- improved reader sensitivity for 14443a cards (FPGA change!)

- implemented ISO 14443A anticollision loop
See http://www.proxmark.org/forum/viewtopic.php?id=1797 further details
This commit is contained in:
micki.held@gmx.de 2013-11-19 18:52:40 +00:00
commit e691fc45bc
9 changed files with 428 additions and 388 deletions

View file

@ -96,9 +96,9 @@ uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
int i;
uint32_t dwPar = 0;
// Generate the encrypted data
// Generate the parity bits
for (i = 0; i < iLen; i++) {
// Save the encrypted parity bit
// and save them to a 32Bit word
dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
}
return dwPar;
@ -375,196 +375,176 @@ static RAMFUNC int MillerDecoding(int bit)
}
//=============================================================================
// ISO 14443 Type A - Manchester
// ISO 14443 Type A - Manchester decoder
//=============================================================================
// Basics:
// The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
// at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
// ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
// The Manchester decoder needs to identify the following sequences:
// 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
// 8 ticks unmodulated: Sequence F = end of communication
// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
// Note 1: the bitstream may start at any time (either in first or second nibble within the parameter bit). We therefore need to sync.
// Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
static tDemod Demod;
static RAMFUNC int ManchesterDecoding(int v)
inline RAMFUNC bool IsModulation(byte_t b)
{
int bit;
int modulation;
//int error = 0;
if (b >= 5 || b == 3) // majority decision: 2 or more bits are set
return true;
else
return false;
}
if(!Demod.buff) {
Demod.buff = 1;
Demod.buffer = v;
return FALSE;
}
else {
bit = Demod.buffer;
Demod.buffer = v;
}
inline RAMFUNC bool IsModulationNibble1(byte_t b)
{
return IsModulation((b & 0xE0) >> 5);
}
if(Demod.state==DEMOD_UNSYNCD) {
Demod.output[Demod.len] = 0xfa;
Demod.syncBit = 0;
//Demod.samples = 0;
Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
inline RAMFUNC bool IsModulationNibble2(byte_t b)
{
return IsModulation((b & 0x0E) >> 1);
}
if(bit & 0x08) {
Demod.syncBit = 0x08;
}
static RAMFUNC int ManchesterDecoding(int bit, uint16_t offset)
{
switch (Demod.state) {
if(bit & 0x04) {
if(Demod.syncBit) {
bit <<= 4;
}
Demod.syncBit = 0x04;
}
if(bit & 0x02) {
if(Demod.syncBit) {
bit <<= 2;
}
Demod.syncBit = 0x02;
}
if(bit & 0x01 && Demod.syncBit) {
Demod.syncBit = 0x01;
}
if(Demod.syncBit) {
Demod.len = 0;
Demod.state = DEMOD_START_OF_COMMUNICATION;
Demod.sub = SUB_FIRST_HALF;
Demod.bitCount = 0;
Demod.shiftReg = 0;
Demod.parityBits = 0;
Demod.samples = 0;
if(Demod.posCount) {
case DEMOD_UNSYNCD: // not yet synced
Demod.len = 0; // initialize number of decoded data bytes
Demod.bitCount = offset; // initialize number of decoded data bits
Demod.shiftReg = 0; // initialize shiftreg to hold decoded data bits
Demod.parityBits = 0; // initialize parity bits
Demod.collisionPos = 0; // Position of collision bit
if (IsModulationNibble1(bit)
&& !IsModulationNibble2(bit)) { // this is the start bit
Demod.samples = 8;
if(trigger) LED_A_OFF();
switch(Demod.syncBit) {
case 0x08: Demod.samples = 3; break;
case 0x04: Demod.samples = 2; break;
case 0x02: Demod.samples = 1; break;
case 0x01: Demod.samples = 0; break;
Demod.state = DEMOD_MANCHESTER_DATA;
} else if (!IsModulationNibble1(bit) && IsModulationNibble2(bit)) { // this may be the first half of the start bit
Demod.samples = 4;
Demod.state = DEMOD_HALF_SYNCD;
}
break;
case DEMOD_HALF_SYNCD:
Demod.samples += 8;
if (IsModulationNibble1(bit)) { // error: this was not a start bit.
