx+36,8)<<8)|(bytebits_to_byte(GraphBuffer+idx+45,8)); //36,9
PrintAndLog("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2);
ClearGraph(1);
return 0;
} else {
PrintAndLog("thought we had a valid tag but did not match format");
}
}
}
if (idx >= (size-74)){
PrintAndLog("start bits for io prox not found");
PrintAndLog("FSK decoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
printBitStream(GraphBuffer,size);
}
}
ClearGraph(1);
PrintAndLog("%d%d%d%d%d%d%d%d %d",BitStream[idx], BitStream[idx+1], BitStream[idx+2], BitStream[idx+3], BitStream[idx+4], BitStream[idx+5], BitStream[idx+6], BitStream[idx+7], BitStream[idx+8]);
PrintAndLog("%d%d%d%d%d%d%d%d %d",BitStream[idx+9], BitStream[idx+10], BitStream[idx+11],BitStream[idx+12],BitStream[idx+13],BitStream[idx+14],BitStream[idx+15],BitStream[idx+16],BitStream[idx+17]);
PrintAndLog("%d%d%d%d%d%d%d%d %d",BitStream[idx+18], BitStream[idx+19], BitStream[idx+20],BitStream[idx+21],BitStream[idx+22],BitStream[idx+23],BitStream[idx+24],BitStream[idx+25],BitStream[idx+26]);
PrintAndLog("%d%d%d%d%d%d%d%d %d",BitStream[idx+27], BitStream[idx+28], BitStream[idx+29],BitStream[idx+30],BitStream[idx+31],BitStream[idx+32],BitStream[idx+33],BitStream[idx+34],BitStream[idx+35]);
PrintAndLog("%d%d%d%d%d%d%d%d %d",BitStream[idx+36], BitStream[idx+37], BitStream[idx+38],BitStream[idx+39],BitStream[idx+40],BitStream[idx+41],BitStream[idx+42],BitStream[idx+43],BitStream[idx+44]);
PrintAndLog("%d%d%d%d%d%d%d%d %d",BitStream[idx+45], BitStream[idx+46], BitStream[idx+47],BitStream[idx+48],BitStream[idx+49],BitStream[idx+50],BitStream[idx+51],BitStream[idx+52],BitStream[idx+53]);
PrintAndLog("%d%d%d%d%d%d%d%d %d%d",BitStream[idx+54],BitStream[idx+55],BitStream[idx+56],BitStream[idx+57],BitStream[idx+58],BitStream[idx+59],BitStream[idx+60],BitStream[idx+61],BitStream[idx+62],BitStream[idx+63]);
uint32_t code = bytebits_to_byte(BitStream+idx,32);
uint32_t code2 = bytebits_to_byte(BitStream+idx+32,32);
short version = bytebits_to_byte(BitStream+idx+27,8); //14,4
uint8_t facilitycode = bytebits_to_byte(BitStream+idx+19,8) ;
uint16_t number = (bytebits_to_byte(BitStream+idx+36,8)<<8)|(bytebits_to_byte(BitStream+idx+45,8)); //36,9
PrintAndLog("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2);
return 0;
}
int CmdFSKdemod(const char *Cmd) //old CmdFSKdemod needs updating
@ -1545,6 +1295,7 @@ static command_t CommandTable[] =
{"amp", CmdAmp, 1, "Amplify peaks"},
{"askdemod", Cmdaskdemod, 1, "<0 or 1> -- Attempt to demodulate simple ASK tags"},
{"askmandemod", Cmdaskmandemod, 1, "[clock] [invert<0 or 1>] -- Attempt to demodulate ASK/Manchester tags and output binary (args optional[clock will try Auto-detect])"},
{"askrawdemod", Cmdaskrawdemod, 1, "[clock] [invert<0 or 1>] -- Attempt to demodulate ASK tags and output binary (args optional[clock will try Auto-detect])"},
{"autocorr", CmdAutoCorr, 1, "<window length> -- Autocorrelation over window"},
{"bitsamples", CmdBitsamples, 0, "Get raw samples as bitstring"},
{"bitstream", CmdBitstream, 1, "[clock rate] -- Convert waveform into a bitstream"},
@ -1562,6 +1313,7 @@ static command_t CommandTable[] =
{"load", CmdLoad, 1, "<filename> -- Load trace (to graph window"},
