lf improvements

fix noralsy demod bug (st should be true)
fix sprint_bin_break bug (didn't print last bit)
add a function to save/restore demodbuffer
remove redundant countFC call in PSKDemod
clean up pskclockdetect functions
fix indala26decode bug (end of data sometimes not correct)
improve PSK detection / demodulation
improve NRZ detection
improve t55xx commands & fix a few bugs
add t55xx page1 detection - added it to lf search
added experimental t55xx testmode write
This commit is contained in:
marshmellow42 2017-04-04 11:52:10 -04:00
parent 6a772a1273
commit b97311b1bd
13 changed files with 466 additions and 238 deletions

View file

@ -33,6 +33,7 @@
//-----------------------------------------------------------------------------
#include <string.h> // for memset, memcmp and size_t
#include "lfdemod.h"
#include <stdint.h> // for uint_32+
#include <stdbool.h> // for bool
#include "parity.h" // for parity test
@ -277,6 +278,33 @@ bool loadWaveCounters(uint8_t samples[], size_t size, int lowToLowWaveLen[], int
return true;
}
size_t pskFindFirstPhaseShift(uint8_t samples[], size_t size, uint8_t *curPhase, size_t waveStart, uint16_t fc, uint16_t *fullWaveLen) {
uint16_t loopCnt = (size+3 < 4096) ? size : 4096; //don't need to loop through entire array...
uint16_t avgWaveVal=0, lastAvgWaveVal=0;
size_t i = waveStart, waveEnd, waveLenCnt, firstFullWave;
for (; i<loopCnt; i++) {
// find peak // was "samples[i] + fc" but why? must have been used to weed out some wave error... removed..
if (samples[i] < samples[i+1] && samples[i+1] >= samples[i+2]){
waveEnd = i+1;
if (g_debugMode == 2) prnt("DEBUG PSK: waveEnd: %u, waveStart: %u", waveEnd, waveStart);
waveLenCnt = waveEnd-waveStart;
if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+8)){ //not first peak and is a large wave but not out of whack
lastAvgWaveVal = avgWaveVal/(waveLenCnt);
firstFullWave = waveStart;
*fullWaveLen = waveLenCnt;
//if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting)
if (lastAvgWaveVal > FSK_PSK_THRESHOLD) *curPhase ^= 1;
return firstFullWave;
}
waveStart = i+1;
avgWaveVal = 0;
}
avgWaveVal += samples[i+2];
}
return 0;
}
//by marshmellow
//amplify based on ask edge detection - not accurate enough to use all the time
void askAmp(uint8_t *BitStream, size_t size) {
@ -520,7 +548,7 @@ int DetectNRZClock(uint8_t dest[], size_t size, int clock, size_t *clockStartIdx
//get high and low peak
int peak, low;
if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0;
if (getHiLo(dest, loopCnt, &peak, &low, 85, 85) < 1) return 0;
int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low);
size_t ii;
@ -529,26 +557,24 @@ int DetectNRZClock(uint8_t dest[], size_t size, int clock, size_t *clockStartIdx
uint16_t smplCnt = 0;
int16_t peakcnt = 0;
int16_t peaksdet[] = {0,0,0,0,0,0,0,0};
uint16_t maxPeak = 255;
bool firstpeak = false;
//test for large clipped waves
for (i=0; i<loopCnt; i++){
if (dest[i] >= peak || dest[i] <= low){
if (!firstpeak) continue;
uint16_t minPeak = 255;
bool firstpeak = true;
//test for large clipped waves - ignore first peak
for (i=0; i<loopCnt; i++) {
if (dest[i] >= peak || dest[i] <= low) {
if (firstpeak) continue;
smplCnt++;
} else {
firstpeak=true;
if (smplCnt > 6 ){
if (maxPeak > smplCnt){
maxPeak = smplCnt;
//prnt("maxPk: %d",maxPeak);