Demod.state = DEMOD_UNSYNCD;
} else {
if (IsModulationNibble2(bit)) { // modulation in first half
Demod.state = DEMOD_MOD_FIRST_HALF;
} else { // no modulation in first half
Demod.state = DEMOD_NOMOD_FIRST_HALF;
}
}
//error = 0;
}
}
else {
//modulation = bit & Demod.syncBit;
modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
Demod.samples += 4;
if(Demod.posCount==0) {
Demod.posCount = 1;
if(modulation) {
Demod.sub = SUB_FIRST_HALF;
}
else {
Demod.sub = SUB_NONE;
}
}
else {
Demod.posCount = 0;
if(modulation && (Demod.sub == SUB_FIRST_HALF)) {
if(Demod.state!=DEMOD_ERROR_WAIT) {
Demod.state = DEMOD_ERROR_WAIT;
Demod.output[Demod.len] = 0xaa;
//error = 0x01;
break;
case DEMOD_MOD_FIRST_HALF:
Demod.samples += 8;
Demod.bitCount++;
if (IsModulationNibble1(bit)) { // modulation in both halfs - collision
if (!Demod.collisionPos) {
Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
}
}
else if(modulation) {
Demod.sub = SUB_SECOND_HALF;
}
switch(Demod.state) {
case DEMOD_START_OF_COMMUNICATION:
if(Demod.sub == SUB_FIRST_HALF) {
Demod.state = DEMOD_MANCHESTER_D;
}
else {
Demod.output[Demod.len] = 0xab;
Demod.state = DEMOD_ERROR_WAIT;
//error = 0x02;
}
break;
case DEMOD_MANCHESTER_D:
case DEMOD_MANCHESTER_E:
if(Demod.sub == SUB_FIRST_HALF) {
Demod.bitCount++;
Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
Demod.state = DEMOD_MANCHESTER_D;
}
else if(Demod.sub == SUB_SECOND_HALF) {
Demod.bitCount++;
Demod.shiftReg >>= 1;
Demod.state = DEMOD_MANCHESTER_E;
}
else {
Demod.state = DEMOD_MANCHESTER_F;
}
break;
case DEMOD_MANCHESTER_F:
// Tag response does not need to be a complete byte!
if(Demod.len > 0 || Demod.bitCount > 0) {
if(Demod.bitCount > 0) {
Demod.shiftReg >>= (9 - Demod.bitCount);
Demod.output[Demod.len] = Demod.shiftReg & 0xff;
Demod.len++;
// No parity bit, so just shift a 0
Demod.parityBits <<= 1;
}
Demod.state = DEMOD_UNSYNCD;
return TRUE;
}
else {
Demod.output[Demod.len] = 0xad;
Demod.state = DEMOD_ERROR_WAIT;
//error = 0x03;
}
break;
case DEMOD_ERROR_WAIT:
Demod.state = DEMOD_UNSYNCD;
break;
default:
Demod.output[Demod.len] = 0xdd;
Demod.state = DEMOD_UNSYNCD;
break;
}
if(Demod.bitCount>=9) {
Demod.output[Demod.len] = Demod.shiftReg & 0xff;
Demod.len++;
Demod.parityBits <<= 1;
Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
} // modulation in first half only - Sequence D = 1
Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
Demod.parityBits <<= 1; // make room for the parity bit
Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
Demod.bitCount = 0;
Demod.shiftReg = 0;
}
if (IsModulationNibble2(bit)) { // modulation in first half
Demod.state = DEMOD_MOD_FIRST_HALF;
} else { // no modulation in first half
Demod.state = DEMOD_NOMOD_FIRST_HALF;
}
break;
/*if(error) {
Demod.output[Demod.len] = 0xBB;
Demod.len++;
Demod.output[Demod.len] = error & 0xFF;
Demod.len++;
Demod.output[Demod.len] = 0xBB;
Demod.len++;
Demod.output[Demod.len] = bit & 0xFF;
Demod.len++;
Demod.output[Demod.len] = Demod.buffer & 0xFF;
Demod.len++;
Demod.output[Demod.len] = Demod.syncBit & 0xFF;
Demod.len++;
Demod.output[Demod.len] = 0xBB;
Demod.len++;
return TRUE;
}*/
}
case DEMOD_NOMOD_FIRST_HALF:
if (IsModulationNibble1(bit)) { // modulation in second half only - Sequence E = 0
Demod.bitCount++;
Demod.samples += 8;
Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
Demod.parityBits <<= 1; // make room for the new parity bit
Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
Demod.bitCount = 0;
Demod.shiftReg = 0;
}
} else { // no modulation in both halves - End of communication
Demod.samples += 4;
if(Demod.bitCount > 0) { // if we decoded bits
Demod.shiftReg >>= (9 - Demod.bitCount); // add the remaining decoded bits to the output
Demod.output[Demod.len++] = Demod.shiftReg & 0xff;
// No parity bit, so just shift a 0
Demod.parityBits <<= 1;
}
Demod.state = DEMOD_UNSYNCD; // start from the beginning
return TRUE; // we are finished with decoding the raw data sequence
}
if (IsModulationNibble2(bit)) { // modulation in first half
Demod.state = DEMOD_MOD_FIRST_HALF;
} else { // no modulation in first half
Demod.state = DEMOD_NOMOD_FIRST_HALF;
}
break;
} // end (state != UNSYNCED)
case DEMOD_MANCHESTER_DATA:
Demod.samples += 8;
if (IsModulationNibble1(bit)) { // modulation in first half
if (IsModulationNibble2(bit) & 0x0f) { // ... and in second half = collision
if (!Demod.collisionPos) {
Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
}
} // modulation in first half only - Sequence D = 1