{"ltrim", CmdLtrim, 1, "<samples> -- Trim samples from left of trace"},
{"mandemod", CmdManchesterDemod, 1, "[i] [clock rate] -- Manchester demodulate binary stream (option 'i' to invert output)"},
{"manrawdecode", Cmdmandecoderaw, 1, "Manchester decode binary stream already in graph buffer"},
{"manmod", CmdManchesterMod, 1, "[clock rate] -- Manchester modulate a binary stream"},
{"norm", CmdNorm, 1, "Normalize max/min to +/-500"},
{"plot", CmdPlot, 1, "Show graph window (hit 'h' in window for keystroke help)"},

View file

@ -18,6 +18,7 @@ int CmdData(const char *Cmd);
int CmdAmp(const char *Cmd);
int Cmdaskdemod(const char *Cmd);
int Cmdaskrawdemod(const char *Cmd);
int Cmdaskmandemod(const char *Cmd);
int CmdAutoCorr(const char *Cmd);
int CmdBitsamples(const char *Cmd);
int CmdBitstream(const char *Cmd);

692
common/lfdemod.c Normal file
View file

@ -0,0 +1,692 @@
//-----------------------------------------------------------------------------
// Copyright (C) 2014
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Low frequency commands
//-----------------------------------------------------------------------------
//#include <stdio.h>
#include <stdlib.h>
#include <string.h>
//#include <inttypes.h>
//#include <limits.h>
#include "lfdemod.h"
//#include "proxmark3.h"
//#include "data.h"
//#include "ui.h"
//#include "graph.h"
//#include "cmdparser.h"
//#include "util.h"
//#include "cmdmain.h"
//#include "cmddata.h"
//uint8_t BinStream[MAX_GRAPH_TRACE_LEN];
//uint8_t BinStreamLen;
//by marshmellow
//takes 1s and 0s and searches for EM410x format - output EM ID
uint64_t Em410xDecode(uint8_t BitStream[],uint32_t BitLen)
{
//no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
// otherwise could be a void with no arguments
//set defaults
int high=0, low=0;
uint64_t lo=0; //hi=0,
uint32_t i = 0;
uint32_t initLoopMax = 1000;
if (initLoopMax>BitLen) initLoopMax=BitLen;
for (;i < initLoopMax; ++i) //1000 samples should be plenty to find high and low values
{
if (BitStream[i] > high)
high = BitStream[i];
else if (BitStream[i] < low)
low = BitStream[i];
}
if (((high !=1)||(low !=0))){ //allow only 1s and 0s
// PrintAndLog("no data found");
return 0;
}
uint8_t parityTest=0;
// 111111111 bit pattern represent start of frame
uint8_t frame_marker_mask[] = {1,1,1,1,1,1,1,1,1};
uint32_t idx = 0;
uint32_t ii=0;
uint8_t resetCnt = 0;
while( (idx + 64) < BitLen) {
restart:
// search for a start of frame marker
if ( memcmp(BitStream+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{ // frame marker found
idx+=9;//sizeof(frame_marker_mask);
for (i=0; i<10;i++){
for(ii=0; ii<5; ++ii){
parityTest += BitStream[(i*5)+ii+idx];
}
if (parityTest== ((parityTest>>1)<<1)){
parityTest=0;
for (ii=0; ii<4;++ii){
//hi = (hi<<1)|(lo>>31);
lo=(lo<<1LL)|(BitStream[(i*5)+ii+idx]);
}
//PrintAndLog("DEBUG: EM parity passed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d,lo: %d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1],lo);
}else {//parity failed
//PrintAndLog("DEBUG: EM parity failed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1]);
parityTest=0;
idx-=8;
if (resetCnt>5)return 0;
resetCnt++;
goto restart;//continue;
}
}
//skip last 5 bit parity test for simplicity.