}
firstpeak = false;
if (smplCnt > 0) {
if (minPeak > smplCnt && smplCnt > 7) minPeak = smplCnt;
peakcnt++;
//prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
smplCnt=0;
if (g_debugMode == 2) prnt("DEBUG NRZ: minPeak: %d, smplCnt: %d, peakcnt: %d",minPeak,smplCnt,peakcnt);
smplCnt = 0;
}
}
}
if (minPeak < 8) return 0;
bool errBitHigh = 0;
bool bitHigh = 0;
uint8_t ignoreCnt = 0;
@ -558,12 +584,12 @@ int DetectNRZClock(uint8_t dest[], size_t size, int clock, size_t *clockStartIdx
size_t bestStart[]={0,0,0,0,0,0,0,0,0};
peakcnt=0;
//test each valid clock from smallest to greatest to see which lines up
for(clkCnt=0; clkCnt < 8; ++clkCnt){
for(clkCnt=0; clkCnt < 8; ++clkCnt) {
//ignore clocks smaller than smallest peak
if (clk[clkCnt] < maxPeak - (clk[clkCnt]/4)) continue;
if (clk[clkCnt] < minPeak - (clk[clkCnt]/4)) continue;
//try lining up the peaks by moving starting point (try first 256)
for (ii=20; ii < loopCnt; ++ii){
if ((dest[ii] >= peak) || (dest[ii] <= low)){
for (ii=20; ii < loopCnt; ++ii) {
if ((dest[ii] >= peak) || (dest[ii] <= low)) {
peakcnt = 0;
bitHigh = false;
ignoreCnt = 0;
@ -587,8 +613,8 @@ int DetectNRZClock(uint8_t dest[], size_t size, int clock, size_t *clockStartIdx
lastBit += clk[clkCnt];
}
//else if not a clock bit and no peaks
} else if (dest[i] < peak && dest[i] > low){
if (ignoreCnt==0){
} else if (dest[i] < peak && dest[i] > low) {
if (ignoreCnt==0) {
bitHigh=false;
if (errBitHigh==true) peakcnt--;
errBitHigh=false;
@ -610,15 +636,15 @@ int DetectNRZClock(uint8_t dest[], size_t size, int clock, size_t *clockStartIdx
}
int iii=7;
uint8_t best=0;
for (iii=7; iii > 0; iii--){
for (iii=7; iii > 0; iii--) {
if ((peaksdet[iii] >= (peaksdet[best]-1)) && (peaksdet[iii] <= peaksdet[best]+1) && lowestTransition) {
if (clk[iii] > (lowestTransition - (clk[iii]/8)) && clk[iii] < (lowestTransition + (clk[iii]/8))) {
best = iii;
}
} else if (peaksdet[iii] > peaksdet[best]){
} else if (peaksdet[iii] > peaksdet[best]) {
best = iii;
}
if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition);
if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, minPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],minPeak, clk[best], lowestTransition);
}
*clockStartIdx = bestStart[best];
return clk[best];
@ -691,6 +717,7 @@ uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj) {
best3=i;
}
if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]);
if (fcLens[i]==0) break;
}
if (fcLens[best1]==0) return 0;
uint8_t fcH=0, fcL=0;
@ -708,18 +735,24 @@ uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj) {
// TODO: take top 3 answers and compare to known Field clocks to get top 2
uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
if (fskAdj) return fcs;
return fcLens[best1];
if (fskAdj) return fcs;
return (uint16_t)fcLens[best2] << 8 | fcLens[best1];
}
//by marshmellow
//detect psk clock by reading each phase shift
// a phase shift is determined by measuring the sample length of each wave
int DetectPSKClock_ext(uint8_t dest[], size_t size, int clock, int *firstPhaseShift) {
int DetectPSKClock(uint8_t dest[], size_t size, int clock, size_t *firstPhaseShift, uint8_t *curPhase, uint8_t *fc) {
uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
uint16_t loopCnt = 4096; //don't need to loop through entire array...