Demod.bitCount++;
Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
Demod.parityBits <<= 1; // make room for the parity bit
Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
Demod.bitCount = 0;
Demod.shiftReg = 0;
}
} else { // no modulation in first half
if (IsModulationNibble2(bit)) { // and modulation in second half = Sequence E = 0
Demod.bitCount++;
Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
Demod.parityBits <<= 1; // make room for the new parity bit
Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
Demod.bitCount = 0;
Demod.shiftReg = 0;
}
} else { // no modulation in both halves - End of communication
if(Demod.bitCount > 0) { // if we decoded bits
Demod.shiftReg >>= (9 - Demod.bitCount); // add the remaining decoded bits to the output
Demod.output[Demod.len++] = Demod.shiftReg & 0xff;
// No parity bit, so just shift a 0
Demod.parityBits <<= 1;
}
Demod.state = DEMOD_UNSYNCD; // start from the beginning
return TRUE; // we are finished with decoding the raw data sequence
}
}
}
return FALSE;
return FALSE; // not finished yet, need more data
}
//=============================================================================
@ -691,7 +671,7 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
LED_B_OFF();
}
if(ManchesterDecoding(data[0] & 0x0F)) {
if(ManchesterDecoding(data[0], 0)) {
LED_B_ON();
if (!LogTrace(receivedResponse, Demod.len, 0 - Demod.samples, Demod.parityBits, FALSE)) break;
@ -1296,7 +1276,7 @@ static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing)
while(GetCountMifare() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
}
for(c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission)
for(c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission?)
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x00;
c++;
@ -1558,13 +1538,12 @@ int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){
//-----------------------------------------------------------------------------
// Wait a certain time for tag response
// If a response is captured return TRUE
// If it takes to long return FALSE
// If it takes too long return FALSE
//-----------------------------------------------------------------------------
static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, int maxLen, int *samples)
{
// buffer needs to be 512 bytes
int c;
// Set FPGA mode to "reader listen mode", no modulation (listen
// only, since we are receiving, not transmitting).
// Signal field is on with the appropriate LED
@ -1577,7 +1556,6 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int
Demod.state = DEMOD_UNSYNCD;
uint8_t b;
if (elapsed) *elapsed = 0;
c = 0;
for(;;) {
@ -1590,12 +1568,8 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
if(c < iso14a_timeout) { c++; } else { return FALSE; }
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
if(ManchesterDecoding((b>>4) & 0xf)) {
*samples = ((c - 1) << 3) + 4;
return TRUE;
}
if(ManchesterDecoding(b & 0x0f)) {
*samples = c << 3;
if(ManchesterDecoding(b, offset)) {
*samples = Demod.samples;
return TRUE;
}
}
@ -1607,12 +1581,12 @@ void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *tim
CodeIso14443aBitsAsReaderPar(frame,bits,par);
// Select the card
// Send command to tag
TransmitFor14443a(ToSend, ToSendMax, timing);
if(trigger)
LED_A_ON();
// Store reader command in buffer
// Log reader command in trace buffer
if (tracing) LogTrace(frame,nbytes(bits),0,par,TRUE);
}
@ -1621,38 +1595,49 @@ void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par, uint32_t *timing)
ReaderTransmitBitsPar(frame,len*8,par, timing);
}
void ReaderTransmitBits(uint8_t* frame, int len, uint32_t *timing)
{
// Generate parity and redirect
ReaderTransmitBitsPar(frame,len,GetParity(frame,len/8), timing);
}
void ReaderTransmit(uint8_t* frame, int len, uint32_t *timing)
{
// Generate parity and redirect
ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len), timing);
}
int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset)
{
int samples = 0;
if (!GetIso14443aAnswerFromTag(receivedAnswer,offset,160,&samples)) return FALSE;
if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
if(samples == 0) return FALSE;
return Demod.len;
}
int ReaderReceive(uint8_t* receivedAnswer)
{
int samples = 0;
if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE;
if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
if(samples == 0) return FALSE;
return Demod.len;
return ReaderReceiveOffset(receivedAnswer, 0);
