mirror of
https://github.com/Proxmark/proxmark3.git
synced 2025-08-21 05:43:23 -07:00
- improved reader sensitivity for 14443a cards (FPGA change!)
- implemented ISO 14443A anticollision loop See http://www.proxmark.org/forum/viewtopic.php?id=1797 further details
This commit is contained in:
parent
6cacefa48d
commit
e691fc45bc
9 changed files with 428 additions and 388 deletions
|
@ -96,9 +96,9 @@ uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
|
|||
int i;
|
||||
uint32_t dwPar = 0;
|
||||
|
||||
// Generate the encrypted data
|
||||
// Generate the parity bits
|
||||
for (i = 0; i < iLen; i++) {
|
||||
// Save the encrypted parity bit
|
||||
// and save them to a 32Bit word
|
||||
dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
|
||||
}
|
||||
return dwPar;
|
||||
|
@ -375,196 +375,176 @@ static RAMFUNC int MillerDecoding(int bit)
|
|||
}
|
||||
|
||||
//=============================================================================
|
||||
// ISO 14443 Type A - Manchester
|
||||
// ISO 14443 Type A - Manchester decoder
|
||||
//=============================================================================
|
||||
// Basics:
|
||||
// The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
|
||||
// at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
|
||||
// ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
|
||||
// The Manchester decoder needs to identify the following sequences:
|
||||
// 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
|
||||
// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
|
||||
// 8 ticks unmodulated: Sequence F = end of communication
|
||||
// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
|
||||
// Note 1: the bitstream may start at any time (either in first or second nibble within the parameter bit). We therefore need to sync.
|
||||
// Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
|
||||
static tDemod Demod;
|
||||
|
||||
static RAMFUNC int ManchesterDecoding(int v)
|
||||
inline RAMFUNC bool IsModulation(byte_t b)
|
||||
{
|
||||
int bit;
|
||||
int modulation;
|
||||
//int error = 0;
|
||||
if (b >= 5 || b == 3) // majority decision: 2 or more bits are set
|
||||
return true;
|
||||
else
|
||||
return false;
|
||||
|
||||
}
|
||||
|
||||
if(!Demod.buff) {
|
||||
Demod.buff = 1;
|
||||
Demod.buffer = v;
|
||||
return FALSE;
|
||||
}
|
||||
else {
|
||||
bit = Demod.buffer;
|
||||
Demod.buffer = v;
|
||||
}
|
||||
inline RAMFUNC bool IsModulationNibble1(byte_t b)
|
||||
{
|
||||
return IsModulation((b & 0xE0) >> 5);
|
||||
}
|
||||
|
||||
if(Demod.state==DEMOD_UNSYNCD) {
|
||||
Demod.output[Demod.len] = 0xfa;
|
||||
Demod.syncBit = 0;
|
||||
//Demod.samples = 0;
|
||||
Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
|
||||
inline RAMFUNC bool IsModulationNibble2(byte_t b)
|
||||
{
|
||||
return IsModulation((b & 0x0E) >> 1);
|
||||
}
|
||||
|
||||
if(bit & 0x08) {
|
||||
Demod.syncBit = 0x08;
|
||||
}
|
||||
static RAMFUNC int ManchesterDecoding(int bit, uint16_t offset)
|
||||
{
|
||||
|
||||
switch (Demod.state) {
|
||||
|
||||
if(bit & 0x04) {
|
||||
if(Demod.syncBit) {
|
||||
bit <<= 4;
|
||||
}
|
||||
Demod.syncBit = 0x04;
|
||||
}
|
||||
|
||||
if(bit & 0x02) {
|
||||
if(Demod.syncBit) {
|
||||
bit <<= 2;
|
||||
}
|
||||
Demod.syncBit = 0x02;
|
||||
}
|
||||
|
||||
if(bit & 0x01 && Demod.syncBit) {
|
||||
Demod.syncBit = 0x01;
|
||||
}
|
||||
|
||||
if(Demod.syncBit) {
|
||||
Demod.len = 0;
|
||||
Demod.state = DEMOD_START_OF_COMMUNICATION;