return lo;
}else{
idx++;
}
}
return 0;
}
//by marshmellow
//takes 2 arguments - clock and invert both as integers
//attempts to demodulate ask while decoding manchester
//prints binary found and saves in graphbuffer for further commands
int askmandemod(uint8_t * BinStream,uint32_t *BitLen,int *clk, int *invert)
{
uint32_t i;
//int invert=0; //invert default
int high = 0, low = 0;
*clk=DetectClock2(BinStream,(size_t)*BitLen,*clk); //clock default
uint8_t BitStream[MAX_BitStream_LEN] = {0};
//sscanf(Cmd, "%i %i", &clk, &invert);
if (*clk<8) *clk =64;
if (*clk<32) *clk=32;
if (*invert != 0 && *invert != 1) *invert=0;
uint32_t initLoopMax = 1000;
if (initLoopMax>*BitLen) initLoopMax=*BitLen;
// Detect high and lows
//PrintAndLog("Using Clock: %d and invert=%d",clk,invert);
for (i = 0; i < initLoopMax; ++i) //1000 samples should be plenty to find high and low values
{
if (BinStream[i] > high)
high = BinStream[i];
else if (BinStream[i] < low)
low = BinStream[i];
}
if ((high < 30) && ((high !=1)||(low !=-1))){ //throw away static - allow 1 and -1 (in case of threshold command first)
//PrintAndLog("no data found");
return -1;
}
//13% fuzz in case highs and lows aren't clipped [marshmellow]
high=(int)(0.75*high);
low=(int)(0.75*low);
//PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
int lastBit = 0; //set first clock check
uint32_t bitnum = 0; //output counter
uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
uint32_t iii = 0;
uint32_t gLen = *BitLen;
if (gLen > 500) gLen=500;
uint8_t errCnt =0;
uint32_t bestStart = *BitLen;
uint32_t bestErrCnt = (*BitLen/1000);
//PrintAndLog("DEBUG - lastbit - %d",lastBit);
//loop to find first wave that works
for (iii=0; iii < gLen; ++iii){
if ((BinStream[iii]>=high)||(BinStream[iii]<=low)){
lastBit=iii-*clk;
//loop through to see if this start location works
for (i = iii; i < *BitLen; ++i) {
if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){
lastBit+=*clk;
BitStream[bitnum] = *invert;
bitnum++;
} else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){
//low found and we are expecting a bar
lastBit+=*clk;
BitStream[bitnum] = 1-*invert;
bitnum++;
} else {
//mid value found or no bar supposed to be here
if ((i-lastBit)>(*clk+tol)){
//should have hit a high or low based on clock!!
//debug
//PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
if (bitnum > 0){
BitStream[bitnum]=77;
bitnum++;
}
errCnt++;
lastBit+=*clk;//skip over until hit too many errors
if (errCnt>((*BitLen/1000))){ //allow 1 error for every 1000 samples else start over
errCnt=0;
bitnum=0;//start over
break;
}
}
}
}
//we got more than 64 good bits and not all errors
if ((bitnum > (64+errCnt)) && (errCnt<(*BitLen/1000))) {
//possible good read
if (errCnt==0) break; //great read - finish
if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish
if (errCnt<bestErrCnt){ //set this as new best run
bestErrCnt=errCnt;
bestStart = iii;
}
}
}
if (iii>=gLen){ //exhausted test
//if there was a ok test go back to that one and re-run the best run (then dump after that run)
if (bestErrCnt < (*BitLen/1000)) iii=bestStart;
}
}
if (bitnum>16){
// PrintAndLog("Data start pos:%d, lastBit:%d, stop pos:%d, numBits:%d",iii,lastBit,i,bitnum);
//move BitStream back to GraphBuffer
//ClearGraph(0);
for (i=0; i < bitnum; ++i){
BinStream[i]=BitStream[i];
}
*BitLen=bitnum;
//RepaintGraphWindow();
//output
//if (errCnt>0){
// PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
//}
// PrintAndLog("ASK decoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
// printBitStream2(BitStream,bitnum);
// Em410xDecode(Cmd);
}
return errCnt;
}
//by marshmellow
//take 10 and 01 and manchester decode
//run through 2 times and take least errCnt
int manrawdemod(uint8_t * BitStream, int *bitLen)
{
uint8_t BitStream2[MAX_BitStream_LEN]={0};
int bitnum=0;
int errCnt =0;
int i=1;
int bestErr = 1000;
int bestRun = 0;
int finish = 0;
int ii=1;
for (ii=1;ii<3;++ii){
i=1;
for (i=i+ii;i<*bitLen-2;i+=2){
if(BitStream[i]==1 && (BitStream[i+1]==0)){
BitStream2[bitnum++]=0;
} else if((BitStream[i]==0)&& BitStream[i+1]==1){
BitStream2[bitnum++]=1;
} else {
BitStream2[bitnum++]=77;
errCnt++;
}
}
if (bestErr>errCnt){
bestErr=errCnt;
bestRun=ii;
}
if (ii>1 || finish==1) {
if (bestRun==ii) {
break;
} else{
ii=bestRun-1;
finish=1;
}
}
errCnt=0;
bitnum=0;
}
errCnt=bestErr;
if (errCnt<10){
for (i=0; i<bitnum;++i){
BitStream[i]=BitStream2[i];
}
*bitLen=bitnum;
}
return errCnt;
}
//by marshmellow
//takes 2 arguments - clock and invert both as integers
//attempts to demodulate ask only
//prints binary found and saves in graphbuffer for further commands
int askrawdemod(uint8_t *BinStream, int *bitLen,int *clk, int *invert)
{
uint32_t i;
// int invert=0; //invert default
int high = 0, low = 0;
*clk=DetectClock2(BinStream,*bitLen,*clk); //clock default
uint8_t BitStream[MAX_BitStream_LEN] = {0};
if (*clk<8) *clk =64;
if (*clk<32) *clk=32;
if (*invert != 0 && *invert != 1) *invert =0;
uint32_t initLoopMax = 1000;
if (initLoopMax>*bitLen) initLoopMax=*bitLen;
// Detect high and lows
for (i = 0; i < initLoopMax; ++i) //1000 samples should be plenty to find high and low values
{
if (BinStream[i] > high)
high = BinStream[i];
else if (BinStream[i] < low)
low = BinStream[i];
}
if ((high < 30) && ((high !=1)||(low !=-1))){ //throw away static - allow 1 and -1 (in case of threshold command first)
// PrintAndLog("no data found");
return -1;
}
//13% fuzz in case highs and lows aren't clipped [marshmellow]
high=(int)(0.75*high);
low=(int)(0.75*low);
//PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
int lastBit = 0; //set first clock check
uint32_t bitnum = 0; //output counter
uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
uint32_t iii = 0;
uint32_t gLen = *bitLen;
if (gLen > 500) gLen=500;
uint8_t errCnt =0;
uint32_t bestStart = *bitLen;
uint32_t bestErrCnt = (*bitLen/1000);
uint8_t midBit=0;
//PrintAndLog("DEBUG - lastbit - %d",lastBit);
//loop to find first wave that works
for (iii=0; iii < gLen; ++iii){
if ((BinStream[iii]>=high)||(BinStream[iii]<=low)){
lastBit=iii-*clk;
//loop through to see if this start location works
for (i = iii; i < *bitLen; ++i) {
if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){
lastBit+=*clk;
BitStream[bitnum] = *invert;
bitnum++;
midBit=0;
} else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){
//low found and we are expecting a bar
lastBit+=*clk;
BitStream[bitnum] = 1-*invert;
bitnum++;
midBit=0;
} else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
//mid bar?
midBit=1;
BitStream[bitnum]= 1-*invert;
bitnum++;
} else if ((BinStream[i]>=high)&&(midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
//mid bar?
midBit=1;
BitStream[bitnum]= *invert;
bitnum++;
} else if ((i-lastBit)>((*clk/2)+tol)&&(midBit==0)){
//no mid bar found
midBit=1;
BitStream[bitnum]= BitStream[bitnum-1];
bitnum++;
} else {
//mid value found or no bar supposed to be here
if ((i-lastBit)>(*clk+tol)){
//should have hit a high or low based on clock!!
//debug
//PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
if (bitnum > 0){
BitStream[bitnum]=77;
bitnum++;
}
errCnt++;
lastBit+=*clk;//skip over until hit too many errors
if (errCnt>((*bitLen/1000))){ //allow 1 error for every 1000 samples else start over
errCnt=0;
bitnum=0;//start over
break;
}
}
}
}
//we got more than 64 good bits and not all errors
if ((bitnum > (64+errCnt)) && (errCnt<(*bitLen/1000))) {
//possible good read
if (errCnt==0) break; //great read - finish
if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish
if (errCnt<bestErrCnt){ //set this as new best run
bestErrCnt=errCnt;
bestStart = iii;
}
}
}
if (iii>=gLen){ //exhausted test
//if there was a ok test go back to that one and re-run the best run (then dump after that run)
if (bestErrCnt < (*bitLen/1000)) iii=bestStart;
}
}
if (bitnum>16){
// PrintAndLog("Data start pos:%d, lastBit:%d, stop pos:%d, numBits:%d",iii,lastBit,i,bitnum);
//move BitStream back to BinStream
// ClearGraph(0);
for (i=0; i < bitnum; ++i){
BinStream[i]=BitStream[i];
}
*bitLen=bitnum;
// RepaintGraphWindow();
//output
// if (errCnt>0){
// PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
// }
// PrintAndLog("ASK decoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
// printBitStream2(BitStream,bitnum);
//int errCnt=0;
//errCnt=manrawdemod(BitStream,bitnum);
// Em410xDecode(Cmd);
} else return -1;
return errCnt;
}
//translate wave to 11111100000 (1 for each short wave 0 for each long wave)
size_t fsk_wave_demod2(uint8_t * dest, size_t size)
{
uint32_t last_transition = 0;
uint32_t idx = 1;
uint32_t maxVal=0;
// // we don't care about actual value, only if it's more or less than a
// // threshold essentially we capture zero crossings for later analysis
// we do care about the actual value as sometimes near the center of the
// wave we may get static that changes direction of wave for one value
// if our value is too low it might affect the read. and if our tag or
// antenna is weak a setting too high might not see anything. [marshmellow]
if (size<100) return 0;
for(idx=1; idx<100; idx++){
if(maxVal<dest[idx]) maxVal = dest[idx];
}
// set close to the top of the wave threshold with 13% margin for error
// less likely to get a false transition up there.