if (size == 0) return 0;
if (size<loopCnt) loopCnt = size-20;
if (size+3<loopCnt) loopCnt = size-20;
uint16_t fcs = countFC(dest, size, 0);
*fc = fcs & 0xFF;
if (g_debugMode==2) prnt("DEBUG PSK: FC: %d, FC2: %d",*fc, fcs>>8);
if ((fcs>>8) == 10 && *fc == 8) return -1;
if (*fc!=2 && *fc!=4 && *fc!=8) return -1;
//if we already have a valid clock quit
size_t i=1;
@ -727,37 +760,28 @@ int DetectPSKClock_ext(uint8_t dest[], size_t size, int clock, int *firstPhaseSh
if (clk[i] == clock) return clock;
size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
uint16_t peakcnt=0, errCnt=0, waveLenCnt=0;
uint8_t clkCnt, tol=1;
uint16_t peakcnt=0, errCnt=0, waveLenCnt=0, fullWaveLen=0;
uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
fc = countFC(dest, size, 0);
if (fc!=2 && fc!=4 && fc!=8) return -1;
if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc);
//find first full wave
for (i=160; i<loopCnt; i++){
if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
if (waveStart == 0) {
waveStart = i+1;
//prnt("DEBUG: waveStart: %d",waveStart);
} else {
waveEnd = i+1;
//prnt("DEBUG: waveEnd: %d",waveEnd);
waveLenCnt = waveEnd-waveStart;
if (waveLenCnt > fc){
firstFullWave = waveStart;
fullWaveLen=waveLenCnt;
break;
}
waveStart=0;
}
}
//find start of modulating data in trace
i = findModStart(dest, size, *fc);
firstFullWave = pskFindFirstPhaseShift(dest, size, curPhase, i, *fc, &fullWaveLen);
if (firstFullWave == 0) {
// no phase shift detected - could be all 1's or 0's - doesn't matter where we start
// so skip a little to ensure we are past any Start Signal
firstFullWave = 160;
fullWaveLen = 0;
}
*firstPhaseShift = firstFullWave;
if (g_debugMode ==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
//test each valid clock from greatest to smallest to see which lines up
for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
for(clkCnt=7; clkCnt >= 1 ; clkCnt--) {
tol = *fc/2;
lastClkBit = firstFullWave; //set end of wave as clock align
waveStart = 0;
errCnt=0;
@ -773,9 +797,9 @@ int DetectPSKClock_ext(uint8_t dest[], size_t size, int clock, int *firstPhaseSh
} else { //waveEnd
waveEnd = i+1;
waveLenCnt = waveEnd-waveStart;
if (waveLenCnt > fc){
if (waveLenCnt > *fc){
//if this wave is a phase shift
if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,fc);
if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,*fc);
if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
peakcnt++;
lastClkBit+=clk[clkCnt];
@ -784,7 +808,7 @@ int DetectPSKClock_ext(uint8_t dest[], size_t size, int clock, int *firstPhaseSh
} else { //phase shift before supposed to based on clock
errCnt++;
}
} else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){
} else if (i+1 > lastClkBit + clk[clkCnt] + tol + *fc){
lastClkBit+=clk[clkCnt]; //no phase shift but clock bit
}
waveStart=i+1;
@ -809,10 +833,11 @@ int DetectPSKClock_ext(uint8_t dest[], size_t size, int clock, int *firstPhaseSh
return clk[best];
}
int DetectPSKClock(uint8_t dest[], size_t size, int clock) {
int firstPhaseShift = 0;
return DetectPSKClock_ext(dest, size, clock, &firstPhaseShift);
}
//int DetectPSKClock(uint8_t dest[], size_t size, int clock) {
// size_t firstPhaseShift = 0;
// uint8_t curPhase = 0;
// return DetectPSKClock_ext(dest, size, clock, &firstPhaseShift, &curPhase);
//}
//by marshmellow
//detects the bit clock for FSK given the high and low Field Clocks
@ -955,7 +980,7 @@ bool DetectST_ext(uint8_t buffer[], size_t *size, int *foundclock, size_t *ststa
//need to loop through all samples and identify our clock, look for the ST pattern
int clk = 0;
int tol = 0;
int j, high, low, skip, start, end, minClk=255;
int j=0, high, low, skip=0, start=0, end=0, minClk=255;
size_t i = 0;
//probably should malloc... || test if memory is available ... handle device side? memory danger!!! [marshmellow]