|
||||
Demod.sub = SUB_FIRST_HALF;
|
||||
Demod.bitCount = 0;
|
||||
Demod.shiftReg = 0;
|
||||
Demod.parityBits = 0;
|
||||
Demod.samples = 0;
|
||||
if(Demod.posCount) {
|
||||
case DEMOD_UNSYNCD: // not yet synced
|
||||
Demod.len = 0; // initialize number of decoded data bytes
|
||||
Demod.bitCount = offset; // initialize number of decoded data bits
|
||||
Demod.shiftReg = 0; // initialize shiftreg to hold decoded data bits
|
||||
Demod.parityBits = 0; // initialize parity bits
|
||||
Demod.collisionPos = 0; // Position of collision bit
|
||||
|
||||
if (IsModulationNibble1(bit)
|
||||
&& !IsModulationNibble2(bit)) { // this is the start bit
|
||||
Demod.samples = 8;
|
||||
if(trigger) LED_A_OFF();
|
||||
switch(Demod.syncBit) {
|
||||
case 0x08: Demod.samples = 3; break;
|
||||
case 0x04: Demod.samples = 2; break;
|
||||
case 0x02: Demod.samples = 1; break;
|
||||
case 0x01: Demod.samples = 0; break;
|
||||
Demod.state = DEMOD_MANCHESTER_DATA;
|
||||
} else if (!IsModulationNibble1(bit) && IsModulationNibble2(bit)) { // this may be the first half of the start bit
|
||||
Demod.samples = 4;
|
||||
Demod.state = DEMOD_HALF_SYNCD;
|
||||
}
|
||||
break;
|
||||
|
||||
|
||||
case DEMOD_HALF_SYNCD:
|
||||
Demod.samples += 8;
|
||||
if (IsModulationNibble1(bit)) { // error: this was not a start bit.
|
||||
Demod.state = DEMOD_UNSYNCD;
|
||||
} else {
|
||||
if (IsModulationNibble2(bit)) { // modulation in first half
|
||||
Demod.state = DEMOD_MOD_FIRST_HALF;
|
||||
} else { // no modulation in first half
|
||||
Demod.state = DEMOD_NOMOD_FIRST_HALF;
|
||||
}
|
||||
}
|
||||
//error = 0;
|
||||
}
|
||||
}
|
||||
else {
|
||||
//modulation = bit & Demod.syncBit;
|
||||
modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
|
||||
|
||||
Demod.samples += 4;
|
||||
|
||||
if(Demod.posCount==0) {
|
||||
Demod.posCount = 1;
|
||||
if(modulation) {
|
||||
Demod.sub = SUB_FIRST_HALF;
|
||||
}
|
||||
else {
|
||||
Demod.sub = SUB_NONE;
|
||||
}
|
||||
}
|
||||
else {
|
||||
Demod.posCount = 0;
|
||||
if(modulation && (Demod.sub == SUB_FIRST_HALF)) {
|
||||
if(Demod.state!=DEMOD_ERROR_WAIT) {
|
||||
Demod.state = DEMOD_ERROR_WAIT;
|
||||
Demod.output[Demod.len] = 0xaa;
|
||||
//error = 0x01;
|
||||
break;
|
||||
|
||||
|
||||
case DEMOD_MOD_FIRST_HALF:
|
||||
Demod.samples += 8;
|
||||
Demod.bitCount++;
|
||||
if (IsModulationNibble1(bit)) { // modulation in both halfs - collision
|
||||
if (!Demod.collisionPos) {
|
||||
Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
|
||||
}
|
||||
}
|
||||
else if(modulation) {
|
||||
Demod.sub = SUB_SECOND_HALF;
|
||||
}
|
||||
|
||||
switch(Demod.state) {
|
||||
case DEMOD_START_OF_COMMUNICATION:
|
||||
if(Demod.sub == SUB_FIRST_HALF) {
|
||||
Demod.state = DEMOD_MANCHESTER_D;
|
||||
}
|
||||
else {
|
||||
Demod.output[Demod.len] = 0xab;
|
||||
Demod.state = DEMOD_ERROR_WAIT;
|
||||
//error = 0x02;
|
||||
}
|
||||
break;
|
||||
|
||||
case DEMOD_MANCHESTER_D:
|
||||
case DEMOD_MANCHESTER_E:
|
||||
if(Demod.sub == SUB_FIRST_HALF) {
|
||||
Demod.bitCount++;
|
||||
Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
|
||||
Demod.state = DEMOD_MANCHESTER_D;
|
||||
}
|
||||
else if(Demod.sub == SUB_SECOND_HALF) {
|
||||
Demod.bitCount++;
|
||||
Demod.shiftReg >>= 1;
|
||||
Demod.state = DEMOD_MANCHESTER_E;
|
||||
}
|
||||
else {
|
||||
Demod.state = DEMOD_MANCHESTER_F;
|
||||
}
|
||||
break;
|
||||
|
||||
case DEMOD_MANCHESTER_F:
|
||||
// Tag response does not need to be a complete byte!