// (but have to be careful not to go too high and miss some short waves)
uint32_t threshold_value = (uint32_t)(maxVal*.87); idx=1;
//uint8_t threshold_value = 127;
// sync to first lo-hi transition, and threshold
// Need to threshold first sample
if(dest[0] < threshold_value) dest[0] = 0;
else dest[0] = 1;
size_t numBits = 0;
// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
// or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
for(idx = 1; idx < size; idx++) {
// threshold current value
if (dest[idx] < threshold_value) dest[idx] = 0;
else dest[idx] = 1;
// Check for 0->1 transition
if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
if (idx-last_transition<6){
//do nothing with extra garbage
} else if (idx-last_transition < 9) {
dest[numBits]=1;
} else {
dest[numBits]=0;
}
last_transition = idx;
numBits++;
}
}
return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
}
uint32_t myround2(float f)
{
if (f >= 2000) return 2000;//something bad happened
return (uint32_t) (f + (float)0.5);
}
//translate 11111100000 to 10
size_t aggregate_bits2(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value,
{
uint8_t lastval=dest[0];
uint32_t idx=0;
size_t numBits=0;
uint32_t n=1;
for( idx=1; idx < size; idx++) {
if (dest[idx]==lastval) {
n++;
continue;
}
//if lastval was 1, we have a 1->0 crossing
if ( dest[idx-1]==1 ) {
n=myround2((float)(n+1)/((float)(rfLen)/(float)8));
//n=(n+1) / h2l_crossing_value;
} else {// 0->1 crossing
n=myround2((float)(n+1)/((float)(rfLen-2)/(float)10));
//n=(n+1) / l2h_crossing_value;
}
if (n == 0) n = 1;
if(n < maxConsequtiveBits) //Consecutive
{
if(invert==0){ //invert bits
memset(dest+numBits, dest[idx-1] , n);
}else{
memset(dest+numBits, dest[idx-1]^1 , n);
}
numBits += n;
}
n=0;
lastval=dest[idx];
}//end for
return numBits;
}
//by marshmellow (from holiman's base)
// full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert)
{
//uint8_t h2l_crossing_value = 6;
//uint8_t l2h_crossing_value = 5;
// if (rfLen==64) //currently only know settings for RF/64 change from default if option entered
// {
// h2l_crossing_value=8; //or 8 as 64/8 = 8
// l2h_crossing_value=6; //or 6.4 as 64/10 = 6.4
// }
// size_t size = GraphTraceLen;
// FSK demodulator
size = fsk_wave_demod2(dest, size);
size = aggregate_bits2(dest, size,rfLen,192,invert);
// size = aggregate_bits(size, h2l_crossing_value, l2h_crossing_value,192, invert); //192=no limit to same values
//done messing with GraphBuffer - repaint
//RepaintGraphWindow();
return size;
}
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
{
size_t idx=0; //, found=0; //size=0,
// FSK demodulator
size = fskdemod(dest, size,50,0);
// final loop, go over previously decoded manchester data and decode into usable tag ID
// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
int numshifts = 0;
idx = 0;
//one scan
while( idx + sizeof(frame_marker_mask) < size) {
// search for a start of frame marker
if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{ // frame marker found
idx+=sizeof(frame_marker_mask);
while(dest[idx] != dest[idx+1] && idx < size-2)
{
// Keep going until next frame marker (or error)
// Shift in a bit. Start by shifting high registers
*hi2 = (*hi2<<1)|(*hi>>31);
*hi = (*hi<<1)|(*lo>>31);
//Then, shift in a 0 or one into low
if (dest[idx] && !dest[idx+1]) // 1 0
*lo=(*lo<<1)|0;
else // 0 1
*lo=(*lo<<1)|1;
numshifts++;
idx += 2;
}
// Hopefully, we read a tag and hit upon the next frame marker
if(idx + sizeof(frame_marker_mask) < size)
{
if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{
//good return
return idx;
}
}
// reset
*hi2 = *hi = *lo = 0;
numshifts = 0;
}else {
idx++;
}
}
return -1;
}
uint32_t bytebits_to_byte(uint8_t* src, int numbits)
{
uint32_t num = 0;
for(int i = 0 ; i < numbits ; i++)
{
num = (num << 1) | (*src);
src++;
}
return num;
}
int IOdemodFSK(uint8_t *dest, size_t size)
{
size_t idx=0;
//make sure buffer has data
if (size < 64) return -1;
//test samples are not just noise
uint8_t testMax=0;
for(idx=0;idx<64;idx++){
if (testMax<dest[idx]) testMax=dest[idx];
}
idx=0;
//if not just noise
if (testMax>170){
// FSK demodulator
size = fskdemod(dest, size,64,1);
//Index map
//0 10 20 30 40 50 60
//| | | | | | |
//01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
//-----------------------------------------------------------------------------
//00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
//
//XSF(version)facility:codeone+codetwo
//Handle the data
uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
for( idx=0; idx < (size - 74); idx++) {
if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
//frame marker found
if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){
//confirmed proper separator bits found
//return start position
return idx;
}
}
}
}
return 0;
}
// by marshmellow
// not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
// maybe somehow adjust peak trimming value based on samples to fix?
int DetectClock2(uint8_t dest[], size_t size, int clock)
{
int i=0;
int peak=0;
int low=0;
int clk[]={16,32,40,50,64,100,128,256};
for (;i<8;++i)
if (clk[i]==clock) return clock;
if (!peak){
for (i=0;i<size;++i){
if(dest[i]>peak){
peak = dest[i];
}
if(dest[i]<low){
low = dest[i];
}
}
peak=(int)(peak*.75);
low= (int)(low*.75);
}
int ii;
int loopCnt = 256;
if (size<loopCnt) loopCnt = size;
int clkCnt;
int tol = 0;
int bestErr=1000;
int errCnt[]={0,0,0,0,0,0,0,0};
for(clkCnt=0; clkCnt<6;++clkCnt){
if (clk[clkCnt]==32){
tol=1;
}else{
tol=0;
}
bestErr=1000;
for (ii=0; ii<loopCnt; ++ii){
if ((dest[ii]>=peak) || (dest[ii]<=low)){
errCnt[clkCnt]=0;
for (i=0; i<((int)(size/clk[clkCnt])-1); ++i){
if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
}else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){
}else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){
}else{ //error no peak detected
errCnt[clkCnt]++;
}
}
if(errCnt[clkCnt]==0) return clk[clkCnt];
if(errCnt[clkCnt]<bestErr) bestErr=errCnt[clkCnt];
}
}
errCnt[clkCnt]=bestErr;
}
int iii=0;
int best=0;
for (iii=0; iii<6;++iii){
if (errCnt[iii]<errCnt[best]){
best = iii;
}
}
return clk[best];
}

28
common/lfdemod.h Normal file
View file

@ -0,0 +1,28 @@
// Copyright (C) 2014
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Low frequency commands
//-----------------------------------------------------------------------------
#ifndef LFDEMOD_H__
#define LFDEMOD_H__
#include <stdint.h>
int DetectClock2(uint8_t dest[], size_t size, int clock);
int askmandemod(uint8_t *BinStream,uint32_t *BitLen,int *clk, int *invert);
uint64_t Em410xDecode(uint8_t BitStream[],uint32_t BitLen);
int manrawdemod(uint8_t *BitStream, int *bitLen);
int askrawdemod(uint8_t *BinStream, int *bitLen,int *clk, int *invert);
int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_t *lo);
int IOdemodFSK(uint8_t *dest, size_t size);
int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert);
uint32_t bytebits_to_byte(uint8_t* src, int numbits);
//
#define MAX_BitStream_LEN (1024*128)
//extern int BitStreamLen;
#endif