int tmpbuff[bufsize / LOWEST_DEFAULT_CLOCK]; // low to low wave count //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured
@ -1023,9 +1048,9 @@ bool DetectST_ext(uint8_t buffer[], size_t *size, int *foundclock, size_t *ststa
return false;
}
size_t dataloc = start;
if (buffer[dataloc-(clk*4)-(clk/8)] <= low && buffer[dataloc] <= low && buffer[dataloc-(clk*4)] >= high) {
if (buffer[dataloc-(clk*4)-(clk/4)] <= low && buffer[dataloc] <= low && buffer[dataloc-(clk*4)] >= high) {
//we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start
for ( i=0; i <= (clk/8); ++i ) {
for ( i=0; i <= (clk/4); ++i ) {
if ( buffer[dataloc - (clk*4) - i] <= low ) {
dataloc -= i;
break;
@ -1040,14 +1065,15 @@ bool DetectST_ext(uint8_t buffer[], size_t *size, int *foundclock, size_t *ststa
// warning - overwriting buffer given with raw wave data with ST removed...
while ( dataloc < bufsize-(clk/2) ) {
//compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+3]<high && buffer[dataloc+3]>low) {
if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+clk/4]<high && buffer[dataloc+clk/4]>low) {
for(i=0; i < clk/2-tol; ++i) {
buffer[dataloc+i] = high+5;
}
} //test for single sample outlier (high between two lows) in the case of very strong waves
if (buffer[dataloc] >= high && buffer[dataloc+2] <= low) {
buffer[dataloc] = buffer[dataloc+2];
buffer[dataloc+1] = buffer[dataloc+2];
} //test for small spike outlier (high between two lows) in the case of very strong waves
if (buffer[dataloc] > low && buffer[dataloc+clk/4] <= low) {
for(i=0; i < clk/4; ++i) {
buffer[dataloc+i] = buffer[dataloc+clk/4];
}
}
if (firstrun) {
*stend = dataloc;
@ -1521,60 +1547,34 @@ void psk2TOpsk1(uint8_t *BitStream, size_t size) {
return;
}
size_t pskFindFirstPhaseShift(uint8_t samples[], size_t size, uint8_t *curPhase, size_t waveStart, uint16_t fc, uint16_t *fullWaveLen) {
uint16_t loopCnt = (size+3 < 4096) ? size : 4096; //don't need to loop through entire array...
uint16_t avgWaveVal=0, lastAvgWaveVal=0;
size_t i = waveStart, waveEnd, waveLenCnt, firstFullWave;
for (; i<loopCnt; i++) {
// find peak
if (samples[i]+fc < samples[i+1] && samples[i+1] >= samples[i+2]){
waveEnd = i+1;
if (g_debugMode == 2) prnt("DEBUG PSK: waveEnd: %u, waveStart: %u", waveEnd, waveStart);
waveLenCnt = waveEnd-waveStart;
if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+8)){ //not first peak and is a large wave but not out of whack
lastAvgWaveVal = avgWaveVal/(waveLenCnt);
firstFullWave = waveStart;
*fullWaveLen = waveLenCnt;
//if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting)
if (lastAvgWaveVal > FSK_PSK_THRESHOLD) *curPhase ^= 1;
return firstFullWave;
}
waveStart = i+1;
avgWaveVal = 0;
}
avgWaveVal += samples[i+2];
}
return 0;
}
//by marshmellow - demodulate PSK1 wave
//uses wave lengths (# Samples)
int pskRawDemod_ext(uint8_t dest[], size_t *size, int *clock, int *invert, int *startIdx) {
if (*size < 170) return -1;
uint8_t curPhase = *invert;
uint8_t fc=0;
size_t i=0, numBits=0, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
uint16_t fc=0, fullWaveLen=0, waveLenCnt=0, avgWaveVal, tol=1;
uint16_t fullWaveLen=0, waveLenCnt=0, avgWaveVal;
uint16_t errCnt=0, errCnt2=0;
fc = countFC(dest, *size, 1);
if ((fc >> 8) == 10) return -1; //fsk found - quit
fc = fc & 0xFF;
if (fc!=2 && fc!=4 && fc!=8) return -1;
*clock = DetectPSKClock(dest, *size, *clock);
*clock = DetectPSKClock(dest, *size, *clock, &firstFullWave, &curPhase, &fc);
if (*clock == 0) return -1;
//find start of modulating data in trace
i = findModStart(dest, *size, fc);
//find first phase shift
firstFullWave = pskFindFirstPhaseShift(dest, *size, &curPhase, i, fc, &fullWaveLen);
//if clock detect found firstfullwave...
uint16_t tol = fc/2;
if (firstFullWave == 0) {
// no phase shift detected - could be all 1's or 0's - doesn't matter where we start
// so skip a little to ensure we are past any Start Signal
firstFullWave = 160;
memset(dest, curPhase, firstFullWave / *clock);
//find start of modulating data in trace
i = findModStart(dest, *size, fc);
//find first phase shift
firstFullWave = pskFindFirstPhaseShift(dest, *size, &curPhase, i, fc, &fullWaveLen);
if (firstFullWave == 0) {
// no phase shift detected - could be all 1's or 0's - doesn't matter where we start
// so skip a little to ensure we are past any Start Signal
firstFullWave = 160;
memset(dest, curPhase, firstFullWave / *clock);
} else {
memset(dest, curPhase^1, firstFullWave / *clock);
}
} else {
memset(dest, curPhase^1, firstFullWave / *clock);
}
@ -1587,9 +1587,9 @@ int pskRawDemod_ext(uint8_t dest[], size_t *size, int *clock, int *invert, int *
if (g_debugMode==2) prnt("DEBUG PSK: clk: %d, lastClkBit: %u, fc: %u", *clock, lastClkBit,(unsigned int) fc);
waveStart = 0;
dest[numBits++] = curPhase; //set first read bit
for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){
for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++) {
//top edge of wave = start of new wave
if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]) {
if (waveStart == 0) {
waveStart = i+1;
waveLenCnt = 0;
@ -1597,25 +1597,27 @@ int pskRawDemod_ext(uint8_t dest[], size_t *size, int *clock, int *invert, int *
} else { //waveEnd
waveEnd = i+1;
waveLenCnt = waveEnd-waveStart;
if (waveLenCnt > fc){
if (waveLenCnt > fc) {
//this wave is a phase shift
//PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
if (i+1 >= lastClkBit + *clock - tol) { //should be a clock bit
curPhase ^= 1;
dest[numBits++] = curPhase;
lastClkBit += *clock;
} else if (i < lastClkBit+10+fc){
} else if (i < lastClkBit+10+fc) {
//noise after a phase shift - ignore
} else { //phase shift before supposed to based on clock
errCnt++;
dest[numBits++] = 7;
}
} else if (i+1 > lastClkBit + *clock + tol + fc){
} else if (i+1 > lastClkBit + *clock + tol + fc) {
lastClkBit += *clock; //no phase shift but clock bit
dest[numBits++] = curPhase;
} else if (waveLenCnt < fc - 1) { //wave is smaller than field clock (shouldn't happen often)
errCnt2++;
if(errCnt2 > 101) return errCnt2;
avgWaveVal += dest[i+1];
continue;
}
avgWaveVal = 0;
waveStart = i+1;
@ -1800,7 +1802,7 @@ int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert) {
}
if (*size != 64 && *size != 224) return -2;
if (*invert==1)
for (size_t i = startidx; i < *size; i++)
for (size_t i = startidx; i < *size + startidx; i++)
bitStream[i] ^= 1;
return (int) startidx;