|
||||
if(Demod.len > 0 || Demod.bitCount > 0) {
|
||||
if(Demod.bitCount > 0) {
|
||||
Demod.shiftReg >>= (9 - Demod.bitCount);
|
||||
Demod.output[Demod.len] = Demod.shiftReg & 0xff;
|
||||
Demod.len++;
|
||||
// No parity bit, so just shift a 0
|
||||
Demod.parityBits <<= 1;
|
||||
}
|
||||
|
||||
Demod.state = DEMOD_UNSYNCD;
|
||||
return TRUE;
|
||||
}
|
||||
else {
|
||||
Demod.output[Demod.len] = 0xad;
|
||||
Demod.state = DEMOD_ERROR_WAIT;
|
||||
//error = 0x03;
|
||||
}
|
||||
break;
|
||||
|
||||
case DEMOD_ERROR_WAIT:
|
||||
Demod.state = DEMOD_UNSYNCD;
|
||||
break;
|
||||
|
||||
default:
|
||||
Demod.output[Demod.len] = 0xdd;
|
||||
Demod.state = DEMOD_UNSYNCD;
|
||||
break;
|
||||
}
|
||||
|
||||
if(Demod.bitCount>=9) {
|
||||
Demod.output[Demod.len] = Demod.shiftReg & 0xff;
|
||||
Demod.len++;
|
||||
|
||||
Demod.parityBits <<= 1;
|
||||
Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
|
||||
|
||||
} // modulation in first half only - Sequence D = 1
|
||||
Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
|
||||
if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
|
||||
Demod.parityBits <<= 1; // make room for the parity bit
|
||||
Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
|
||||
Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
|
||||
Demod.bitCount = 0;
|
||||
Demod.shiftReg = 0;
|
||||
}
|
||||
if (IsModulationNibble2(bit)) { // modulation in first half
|
||||
Demod.state = DEMOD_MOD_FIRST_HALF;
|
||||
} else { // no modulation in first half
|
||||
Demod.state = DEMOD_NOMOD_FIRST_HALF;
|
||||
}
|
||||
break;
|
||||
|
||||
/*if(error) {
|
||||
Demod.output[Demod.len] = 0xBB;
|
||||
Demod.len++;
|
||||
Demod.output[Demod.len] = error & 0xFF;
|
||||
Demod.len++;
|
||||
Demod.output[Demod.len] = 0xBB;
|
||||
Demod.len++;
|
||||
Demod.output[Demod.len] = bit & 0xFF;
|
||||
Demod.len++;
|
||||
Demod.output[Demod.len] = Demod.buffer & 0xFF;
|
||||
Demod.len++;
|
||||
Demod.output[Demod.len] = Demod.syncBit & 0xFF;
|
||||
Demod.len++;
|
||||
Demod.output[Demod.len] = 0xBB;
|
||||
Demod.len++;
|
||||
return TRUE;
|
||||
}*/
|
||||
|
||||
}
|
||||
case DEMOD_NOMOD_FIRST_HALF:
|
||||
if (IsModulationNibble1(bit)) { // modulation in second half only - Sequence E = 0
|
||||
Demod.bitCount++;
|
||||
Demod.samples += 8;
|
||||
Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
|
||||
if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
|
||||
Demod.parityBits <<= 1; // make room for the new parity bit
|
||||
Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
|
||||
Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
|
||||
Demod.bitCount = 0;
|
||||
Demod.shiftReg = 0;
|
||||
}
|
||||
} else { // no modulation in both halves - End of communication
|
||||
Demod.samples += 4;
|
||||
if(Demod.bitCount > 0) { // if we decoded bits
|
||||
Demod.shiftReg >>= (9 - Demod.bitCount); // add the remaining decoded bits to the output
|
||||
Demod.output[Demod.len++] = Demod.shiftReg & 0xff;
|
||||
// No parity bit, so just shift a 0
|
||||
Demod.parityBits <<= 1;
|
||||
}
|
||||
Demod.state = DEMOD_UNSYNCD; // start from the beginning
|
||||
return TRUE; // we are finished with decoding the raw data sequence
|
||||
}
|
||||
if (IsModulationNibble2(bit)) { // modulation in first half
|
||||
Demod.state = DEMOD_MOD_FIRST_HALF;
|
||||
} else { // no modulation in first half
|
||||
Demod.state = DEMOD_NOMOD_FIRST_HALF;
|
||||
}
|
||||
break;
|
||||
|
||||
|
||||
} // end (state != UNSYNCED)
|
||||
case DEMOD_MANCHESTER_DATA:
|
||||
Demod.samples += 8;
|
||||