}
int ReaderReceivePar(uint8_t* receivedAnswer, uint32_t * parptr)
int ReaderReceivePar(uint8_t *receivedAnswer, uint32_t *parptr)
{
int samples = 0;
if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE;
if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
int samples = 0;
if (!GetIso14443aAnswerFromTag(receivedAnswer,0,160,&samples)) return FALSE;
if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
*parptr = Demod.parityBits;
if(samples == 0) return FALSE;
return Demod.len;
if(samples == 0) return FALSE;
return Demod.len;
}
/* performs iso14443a anticolision procedure
/* performs iso14443a anticollision procedure
* fills the uid pointer unless NULL
* fills resp_data unless NULL */
int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, uint32_t* cuid_ptr) {
uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
uint8_t sel_all[] = { 0x93,0x20 };
uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
uint8_t* resp = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); // was 3560 - tied to other size changes
byte_t uid_resp[4];
@ -1666,7 +1651,7 @@ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, u
ReaderTransmitBitsPar(wupa,7,0, NULL);
// Receive the ATQA
if(!ReaderReceive(resp)) return 0;
// Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
// Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
if(p_hi14a_card) {
memcpy(p_hi14a_card->atqa, resp, 2);
@ -1690,19 +1675,50 @@ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, u
ReaderTransmit(sel_all,sizeof(sel_all), NULL);
if (!ReaderReceive(resp)) return 0;
// First backup the current uid
memcpy(uid_resp,resp,4);
uid_resp_len = 4;
if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
memset(uid_resp, 0, 4);
uint16_t uid_resp_bits = 0;
uint16_t collision_answer_offset = 0;
// anti-collision-loop:
while (Demod.collisionPos) {
Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
uid_resp[uid_resp_bits & 0xf8] |= UIDbit << (uid_resp_bits % 8);
}
uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
uid_resp_bits++;
// construct anticollosion command:
sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
sel_uid[2+i] = uid_resp[i];
}
collision_answer_offset = uid_resp_bits%8;
ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
if (!ReaderReceiveOffset(resp, collision_answer_offset)) return 0;
}
// finally, add the last bits and BCC of the UID
for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
}
} else { // no collision, use the response to SELECT_ALL as current uid
memcpy(uid_resp,resp,4);
}
uid_resp_len = 4;
// Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
// calculate crypto UID. Always use last 4 Bytes.
// calculate crypto UID. Always use last 4 Bytes.
if(cuid_ptr) {
*cuid_ptr = bytes_to_num(uid_resp, 4);
}
// Construct SELECT UID command
memcpy(sel_uid+2,resp,5);
AppendCrc14443a(sel_uid,7);
sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
memcpy(sel_uid+2,uid_resp,4); // the UID
sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
AppendCrc14443a(sel_uid,7); // calculate and add CRC
ReaderTransmit(sel_uid,sizeof(sel_uid), NULL);
// Receive the SAK
@ -1710,7 +1726,7 @@ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, u
sak = resp[0];
// Test if more parts of the uid are comming
if ((sak & 0x04) && uid_resp[0] == 0x88) {
if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
// Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
// http://www.nxp.com/documents/application_note/AN10927.pdf
memcpy(uid_resp, uid_resp + 1, 3);
@ -1769,6 +1785,7 @@ void iso14443a_setup() {
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
SpinDelay(7); // iso14443-3 specifies 5ms max.
Demod.state = DEMOD_UNSYNCD;
iso14a_timeout = 2048; //default
}
@ -1815,6 +1832,7 @@ void ReaderIso14443a(UsbCommand * c)
if(param & ISO14A_CONNECT) {
iso14a_clear_trace();
}
iso14a_set_tracing(true);
if(param & ISO14A_REQUEST_TRIGGER) {
@ -1976,8 +1994,6 @@ void ReaderMifare(bool first_try)
//keep the card active
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
// CodeIso14443aBitsAsReaderPar(mf_auth, sizeof(mf_auth)*8, GetParity(mf_auth, sizeof(mf_auth)*8));
sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
catch_up_cycles = 0;
@ -2645,7 +2661,7 @@ void RAMFUNC SniffMifare(uint8_t param) {
Demod.state = DEMOD_UNSYNCD;
}
if(ManchesterDecoding(data[0] & 0x0F)) {
if(ManchesterDecoding(data[0], 0)) {
LED_C_INV();
if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break;