if (IsModulationNibble1(bit)) { // modulation in first half
|
||||
if (IsModulationNibble2(bit) & 0x0f) { // ... and in second half = collision
|
||||
if (!Demod.collisionPos) {
|
||||
Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
|
||||
}
|
||||
} // modulation in first half only - Sequence D = 1
|
||||
Demod.bitCount++;
|
||||
Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
|
||||
if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
|
||||
Demod.parityBits <<= 1; // make room for the parity bit
|
||||
Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
|
||||
Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
|
||||
Demod.bitCount = 0;
|
||||
Demod.shiftReg = 0;
|
||||
}
|
||||
} else { // no modulation in first half
|
||||
if (IsModulationNibble2(bit)) { // and modulation in second half = Sequence E = 0
|
||||
Demod.bitCount++;
|
||||
Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
|
||||
if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
|
||||
Demod.parityBits <<= 1; // make room for the new parity bit
|
||||
Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
|
||||
Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
|
||||
Demod.bitCount = 0;
|
||||
Demod.shiftReg = 0;
|
||||
}
|
||||
} else { // no modulation in both halves - End of communication
|
||||
if(Demod.bitCount > 0) { // if we decoded bits
|
||||
Demod.shiftReg >>= (9 - Demod.bitCount); // add the remaining decoded bits to the output
|
||||
Demod.output[Demod.len++] = Demod.shiftReg & 0xff;
|
||||
// No parity bit, so just shift a 0
|
||||
Demod.parityBits <<= 1;
|
||||
}
|
||||
Demod.state = DEMOD_UNSYNCD; // start from the beginning
|
||||
return TRUE; // we are finished with decoding the raw data sequence
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
return FALSE;
|
||||
return FALSE; // not finished yet, need more data
|
||||
}
|
||||
|
||||
//=============================================================================
|
||||
|
@ -691,7 +671,7 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
|
|||
LED_B_OFF();
|
||||
}
|
||||
|
||||
if(ManchesterDecoding(data[0] & 0x0F)) {
|
||||
if(ManchesterDecoding(data[0], 0)) {
|
||||
LED_B_ON();
|
||||
|
||||
if (!LogTrace(receivedResponse, Demod.len, 0 - Demod.samples, Demod.parityBits, FALSE)) break;
|
||||
|
@ -1296,7 +1276,7 @@ static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing)
|
|||
while(GetCountMifare() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
|
||||
}
|
||||
|
||||
for(c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission)
|
||||
for(c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission?)
|
||||
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
||||
AT91C_BASE_SSC->SSC_THR = 0x00;
|
||||
c++;
|
||||
|
@ -1558,13 +1538,12 @@ int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){
|
|||
//-----------------------------------------------------------------------------
|
||||
// Wait a certain time for tag response
|
||||
// If a response is captured return TRUE
|
||||
// If it takes to long return FALSE
|
||||
// If it takes too long return FALSE
|
||||
//-----------------------------------------------------------------------------
|
||||
static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
|
||||
static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, int maxLen, int *samples)
|
||||
{
|
||||
// buffer needs to be 512 bytes
|
||||
int c;
|
||||
|
||||
|
||||
// Set FPGA mode to "reader listen mode", no modulation (listen
|
||||
// only, since we are receiving, not transmitting).
|
||||
// Signal field is on with the appropriate LED
|
||||
|
@ -1577,7 +1556,6 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int
|
|||
Demod.state = DEMOD_UNSYNCD;
|
||||
|
||||
uint8_t b;
|
||||
if (elapsed) *elapsed = 0;
|
||||
|
||||
c = 0;
|
||||
for(;;) {
|
||||
|
@ -1590,12 +1568,8 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int
|
|||
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
||||
if(c < iso14a_timeout) { c++; } else { return FALSE; }
|
||||
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
||||
if(ManchesterDecoding((b>>4) & 0xf)) {
|
||||
*samples = ((c - 1) << 3) + 4;
|
||||
return TRUE;
|
||||
}
|
||||
if(ManchesterDecoding(b & 0x0f)) {
|
||||
*samples = c << 3;
|
||||
if(ManchesterDecoding(b, offset)) {
|
||||
*samples = Demod.samples;
|
||||
return TRUE;
|
||||
}
|
||||
}
|
||||
|
@ -1607,12 +1581,12 @@ void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *tim
|
|||
|
||||
CodeIso14443aBitsAsReaderPar(frame,bits,par);
|
||||
|
||||
// Select the card
|
||||
// Send command to tag
|
||||
TransmitFor14443a(ToSend, ToSendMax, timing);
|
||||
if(trigger)
|
||||
LED_A_ON();
|
||||
|
||||
// Store reader command in buffer
|
||||
// Log reader command in trace buffer
|
||||
if (tracing) LogTrace(frame,nbytes(bits),0,par,TRUE);
|
||||
}
|
||||
|
||||
|
@ -1621,38 +1595,49 @@ void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par, uint32_t *timing)
|
|||
ReaderTransmitBitsPar(frame,len*8,par, timing);
|
||||
}
|
||||
|
||||
void ReaderTransmitBits(uint8_t* frame, int len, uint32_t *timing)
|
||||
{
|
||||
// Generate parity and redirect
|
||||
ReaderTransmitBitsPar(frame,len,GetParity(frame,len/8), timing);
|
||||
}
|
||||
|
||||
void ReaderTransmit(uint8_t* frame, int len, uint32_t *timing)
|
||||
{
|
||||
// Generate parity and redirect
|
||||
ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len), timing);
|
||||
}
|
||||
|
||||
int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset)
|
||||
{
|
||||
int samples = 0;
|
||||
if (!GetIso14443aAnswerFromTag(receivedAnswer,offset,160,&samples)) return FALSE;
|
||||
if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
|
||||
if(samples == 0) return FALSE;
|
||||
return Demod.len;
|
||||
}
|
||||
|
||||
int ReaderReceive(uint8_t* receivedAnswer)
|
||||
{
|
||||
int samples = 0;
|
||||
if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE;
|
||||
if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
|
||||
if(samples == 0) return FALSE;
|
||||
return Demod.len;
|
||||
return ReaderReceiveOffset(receivedAnswer, 0);
|
||||
}
|
||||
|
||||
int ReaderReceivePar(uint8_t* receivedAnswer, uint32_t * parptr)
|
||||
int ReaderReceivePar(uint8_t *receivedAnswer, uint32_t *parptr)
|
||||
{
|
||||
int samples = 0;
|
||||
if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE;
|
||||
if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
|
||||
int samples = 0;
|
||||
if (!GetIso14443aAnswerFromTag(receivedAnswer,0,160,&samples)) return FALSE;
|
||||
if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
|
||||
*parptr = Demod.parityBits;
|
||||
if(samples == 0) return FALSE;
|
||||
return Demod.len;
|
||||
if(samples == 0) return FALSE;
|
||||
return Demod.len;
|
||||
}
|
||||
|
||||
/* performs iso14443a anticolision procedure
|
||||
/* performs iso14443a anticollision procedure
|
||||
* fills the uid pointer unless NULL
|
||||
* fills resp_data unless NULL */
|
||||
int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, uint32_t* cuid_ptr) {
|
||||
uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
|
||||
uint8_t sel_all[] = { 0x93,0x20 };
|
||||
uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
|
||||
uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
|
||||
uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
|
||||
uint8_t* resp = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); // was 3560 - tied to other size changes
|
||||
byte_t uid_resp[4];
|
||||
|
@ -1666,7 +1651,7 @@ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, u
|
|||
ReaderTransmitBitsPar(wupa,7,0, NULL);
|
||||
// Receive the ATQA
|
||||
if(!ReaderReceive(resp)) return 0;
|
||||
// Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
|
||||
// Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
|
||||
|
||||
if(p_hi14a_card) {
|
||||
memcpy(p_hi14a_card->atqa, resp, 2);
|
||||
|
@ -1690,19 +1675,50 @@ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, u
|
|||
ReaderTransmit(sel_all,sizeof(sel_all), NULL);
|
||||
if (!ReaderReceive(resp)) return 0;
|
||||
|
||||
// First backup the current uid
|
||||
memcpy(uid_resp,resp,4);
|
||||
uid_resp_len = 4;
|
||||
if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
|
||||
memset(uid_resp, 0, 4);
|
||||
uint16_t uid_resp_bits = 0;
|
||||
uint16_t collision_answer_offset = 0;
|
||||
// anti-collision-loop:
|
||||
while (Demod.collisionPos) {
|
||||
Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
|
||||
for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
|
||||
uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
|
||||
uid_resp[uid_resp_bits & 0xf8] |= UIDbit << (uid_resp_bits % 8);
|
||||
}
|
||||
uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
|
||||
uid_resp_bits++;
|
||||
// construct anticollosion command:
|
||||
sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
|
||||
for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
|
||||
sel_uid[2+i] = uid_resp[i];
|
||||
}
|
||||
collision_answer_offset = uid_resp_bits%8;
|
||||
ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
|
||||
if (!ReaderReceiveOffset(resp, collision_answer_offset)) return 0;
|
||||
}
|
||||
// finally, add the last bits and BCC of the UID
|
||||
for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
|
||||
uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
|
||||
uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
|
||||
}
|
||||
|
||||
} else { // no collision, use the response to SELECT_ALL as current uid
|
||||
memcpy(uid_resp,resp,4);
|
||||
}
|
||||
uid_resp_len = 4;
|
||||
// Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
|
||||
|
||||
// calculate crypto UID. Always use last 4 Bytes.
|
||||
// calculate crypto UID. Always use last 4 Bytes.
|
||||
if(cuid_ptr) {
|
||||
*cuid_ptr = bytes_to_num(uid_resp, 4);
|
||||
}
|
||||
|
||||
// Construct SELECT UID command
|
||||
memcpy(sel_uid+2,resp,5);
|
||||
AppendCrc14443a(sel_uid,7);
|
||||
sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
|
||||
memcpy(sel_uid+2,uid_resp,4); // the UID
|
||||
sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
|
||||
AppendCrc14443a(sel_uid,7); // calculate and add CRC
|
||||
ReaderTransmit(sel_uid,sizeof(sel_uid), NULL);
|
||||
|
||||
// Receive the SAK
|
||||
|
@ -1710,7 +1726,7 @@ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, u
|
|||
sak = resp[0];
|
||||
|
||||
// Test if more parts of the uid are comming
|
||||
if ((sak & 0x04) && uid_resp[0] == 0x88) {
|
||||
if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
|
||||
// Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
|
||||
// http://www.nxp.com/documents/application_note/AN10927.pdf
|
||||
memcpy(uid_resp, uid_resp + 1, 3);
|
||||
|
@ -1769,6 +1785,7 @@ void iso14443a_setup() {
|
|||
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
|
||||
SpinDelay(7); // iso14443-3 specifies 5ms max.
|
||||
|
||||
Demod.state = DEMOD_UNSYNCD;
|
||||
iso14a_timeout = 2048; //default
|
||||
}
|
||||
|
||||
|
@ -1815,6 +1832,7 @@ void ReaderIso14443a(UsbCommand * c)
|
|||
if(param & ISO14A_CONNECT) {
|
||||
iso14a_clear_trace();
|
||||
}
|
||||
|
||||
iso14a_set_tracing(true);
|
||||
|
||||
if(param & ISO14A_REQUEST_TRIGGER) {
|
||||
|
@ -1976,8 +1994,6 @@ void ReaderMifare(bool first_try)
|
|||
//keep the card active
|
||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
|
||||
|
||||
// CodeIso14443aBitsAsReaderPar(mf_auth, sizeof(mf_auth)*8, GetParity(mf_auth, sizeof(mf_auth)*8));
|
||||
|
||||
sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
|
||||
catch_up_cycles = 0;
|
||||
|
||||
|
@ -2645,7 +2661,7 @@ void RAMFUNC SniffMifare(uint8_t param) {
|
|||
Demod.state = DEMOD_UNSYNCD;
|
||||
}
|
||||
|
||||
if(ManchesterDecoding(data[0] & 0x0F)) {
|
||||
if(ManchesterDecoding(data[0], 0)) {
|
||||
LED_C_INV();
|
||||
|
||||
if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue