mirror of
https://github.com/Proxmark/proxmark3.git
synced 2025-08-22 22:23:38 -07:00
fixes: armside
This commit is contained in:
parent
19a2c05de0
commit
b3f787a64f
11 changed files with 397 additions and 812 deletions
|
@ -1043,7 +1043,12 @@ void UsbPacketReceived(uint8_t *packet, int len)
|
||||||
ReadHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
|
ReadHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
|
||||||
break;
|
break;
|
||||||
case CMD_WR_HITAG_S: //writer for Hitag tags args=data to write,page and key or challenge
|
case CMD_WR_HITAG_S: //writer for Hitag tags args=data to write,page and key or challenge
|
||||||
|
if ((hitag_function)c->arg[0] < 10) {
|
||||||
WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
|
WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
|
||||||
|
}
|
||||||
|
else if ((hitag_function)c->arg[0] >= 10) {
|
||||||
|
WriterHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes, c->arg[2]);
|
||||||
|
}
|
||||||
break;
|
break;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
|
@ -212,6 +212,7 @@ void iClass_ReadCheck(uint8_t blockNo, uint8_t keyType);
|
||||||
void SnoopHitag(uint32_t type);
|
void SnoopHitag(uint32_t type);
|
||||||
void SimulateHitagTag(bool tag_mem_supplied, byte_t* data);
|
void SimulateHitagTag(bool tag_mem_supplied, byte_t* data);
|
||||||
void ReaderHitag(hitag_function htf, hitag_data* htd);
|
void ReaderHitag(hitag_function htf, hitag_data* htd);
|
||||||
|
void WriterHitag(hitag_function htf, hitag_data* htd, int page);
|
||||||
|
|
||||||
//hitagS.h
|
//hitagS.h
|
||||||
void SimulateHitagSTag(bool tag_mem_supplied, byte_t* data);
|
void SimulateHitagSTag(bool tag_mem_supplied, byte_t* data);
|
||||||
|
|
541
armsrc/crapto1.c
541
armsrc/crapto1.c
|
@ -1,541 +0,0 @@
|
||||||
/* crapto1.c
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or
|
|
||||||
modify it under the terms of the GNU General Public License
|
|
||||||
as published by the Free Software Foundation; either version 2
|
|
||||||
of the License, or (at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License
|
|
||||||
along with this program; if not, write to the Free Software
|
|
||||||
Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
||||||
Boston, MA 02110-1301, US$
|
|
||||||
|
|
||||||
Copyright (C) 2008-2014 bla <blapost@gmail.com>
|
|
||||||
*/
|
|
||||||
#include "crapto1.h"
|
|
||||||
#include <stdlib.h>
|
|
||||||
|
|
||||||
#if !defined LOWMEM && defined __GNUC__
|
|
||||||
static uint8_t filterlut[1 << 20];
|
|
||||||
static void __attribute__((constructor)) fill_lut()
|
|
||||||
{
|
|
||||||
uint32_t i;
|
|
||||||
for(i = 0; i < 1 << 20; ++i)
|
|
||||||
filterlut[i] = filter(i);
|
|
||||||
}
|
|
||||||
#define filter(x) (filterlut[(x) & 0xfffff])
|
|
||||||
#endif
|
|
||||||
|
|
||||||
static void quicksort(uint32_t* const start, uint32_t* const stop)
|
|
||||||
{
|
|
||||||
uint32_t *it = start + 1, *rit = stop, t;
|
|
||||||
|
|
||||||
if(it > rit)
|
|
||||||
return;
|
|
||||||
|
|
||||||
while(it < rit)
|
|
||||||
if(*it <= *start)
|
|
||||||
++it;
|
|
||||||
else if(*rit > *start)
|
|
||||||
--rit;
|
|
||||||
else
|
|
||||||
t = *it, *it = *rit, *rit = t;
|
|
||||||
|
|
||||||
if(*rit >= *start)
|
|
||||||
--rit;
|
|
||||||
if(rit != start)
|
|
||||||
t = *rit, *rit = *start, *start = t;
|
|
||||||
|
|
||||||
quicksort(start, rit - 1);
|
|
||||||
quicksort(rit + 1, stop);
|
|
||||||
}
|
|
||||||
/** binsearch
|
|
||||||
* Binary search for the first occurence of *stop's MSB in sorted [start,stop]
|
|
||||||
*/
|
|
||||||
static inline uint32_t* binsearch(uint32_t *start, uint32_t *stop)
|
|
||||||
{
|
|
||||||
uint32_t mid, val = *stop & 0xff000000;
|
|
||||||
while(start != stop)
|
|
||||||
if(start[mid = (stop - start) >> 1] > val)
|
|
||||||
stop = &start[mid];
|
|
||||||
else
|
|
||||||
start += mid + 1;
|
|
||||||
|
|
||||||
return start;
|
|
||||||
}
|
|
||||||
|
|
||||||
/** update_contribution
|
|
||||||
* helper, calculates the partial linear feedback contributions and puts in MSB
|
|
||||||
*/
|
|
||||||
static inline void
|
|
||||||
update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)
|
|
||||||
{
|
|
||||||
uint32_t p = *item >> 25;
|
|
||||||
|
|
||||||
p = p << 1 | parity(*item & mask1);
|
|
||||||
p = p << 1 | parity(*item & mask2);
|
|
||||||
*item = p << 24 | (*item & 0xffffff);
|
|
||||||
}
|
|
||||||
|
|
||||||
/** extend_table
|
|
||||||
* using a bit of the keystream extend the table of possible lfsr states
|
|
||||||
*/
|
|
||||||
static inline void
|
|
||||||
extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
|
|
||||||
{
|
|
||||||
in <<= 24;
|
|
||||||
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
|
|
||||||
if(filter(*tbl) ^ filter(*tbl | 1)) {
|
|
||||||
*tbl |= filter(*tbl) ^ bit;
|
|
||||||
update_contribution(tbl, m1, m2);
|
|
||||||
*tbl ^= in;
|
|
||||||
} else if(filter(*tbl) == bit) {
|
|
||||||
*++*end = tbl[1];
|
|
||||||
tbl[1] = tbl[0] | 1;
|
|
||||||
update_contribution(tbl, m1, m2);
|
|
||||||
*tbl++ ^= in;
|
|
||||||
update_contribution(tbl, m1, m2);
|
|
||||||
*tbl ^= in;
|
|
||||||
} else
|
|
||||||
*tbl-- = *(*end)--;
|
|
||||||
}
|
|
||||||
/** extend_table_simple
|
|
||||||
* using a bit of the keystream extend the table of possible lfsr states
|
|
||||||
*/
|
|
||||||
static inline void extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
|
|
||||||
{
|
|
||||||
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
|
|
||||||
if(filter(*tbl) ^ filter(*tbl | 1))
|
|
||||||
*tbl |= filter(*tbl) ^ bit;
|
|
||||||
else if(filter(*tbl) == bit) {
|
|
||||||
*++*end = *++tbl;
|
|
||||||
*tbl = tbl[-1] | 1;
|
|
||||||
} else
|
|
||||||
*tbl-- = *(*end)--;
|
|
||||||
}
|
|
||||||
/** recover
|
|
||||||
* recursively narrow down the search space, 4 bits of keystream at a time
|
|
||||||
*/
|
|
||||||
static struct Crypto1State*
|
|
||||||
recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
|
|
||||||
uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
|
|
||||||
struct Crypto1State *sl, uint32_t in)
|
|
||||||
{
|
|
||||||
uint32_t *o, *e, i;
|
|
||||||
|
|
||||||
if(rem == -1) {
|
|
||||||
for(e = e_head; e <= e_tail; ++e) {
|
|
||||||
*e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);
|
|
||||||
for(o = o_head; o <= o_tail; ++o, ++sl) {
|
|
||||||
sl->even = *o;
|
|
||||||
sl->odd = *e ^ parity(*o & LF_POLY_ODD);
|
|
||||||
sl[1].odd = sl[1].even = 0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return sl;
|
|
||||||
}
|
|
||||||
|
|
||||||
for(i = 0; i < 4 && rem--; i++) {
|
|
||||||
oks >>= 1;
|
|
||||||
eks >>= 1;
|
|
||||||
in >>= 2;
|
|
||||||
extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1,
|
|
||||||
LF_POLY_ODD << 1, 0);
|
|
||||||
if(o_head > o_tail)
|
|
||||||
return sl;
|
|
||||||
|
|
||||||
extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD,
|
|
||||||
LF_POLY_EVEN << 1 | 1, in & 3);
|
|
||||||
if(e_head > e_tail)
|
|
||||||
return sl;
|
|
||||||
}
|
|
||||||
|
|
||||||
quicksort(o_head, o_tail);
|
|
||||||
quicksort(e_head, e_tail);
|
|
||||||
|
|
||||||
while(o_tail >= o_head && e_tail >= e_head)
|
|
||||||
if(((*o_tail ^ *e_tail) >> 24) == 0) {
|
|
||||||
o_tail = binsearch(o_head, o = o_tail);
|
|
||||||
e_tail = binsearch(e_head, e = e_tail);
|
|
||||||
sl = recover(o_tail--, o, oks,
|
|
||||||
e_tail--, e, eks, rem, sl, in);
|
|
||||||
}
|
|
||||||
else if(*o_tail > *e_tail)
|
|
||||||
o_tail = binsearch(o_head, o_tail) - 1;
|
|
||||||
else
|
|
||||||
e_tail = binsearch(e_head, e_tail) - 1;
|
|
||||||
|
|
||||||
return sl;
|
|
||||||
}
|
|
||||||
/** lfsr_recovery
|
|
||||||
* recover the state of the lfsr given 32 bits of the keystream
|
|
||||||
* additionally you can use the in parameter to specify the value
|
|
||||||
* that was fed into the lfsr at the time the keystream was generated
|
|
||||||
*/
|
|
||||||
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
|
|
||||||
{
|
|
||||||
struct Crypto1State *statelist;
|
|
||||||
uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
|
|
||||||
uint32_t *even_head = 0, *even_tail = 0, eks = 0;
|
|
||||||
int i;
|
|
||||||
|
|
||||||
// split the keystream into an odd and even part
|
|
||||||
for(i = 31; i >= 0; i -= 2)
|
|
||||||
oks = oks << 1 | BEBIT(ks2, i);
|
|
||||||
for(i = 30; i >= 0; i -= 2)
|
|
||||||
eks = eks << 1 | BEBIT(ks2, i);
|
|
||||||
|
|
||||||
odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
|
|
||||||
even_head = even_tail = malloc(sizeof(uint32_t) << 21);
|
|
||||||
statelist = malloc(sizeof(struct Crypto1State) << 18);
|
|
||||||
if(!odd_tail-- || !even_tail-- || !statelist) {
|
|
||||||
free(statelist);
|
|
||||||
statelist = 0;
|
|
||||||
goto out;
|
|
||||||
}
|
|
||||||
|
|
||||||
statelist->odd = statelist->even = 0;
|
|
||||||
|
|
||||||
// initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
|
|
||||||
for(i = 1 << 20; i >= 0; --i) {
|
|
||||||
if(filter(i) == (oks & 1))
|
|
||||||
*++odd_tail = i;
|
|
||||||
if(filter(i) == (eks & 1))
|
|
||||||
*++even_tail = i;
|
|
||||||
}
|
|
||||||
|
|
||||||
// extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
|
|
||||||
for(i = 0; i < 4; i++) {
|
|
||||||
extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
|
|
||||||
extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
|
|
||||||
}
|
|
||||||
|
|
||||||
// the statelists now contain all states which could have generated the last 10 Bits of the keystream.
|
|
||||||
// 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
|
|
||||||
// parameter into account.
|
|
||||||
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);
|
|
||||||
recover(odd_head, odd_tail, oks,
|
|
||||||
even_head, even_tail, eks, 11, statelist, in << 1);
|
|
||||||
|
|
||||||
out:
|
|
||||||
free(odd_head);
|
|
||||||
free(even_head);
|
|
||||||
return statelist;
|
|
||||||
}
|
|
||||||
|
|
||||||
static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
|
|
||||||
0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
|
|
||||||
0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
|
|
||||||
static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
|
|
||||||
0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
|
|
||||||
0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
|
|
||||||
0x7EC7EE90, 0x7F63F748, 0x79117020};
|
|
||||||
static const uint32_t T1[] = {
|
|
||||||
0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
|
|
||||||
0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
|
|
||||||
0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
|
|
||||||
0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
|
|
||||||
static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
|
|
||||||
0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
|
|
||||||
0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
|
|
||||||
0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
|
|
||||||
0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
|
|
||||||
0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
|
|
||||||
static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};
|
|
||||||
static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
|
|
||||||
/** Reverse 64 bits of keystream into possible cipher states
|
|
||||||
* Variation mentioned in the paper. Somewhat optimized version
|
|
||||||
*/
|
|
||||||
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
|
|
||||||
{
|
|
||||||
struct Crypto1State *statelist, *sl;
|
|
||||||
uint8_t oks[32], eks[32], hi[32];
|
|
||||||
uint32_t low = 0, win = 0;
|
|
||||||
uint32_t *tail, table[1 << 16];
|
|
||||||
int i, j;
|
|
||||||
|
|
||||||
sl = statelist = malloc(sizeof(struct Crypto1State) << 4);
|
|
||||||
if(!sl)
|
|
||||||
return 0;
|
|
||||||
sl->odd = sl->even = 0;
|
|
||||||
|
|
||||||
for(i = 30; i >= 0; i -= 2) {
|
|
||||||
oks[i >> 1] = BEBIT(ks2, i);
|
|
||||||
oks[16 + (i >> 1)] = BEBIT(ks3, i);
|
|
||||||
}
|
|
||||||
for(i = 31; i >= 0; i -= 2) {
|
|
||||||
eks[i >> 1] = BEBIT(ks2, i);
|
|
||||||
eks[16 + (i >> 1)] = BEBIT(ks3, i);
|
|
||||||
}
|
|
||||||
|
|
||||||
for(i = 0xfffff; i >= 0; --i) {
|
|
||||||
if (filter(i) != oks[0])
|
|
||||||
continue;
|
|
||||||
|
|
||||||
*(tail = table) = i;
|
|
||||||
for(j = 1; tail >= table && j < 29; ++j)
|
|
||||||
extend_table_simple(table, &tail, oks[j]);
|
|
||||||
|
|
||||||
if(tail < table)
|
|
||||||
continue;
|
|
||||||
|
|
||||||
for(j = 0; j < 19; ++j)
|
|
||||||
low = low << 1 | parity(i & S1[j]);
|
|
||||||
for(j = 0; j < 32; ++j)
|
|
||||||
hi[j] = parity(i & T1[j]);
|
|
||||||
|
|
||||||
for(; tail >= table; --tail) {
|
|
||||||
for(j = 0; j < 3; ++j) {
|
|
||||||
*tail = *tail << 1;
|
|
||||||
*tail |= parity((i & C1[j]) ^ (*tail & C2[j]));
|
|
||||||
if(filter(*tail) != oks[29 + j])
|
|
||||||
goto continue2;
|
|
||||||
}
|
|
||||||
|
|
||||||
for(j = 0; j < 19; ++j)
|
|
||||||
win = win << 1 | parity(*tail & S2[j]);
|
|
||||||
|
|
||||||
win ^= low;
|
|
||||||
for(j = 0; j < 32; ++j) {
|
|
||||||
win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);
|
|
||||||
if(filter(win) != eks[j])
|
|
||||||
goto continue2;
|
|
||||||
}
|
|
||||||
|
|
||||||
*tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);
|
|
||||||
sl->odd = *tail ^ parity(LF_POLY_ODD & win);
|
|
||||||
sl->even = win;
|
|
||||||
++sl;
|
|
||||||
sl->odd = sl->even = 0;
|
|
||||||
continue2:;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return statelist;
|
|
||||||
}
|
|
||||||
|
|
||||||
/** lfsr_rollback_bit
|
|
||||||
* Rollback the shift register in order to get previous states
|
|
||||||
*/
|
|
||||||
uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
|
|
||||||
{
|
|
||||||
int out;
|
|
||||||
uint8_t ret;
|
|
||||||
uint32_t t;
|
|
||||||
|
|
||||||
s->odd &= 0xffffff;
|
|
||||||
t = s->odd, s->odd = s->even, s->even = t;
|
|
||||||
|
|
||||||
out = s->even & 1;
|
|
||||||
out ^= LF_POLY_EVEN & (s->even >>= 1);
|
|
||||||
out ^= LF_POLY_ODD & s->odd;
|
|
||||||
out ^= !!in;
|
|
||||||
out ^= (ret = filter(s->odd)) & !!fb;
|
|
||||||
|
|
||||||
s->even |= parity(out) << 23;
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
/** lfsr_rollback_byte
|
|
||||||
* Rollback the shift register in order to get previous states
|
|
||||||
*/
|
|
||||||
uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
|
|
||||||
{
|
|
||||||
/*
|
|
||||||
int i, ret = 0;
|
|
||||||
for (i = 7; i >= 0; --i)
|
|
||||||
ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
|
|
||||||
*/
|
|
||||||
// unfold loop 20160112
|
|
||||||
uint8_t ret = 0;
|
|
||||||
ret |= lfsr_rollback_bit(s, BIT(in, 7), fb) << 7;
|
|
||||||
ret |= lfsr_rollback_bit(s, BIT(in, 6), fb) << 6;
|
|
||||||
ret |= lfsr_rollback_bit(s, BIT(in, 5), fb) << 5;
|
|
||||||
ret |= lfsr_rollback_bit(s, BIT(in, 4), fb) << 4;
|
|
||||||
ret |= lfsr_rollback_bit(s, BIT(in, 3), fb) << 3;
|
|
||||||
ret |= lfsr_rollback_bit(s, BIT(in, 2), fb) << 2;
|
|
||||||
ret |= lfsr_rollback_bit(s, BIT(in, 1), fb) << 1;
|
|
||||||
ret |= lfsr_rollback_bit(s, BIT(in, 0), fb) << 0;
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
/** lfsr_rollback_word
|
|
||||||
* Rollback the shift register in order to get previous states
|
|
||||||
*/
|
|
||||||
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
|
|
||||||
{
|
|
||||||
/*
|
|
||||||
int i;
|
|
||||||
uint32_t ret = 0;
|
|
||||||
for (i = 31; i >= 0; --i)
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
|
|
||||||
*/
|
|
||||||
// unfold loop 20160112
|
|
||||||
uint32_t ret = 0;
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 31), fb) << (31 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 30), fb) << (30 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 29), fb) << (29 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 28), fb) << (28 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 27), fb) << (27 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 26), fb) << (26 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 25), fb) << (25 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 24), fb) << (24 ^ 24);
|
|
||||||
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 23), fb) << (23 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 22), fb) << (22 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 21), fb) << (21 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 20), fb) << (20 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 19), fb) << (19 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 18), fb) << (18 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 17), fb) << (17 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 16), fb) << (16 ^ 24);
|
|
||||||
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 15), fb) << (15 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 14), fb) << (14 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 13), fb) << (13 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 12), fb) << (12 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 11), fb) << (11 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 10), fb) << (10 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 9), fb) << (9 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 8), fb) << (8 ^ 24);
|
|
||||||
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 7), fb) << (7 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 6), fb) << (6 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 5), fb) << (5 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 4), fb) << (4 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 3), fb) << (3 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 2), fb) << (2 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 1), fb) << (1 ^ 24);
|
|
||||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 0), fb) << (0 ^ 24);
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
/** nonce_distance
|
|
||||||
* x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
|
|
||||||
*/
|
|
||||||
static uint16_t *dist = 0;
|
|
||||||
int nonce_distance(uint32_t from, uint32_t to)
|
|
||||||
{
|
|
||||||
uint16_t x, i;
|
|
||||||
// generate distance lookup table
|
|
||||||
if (!dist) {
|
|
||||||
dist = malloc(2 << 16);
|
|
||||||
if (!dist) return -1;
|
|
||||||
|
|
||||||
for (x = i = 1; i; ++i) {
|
|
||||||
dist[(x & 0xff) << 8 | x >> 8] = i;
|
|
||||||
x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
static uint32_t fastfwd[2][8] = {
|
|
||||||
{ 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
|
|
||||||
{ 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
|
|
||||||
|
|
||||||
|
|
||||||
/** lfsr_prefix_ks
|
|
||||||
*
|
|
||||||
* Is an exported helper function from the common prefix attack
|
|
||||||
* Described in the "dark side" paper. It returns an -1 terminated array
|
|
||||||
* of possible partial(21 bit) secret state.
|
|
||||||
* The required keystream(ks) needs to contain the keystream that was used to
|
|
||||||
* encrypt the NACK which is observed when varying only the 3 last bits of Nr
|
|
||||||
* only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
|
|
||||||
*/
|
|
||||||
uint32_t* lfsr_prefix_ks(uint8_t ks[8], int isodd)
|
|
||||||
{
|
|
||||||
uint32_t *candidates = malloc(4 << 10);
|
|
||||||
if(!candidates) return 0;
|
|
||||||
|
|
||||||
uint32_t c, entry;
|
|
||||||
int size = 0, i, good;
|
|
||||||
|
|
||||||
for(i = 0; i < 1 << 21; ++i) {
|
|
||||||
for(c = 0, good = 1; good && c < 8; ++c) {
|
|
||||||
entry = i ^ fastfwd[isodd][c];
|
|
||||||
good &= (BIT(ks[c], isodd) == filter(entry >> 1));
|
|
||||||
good &= (BIT(ks[c], isodd + 2) == filter(entry));
|
|
||||||
}
|
|
||||||
if(good)
|
|
||||||
candidates[size++] = i;
|
|
||||||
}
|
|
||||||
|
|
||||||
candidates[size] = -1;
|
|
||||||
|
|
||||||
return candidates;
|
|
||||||
}
|
|
||||||
|
|
||||||
/** check_pfx_parity
|
|
||||||
* helper function which eliminates possible secret states using parity bits
|
|
||||||
*/
|
|
||||||
static struct Crypto1State* check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8], uint32_t odd, uint32_t even, struct Crypto1State* sl)
|
|
||||||
{
|
|
||||||
uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;
|
|
||||||
|
|
||||||
for(c = 0; good && c < 8; ++c) {
|
|
||||||
sl->odd = odd ^ fastfwd[1][c];
|
|
||||||
sl->even = even ^ fastfwd[0][c];
|
|
||||||
|
|
||||||
lfsr_rollback_bit(sl, 0, 0);
|
|
||||||
lfsr_rollback_bit(sl, 0, 0);
|
|
||||||
|
|
||||||
ks3 = lfsr_rollback_bit(sl, 0, 0);
|
|
||||||
ks2 = lfsr_rollback_word(sl, 0, 0);
|
|
||||||
ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);
|
|
||||||
|
|
||||||
nr = ks1 ^ (prefix | c << 5);
|
|
||||||
rr = ks2 ^ rresp;
|
|
||||||
|
|
||||||
good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
|
|
||||||
good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
|
|
||||||
good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
|
|
||||||
good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
|
|
||||||
good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
|
|
||||||
}
|
|
||||||
|
|
||||||
return sl + good;
|
|
||||||
}
|
|
||||||
|
|
||||||
/** lfsr_common_prefix
|
|
||||||
* Implentation of the common prefix attack.
|
|
||||||
* Requires the 28 bit constant prefix used as reader nonce (pfx)
|
|
||||||
* The reader response used (rr)
|
|
||||||
* The keystream used to encrypt the observed NACK's (ks)
|
|
||||||
* The parity bits (par)
|
|
||||||
* It returns a zero terminated list of possible cipher states after the
|
|
||||||
* tag nonce was fed in
|
|
||||||
*/
|
|
||||||
struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])
|
|
||||||
{
|
|
||||||
struct Crypto1State *statelist, *s;
|
|
||||||
uint32_t *odd, *even, *o, *e, top;
|
|
||||||
|
|
||||||
odd = lfsr_prefix_ks(ks, 1);
|
|
||||||
even = lfsr_prefix_ks(ks, 0);
|
|
||||||
|
|
||||||
s = statelist = malloc((sizeof *statelist) << 21);
|
|
||||||
if(!s || !odd || !even) {
|
|
||||||
free(statelist);
|
|
||||||
statelist = 0;
|
|
||||||
goto out;
|
|
||||||
}
|
|
||||||
|
|
||||||
for(o = odd; *o + 1; ++o)
|
|
||||||
for(e = even; *e + 1; ++e)
|
|
||||||
for(top = 0; top < 64; ++top) {
|
|
||||||
*o += 1 << 21;
|
|
||||||
*e += (!(top & 7) + 1) << 21;
|
|
||||||
s = check_pfx_parity(pfx, rr, par, *o, *e, s);
|
|
||||||
}
|
|
||||||
|
|
||||||
s->odd = s->even = 0;
|
|
||||||
out:
|
|
||||||
free(odd);
|
|
||||||
free(even);
|
|
||||||
return statelist;
|
|
||||||
}
|
|
|
@ -1,96 +0,0 @@
|
||||||
/* crapto1.h
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or
|
|
||||||
modify it under the terms of the GNU General Public License
|
|
||||||
as published by the Free Software Foundation; either version 2
|
|
||||||
of the License, or (at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License
|
|
||||||
along with this program; if not, write to the Free Software
|
|
||||||
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|
||||||
MA 02110-1301, US$
|
|
||||||
|
|
||||||
Copyright (C) 2008-2014 bla <blapost@gmail.com>
|
|
||||||
*/
|
|
||||||
#ifndef CRAPTO1_INCLUDED
|
|
||||||
#define CRAPTO1_INCLUDED
|
|
||||||
#include <stdint.h>
|
|
||||||
#ifdef __cplusplus
|
|
||||||
extern "C" {
|
|
||||||
#endif
|
|
||||||
|
|
||||||
struct Crypto1State {uint32_t odd, even;};
|
|
||||||
void crypto1_create(struct Crypto1State *s, uint64_t key);
|
|
||||||
void crypto1_destroy(struct Crypto1State*);
|
|
||||||
void crypto1_get_lfsr(struct Crypto1State*, uint64_t*);
|
|
||||||
uint8_t crypto1_bit(struct Crypto1State*, uint8_t, int);
|
|
||||||
uint8_t crypto1_byte(struct Crypto1State*, uint8_t, int);
|
|
||||||
uint32_t crypto1_word(struct Crypto1State*, uint32_t, int);
|
|
||||||
uint32_t prng_successor(uint32_t x, uint32_t n);
|
|
||||||
uint32_t prng_successor_one(uint32_t x);
|
|
||||||
|
|
||||||
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in);
|
|
||||||
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3);
|
|
||||||
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd);
|
|
||||||
struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]);
|
|
||||||
|
|
||||||
uint8_t lfsr_rollback_bit(struct Crypto1State* s, uint32_t in, int fb);
|
|
||||||
uint8_t lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb);
|
|
||||||
uint32_t lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb);
|
|
||||||
int nonce_distance(uint32_t from, uint32_t to);
|
|
||||||
#define SWAPENDIAN(x)\
|
|
||||||
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
|
|
||||||
|
|
||||||
#define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\
|
|
||||||
uint32_t __n = 0,__M = 0, N = 0;\
|
|
||||||
int __i;\
|
|
||||||
for(; __n < 1 << 16; N = prng_successor(__M = ++__n, 16))\
|
|
||||||
for(__i = FSIZE - 1; __i >= 0; __i--)\
|
|
||||||
if(BIT(FILTER, __i) ^ parity(__M & 0xFF01))\
|
|
||||||
break;\
|
|
||||||
else if(__i)\
|
|
||||||
__M = prng_successor(__M, (__i == 7) ? 48 : 8);\
|
|
||||||
else
|
|
||||||
|
|
||||||
#define LF_POLY_ODD (0x29CE5C)
|
|
||||||
#define LF_POLY_EVEN (0x870804)
|
|
||||||
#define BIT(x, n) ((x) >> (n) & 1)
|
|
||||||
#define BEBIT(x, n) BIT(x, (n) ^ 24)
|
|
||||||
static inline int parity(uint32_t x)
|
|
||||||
{
|
|
||||||
#if !defined __i386__ || !defined __GNUC__
|
|
||||||
x ^= x >> 16;
|
|
||||||
x ^= x >> 8;
|
|
||||||
x ^= x >> 4;
|
|
||||||
return BIT(0x6996, x & 0xf);
|
|
||||||
#else
|
|
||||||
__asm__( "movl %1, %%eax\n"
|
|
||||||
"mov %%ax, %%cx\n"
|
|
||||||
"shrl $0x10, %%eax\n"
|
|
||||||
"xor %%ax, %%cx\n"
|
|
||||||
"xor %%ch, %%cl\n"
|
|
||||||
"setpo %%al\n"
|
|
||||||
"movzx %%al, %0\n": "=r"(x) : "r"(x): "eax","ecx");
|
|
||||||
return x;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
static inline int filter(uint32_t const x)
|
|
||||||
{
|
|
||||||
uint32_t f;
|
|
||||||
|
|
||||||
f = 0xf22c0 >> (x & 0xf) & 16;
|
|
||||||
f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8;
|
|
||||||
f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4;
|
|
||||||
f |= 0x1e458 >> (x >> 12 & 0xf) & 2;
|
|
||||||
f |= 0x0d938 >> (x >> 16 & 0xf) & 1;
|
|
||||||
return BIT(0xEC57E80A, f);
|
|
||||||
}
|
|
||||||
#ifdef __cplusplus
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
#endif
|
|
143
armsrc/crypto1.c
143
armsrc/crypto1.c
|
@ -1,143 +0,0 @@
|
||||||
/* crypto1.c
|
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or
|
|
||||||
modify it under the terms of the GNU General Public License
|
|
||||||
as published by the Free Software Foundation; either version 2
|
|
||||||
of the License, or (at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License
|
|
||||||
along with this program; if not, write to the Free Software
|
|
||||||
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|
||||||
MA 02110-1301, US
|
|
||||||
|
|
||||||
Copyright (C) 2008-2008 bla <blapost@gmail.com>
|
|
||||||
*/
|
|
||||||
#include "crapto1.h"
|
|
||||||
#include <stdlib.h>
|
|
||||||
|
|
||||||
void crypto1_create(struct Crypto1State *s, uint64_t key)
|
|
||||||
{
|
|
||||||
// struct Crypto1State *s = malloc(sizeof(*s));
|
|
||||||
int i;
|
|
||||||
|
|
||||||
for(i = 47;s && i > 0; i -= 2) {
|
|
||||||
s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7);
|
|
||||||
s->even = s->even << 1 | BIT(key, i ^ 7);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
void crypto1_destroy(struct Crypto1State *state)
|
|
||||||
{
|
|
||||||
// free(state);
|
|
||||||
state->odd = 0;
|
|
||||||
state->even = 0;
|
|
||||||
}
|
|
||||||
void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr)
|
|
||||||
{
|
|
||||||
int i;
|
|
||||||
for(*lfsr = 0, i = 23; i >= 0; --i) {
|
|
||||||
*lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3);
|
|
||||||
*lfsr = *lfsr << 1 | BIT(state->even, i ^ 3);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
|
|
||||||
{
|
|
||||||
uint32_t feedin;
|
|
||||||
uint32_t tmp;
|
|
||||||
uint8_t ret = filter(s->odd);
|
|
||||||
|
|
||||||
feedin = ret & !!is_encrypted;
|
|
||||||
feedin ^= !!in;
|
|
||||||
feedin ^= LF_POLY_ODD & s->odd;
|
|
||||||
feedin ^= LF_POLY_EVEN & s->even;
|
|
||||||
s->even = s->even << 1 | parity(feedin);
|
|
||||||
|
|
||||||
tmp = s->odd;
|
|
||||||
s->odd = s->even;
|
|
||||||
s->even = tmp;
|
|
||||||
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted)
|
|
||||||
{
|
|
||||||
/*
|
|
||||||
uint8_t i, ret = 0;
|
|
||||||
|
|
||||||
for (i = 0; i < 8; ++i)
|
|
||||||
ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i;
|
|
||||||
*/
|
|
||||||
// unfold loop 20161012
|
|
||||||
uint8_t ret = 0;
|
|
||||||
ret |= crypto1_bit(s, BIT(in, 0), is_encrypted) << 0;
|
|
||||||
ret |= crypto1_bit(s, BIT(in, 1), is_encrypted) << 1;
|
|
||||||
ret |= crypto1_bit(s, BIT(in, 2), is_encrypted) << 2;
|
|
||||||
ret |= crypto1_bit(s, BIT(in, 3), is_encrypted) << 3;
|
|
||||||
ret |= crypto1_bit(s, BIT(in, 4), is_encrypted) << 4;
|
|
||||||
ret |= crypto1_bit(s, BIT(in, 5), is_encrypted) << 5;
|
|
||||||
ret |= crypto1_bit(s, BIT(in, 6), is_encrypted) << 6;
|
|
||||||
ret |= crypto1_bit(s, BIT(in, 7), is_encrypted) << 7;
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
|
|
||||||
{
|
|
||||||
/*
|
|
||||||
uint32_t i, ret = 0;
|
|
||||||
|
|
||||||
for (i = 0; i < 32; ++i)
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24);
|
|
||||||
*/
|
|
||||||
//unfold loop 2016012
|
|
||||||
uint32_t ret = 0;
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 0), is_encrypted) << (0 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 1), is_encrypted) << (1 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 2), is_encrypted) << (2 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 3), is_encrypted) << (3 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 4), is_encrypted) << (4 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 5), is_encrypted) << (5 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 6), is_encrypted) << (6 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 7), is_encrypted) << (7 ^ 24);
|
|
||||||
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 8), is_encrypted) << (8 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 9), is_encrypted) << (9 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 10), is_encrypted) << (10 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 11), is_encrypted) << (11 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 12), is_encrypted) << (12 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 13), is_encrypted) << (13 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 14), is_encrypted) << (14 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 15), is_encrypted) << (15 ^ 24);
|
|
||||||
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 16), is_encrypted) << (16 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 17), is_encrypted) << (17 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 18), is_encrypted) << (18 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 19), is_encrypted) << (19 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 20), is_encrypted) << (20 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 21), is_encrypted) << (21 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 22), is_encrypted) << (22 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 23), is_encrypted) << (23 ^ 24);
|
|
||||||
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 24), is_encrypted) << (24 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 25), is_encrypted) << (25 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 26), is_encrypted) << (26 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 27), is_encrypted) << (27 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 28), is_encrypted) << (28 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 29), is_encrypted) << (29 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 30), is_encrypted) << (30 ^ 24);
|
|
||||||
ret |= crypto1_bit(s, BEBIT(in, 31), is_encrypted) << (31 ^ 24);
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* prng_successor
|
|
||||||
* helper used to obscure the keystream during authentication
|
|
||||||
*/
|
|
||||||
uint32_t prng_successor(uint32_t x, uint32_t n)
|
|
||||||
{
|
|
||||||
SWAPENDIAN(x);
|
|
||||||
while(n--)
|
|
||||||
x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31;
|
|
||||||
|
|
||||||
return SWAPENDIAN(x);
|
|
||||||
}
|
|
366
armsrc/hitag2.c
366
armsrc/hitag2.c
|
@ -61,6 +61,13 @@ static struct hitag2_tag tag = {
|
||||||
},
|
},
|
||||||
};
|
};
|
||||||
|
|
||||||
|
static enum {
|
||||||
|
WRITE_STATE_START = 0x0,
|
||||||
|
WRITE_STATE_PAGENUM_WRITTEN,
|
||||||
|
WRITE_STATE_PROG
|
||||||
|
} writestate;
|
||||||
|
|
||||||
|
|
||||||
// ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.
|
// ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.
|
||||||
// Historically it used to be FREE_BUFFER_SIZE, which was 2744.
|
// Historically it used to be FREE_BUFFER_SIZE, which was 2744.
|
||||||
#define AUTH_TABLE_LENGTH 2744
|
#define AUTH_TABLE_LENGTH 2744
|
||||||
|
@ -71,6 +78,7 @@ static size_t auth_table_len = AUTH_TABLE_LENGTH;
|
||||||
static byte_t password[4];
|
static byte_t password[4];
|
||||||
static byte_t NrAr[8];
|
static byte_t NrAr[8];
|
||||||
static byte_t key[8];
|
static byte_t key[8];
|
||||||
|
static byte_t writedata[4];
|
||||||
static uint64_t cipher_state;
|
static uint64_t cipher_state;
|
||||||
|
|
||||||
/* Following is a modified version of cryptolib.com/ciphers/hitag2/ */
|
/* Following is a modified version of cryptolib.com/ciphers/hitag2/ */
|
||||||
|
@ -225,6 +233,7 @@ static int hitag2_cipher_transcrypt(uint64_t* cs, byte_t *data, unsigned int byt
|
||||||
#define HITAG_T_WAIT_1 200 /* T_wresp should be 199..206 */
|
#define HITAG_T_WAIT_1 200 /* T_wresp should be 199..206 */
|
||||||
#define HITAG_T_WAIT_2 90 /* T_wresp should be 199..206 */
|
#define HITAG_T_WAIT_2 90 /* T_wresp should be 199..206 */
|
||||||
#define HITAG_T_WAIT_MAX 300 /* bit more than HITAG_T_WAIT_1 + HITAG_T_WAIT_2 */
|
#define HITAG_T_WAIT_MAX 300 /* bit more than HITAG_T_WAIT_1 + HITAG_T_WAIT_2 */
|
||||||
|
#define HITAG_T_PROG 614
|
||||||
|
|
||||||
#define HITAG_T_TAG_ONE_HALF_PERIOD 10
|
#define HITAG_T_TAG_ONE_HALF_PERIOD 10
|
||||||
#define HITAG_T_TAG_TWO_HALF_PERIOD 25
|
#define HITAG_T_TAG_TWO_HALF_PERIOD 25
|
||||||
|
@ -509,14 +518,65 @@ static bool hitag2_password(byte_t* rx, const size_t rxlen, byte_t* tx, size_t*
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
static bool hitag2_crypto(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) {
|
static bool hitag2_write_page(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen)
|
||||||
|
{
|
||||||
|
switch (writestate) {
|
||||||
|
case WRITE_STATE_START:
|
||||||
|
*txlen = 10;
|
||||||
|
tx[0] = 0x82 | (blocknr << 3) | ((blocknr^7) >> 2);
|
||||||
|
tx[1] = ((blocknr^7) << 6);
|
||||||
|
writestate = WRITE_STATE_PAGENUM_WRITTEN;
|
||||||
|
break;
|
||||||
|
case WRITE_STATE_PAGENUM_WRITTEN:
|
||||||
|
// Check if page number was received correctly
|
||||||
|
if ((rxlen == 10) &&
|
||||||
|
(rx[0] == (0x82 | (blocknr << 3) | ((blocknr^7) >> 2))) &&
|
||||||
|
(rx[1] == (((blocknr & 0x3) ^ 0x3) << 6))) {
|
||||||
|
*txlen = 32;
|
||||||
|
memset(tx, 0, HITAG_FRAME_LEN);
|
||||||
|
memcpy(tx, writedata, 4);
|
||||||
|
writestate = WRITE_STATE_PROG;
|
||||||
|
} else {
|
||||||
|
Dbprintf("hitag2_write_page: Page number was not received correctly: rxlen=%d rx=%02x%02x%02x%02x",
|
||||||
|
rxlen, rx[0], rx[1], rx[2], rx[3]);
|
||||||
|
bSuccessful = false;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case WRITE_STATE_PROG:
|
||||||
|
if (rxlen == 0) {
|
||||||
|
bSuccessful = true;
|
||||||
|
} else {
|
||||||
|
bSuccessful = false;
|
||||||
|
Dbprintf("hitag2_write_page: unexpected rx data (%d) after page write", rxlen);
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
default:
|
||||||
|
DbpString("hitag2_write_page: Unknown state %d");
|
||||||
|
bSuccessful = false;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
static bool hitag2_crypto(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen, bool write) {
|
||||||
// Reset the transmission frame length
|
// Reset the transmission frame length
|
||||||
*txlen = 0;
|
*txlen = 0;
|
||||||
|
|
||||||
if(bCrypto) {
|
if(bCrypto) {
|
||||||
hitag2_cipher_transcrypt(&cipher_state,rx,rxlen/8,rxlen%8);
|
hitag2_cipher_transcrypt(&cipher_state,rx,rxlen/8,rxlen%8);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (bCrypto && !bAuthenticating && write) {
|
||||||
|
if (!hitag2_write_page(rx, rxlen, tx, txlen)) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
|
||||||
// Try to find out which command was send by selecting on length (in bits)
|
// Try to find out which command was send by selecting on length (in bits)
|
||||||
switch (rxlen) {
|
switch (rxlen) {
|
||||||
// No answer, try to resurrect
|
// No answer, try to resurrect
|
||||||
|
@ -549,13 +609,14 @@ static bool hitag2_crypto(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* tx
|
||||||
*txlen = 5;
|
*txlen = 5;
|
||||||
memcpy(tx,"\xc0",nbytes(*txlen));
|
memcpy(tx,"\xc0",nbytes(*txlen));
|
||||||
}
|
}
|
||||||
} break;
|
break;
|
||||||
|
}
|
||||||
// Received UID, crypto tag answer
|
// Received UID, crypto tag answer
|
||||||
case 32: {
|
case 32: {
|
||||||
if (!bCrypto) {
|
if (!bCrypto) {
|
||||||
uint64_t ui64key = key[0] | ((uint64_t)key[1]) << 8 | ((uint64_t)key[2]) << 16 | ((uint64_t)key[3]) << 24 | ((uint64_t)key[4]) << 32 | ((uint64_t)key[5]) << 40;
|
uint64_t ui64key = key[0] | ((uint64_t)key[1]) << 8 | ((uint64_t)key[2]) << 16 | ((uint64_t)key[3]) << 24 | ((uint64_t)key[4]) << 32 | ((uint64_t)key[5]) << 40;
|
||||||
uint32_t ui32uid = rx[0] | ((uint32_t)rx[1]) << 8 | ((uint32_t)rx[2]) << 16 | ((uint32_t)rx[3]) << 24;
|
uint32_t ui32uid = rx[0] | ((uint32_t)rx[1]) << 8 | ((uint32_t)rx[2]) << 16 | ((uint32_t)rx[3]) << 24;
|
||||||
|
Dbprintf("hitag2_crypto: key=0x%x%x uid=0x%x", (uint32_t) ((rev64(ui64key)) >> 32), (uint32_t) ((rev64(ui64key)) & 0xffffffff), rev32(ui32uid));
|
||||||
cipher_state = _hitag2_init(rev64(ui64key), rev32(ui32uid), 0);
|
cipher_state = _hitag2_init(rev64(ui64key), rev32(ui32uid), 0);
|
||||||
memset(tx,0x00,4);
|
memset(tx,0x00,4);
|
||||||
memset(tx+4,0xff,4);
|
memset(tx+4,0xff,4);
|
||||||
|
@ -567,6 +628,12 @@ static bool hitag2_crypto(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* tx
|
||||||
// Check if we received answer tag (at)
|
// Check if we received answer tag (at)
|
||||||
if (bAuthenticating) {
|
if (bAuthenticating) {
|
||||||
bAuthenticating = false;
|
bAuthenticating = false;
|
||||||
|
if (write) {
|
||||||
|
if (!hitag2_write_page(rx, rxlen, tx, txlen)) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
// Store the received block
|
// Store the received block
|
||||||
memcpy(tag.sectors[blocknr],rx,4);
|
memcpy(tag.sectors[blocknr],rx,4);
|
||||||
|
@ -576,11 +643,12 @@ static bool hitag2_crypto(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* tx
|
||||||
DbpString("Read succesful!");
|
DbpString("Read succesful!");
|
||||||
bSuccessful = true;
|
bSuccessful = true;
|
||||||
return false;
|
return false;
|
||||||
}
|
} else {
|
||||||
*txlen = 10;
|
*txlen = 10;
|
||||||
tx[0] = 0xc0 | (blocknr << 3) | ((blocknr^7) >> 2);
|
tx[0] = 0xc0 | (blocknr << 3) | ((blocknr^7) >> 2);
|
||||||
tx[1] = ((blocknr^7) << 6);
|
tx[1] = ((blocknr^7) << 6);
|
||||||
}
|
}
|
||||||
|
}
|
||||||
} break;
|
} break;
|
||||||
|
|
||||||
// Unexpected response
|
// Unexpected response
|
||||||
|
@ -589,7 +657,7 @@ static bool hitag2_crypto(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* tx
|
||||||
return false;
|
return false;
|
||||||
} break;
|
} break;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if(bCrypto) {
|
if(bCrypto) {
|
||||||
// We have to return now to avoid double encryption
|
// We have to return now to avoid double encryption
|
||||||
|
@ -1318,7 +1386,7 @@ void ReaderHitag(hitag_function htf, hitag_data* htd) {
|
||||||
bStop = !hitag2_authenticate(rx,rxlen,tx,&txlen);
|
bStop = !hitag2_authenticate(rx,rxlen,tx,&txlen);
|
||||||
} break;
|
} break;
|
||||||
case RHT2F_CRYPTO: {
|
case RHT2F_CRYPTO: {
|
||||||
bStop = !hitag2_crypto(rx,rxlen,tx,&txlen);
|
bStop = !hitag2_crypto(rx,rxlen,tx,&txlen, false);
|
||||||
} break;
|
} break;
|
||||||
case RHT2F_TEST_AUTH_ATTEMPTS: {
|
case RHT2F_TEST_AUTH_ATTEMPTS: {
|
||||||
bStop = !hitag2_test_auth_attempts(rx,rxlen,tx,&txlen);
|
bStop = !hitag2_test_auth_attempts(rx,rxlen,tx,&txlen);
|
||||||
|
@ -1445,5 +1513,287 @@ void ReaderHitag(hitag_function htf, hitag_data* htd) {
|
||||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||||||
// Dbprintf("DONE: frame received: %d",frame_count);
|
// Dbprintf("DONE: frame received: %d",frame_count);
|
||||||
cmd_send(CMD_ACK,bSuccessful,0,0,(byte_t*)tag.sectors,48);
|
cmd_send(CMD_ACK,bSuccessful,0,0,(byte_t*)tag.sectors,48);
|
||||||
set_tracing(false);
|
set_tracing(false);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void WriterHitag(hitag_function htf, hitag_data* htd, int page) {
|
||||||
|
int frame_count;
|
||||||
|
int response;
|
||||||
|
byte_t rx[HITAG_FRAME_LEN];
|
||||||
|
size_t rxlen=0;
|
||||||
|
byte_t txbuf[HITAG_FRAME_LEN];
|
||||||
|
byte_t* tx = txbuf;
|
||||||
|
size_t txlen=0;
|
||||||
|
int lastbit;
|
||||||
|
bool bSkip;
|
||||||
|
int reset_sof;
|
||||||
|
int tag_sof;
|
||||||
|
int t_wait = HITAG_T_WAIT_MAX;
|
||||||
|
bool bStop;
|
||||||
|
bool bQuitTraceFull = false;
|
||||||
|
|
||||||
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
||||||
|
// Reset the return status
|
||||||
|
bSuccessful = false;
|
||||||
|
|
||||||
|
// Clean up trace and prepare it for storing frames
|
||||||
|
set_tracing(true);
|
||||||
|
clear_trace();
|
||||||
|
|
||||||
|
//DbpString("Starting Hitag reader family");
|
||||||
|
|
||||||
|
// Check configuration
|
||||||
|
switch(htf) {
|
||||||
|
case WHT2F_CRYPTO:
|
||||||
|
{
|
||||||
|
DbpString("Authenticating using key:");
|
||||||
|
memcpy(key,htd->crypto.key,6); //HACK; 4 or 6?? I read both in the code.
|
||||||
|
memcpy(writedata, htd->crypto.data, 4);
|
||||||
|
Dbhexdump(6,key,false);
|
||||||
|
blocknr = page;
|
||||||
|
bQuiet = false;
|
||||||
|
bCrypto = false;
|
||||||
|
bAuthenticating = false;
|
||||||
|
bQuitTraceFull = true;
|
||||||
|
writestate = WRITE_STATE_START;
|
||||||
|
} break;
|
||||||
|
default: {
|
||||||
|
Dbprintf("Error, unknown function: %d",htf);
|
||||||
|
return;
|
||||||
|
} break;
|
||||||
|
}
|
||||||
|
|
||||||
|
LED_D_ON();
|
||||||
|
hitag2_init();
|
||||||
|
|
||||||
|
// Configure output and enable pin that is connected to the FPGA (for modulating)
|
||||||
|
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
|
||||||
|
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
|
||||||
|
|
||||||
|
// Set fpga in edge detect with reader field, we can modulate as reader now
|
||||||
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
|
||||||
|
|
||||||
|
// Set Frequency divisor which will drive the FPGA and analog mux selection
|
||||||
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
||||||
|
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
|
||||||
|
RELAY_OFF();
|
||||||
|
|
||||||
|
// Disable modulation at default, which means enable the field
|
||||||
|
LOW(GPIO_SSC_DOUT);
|
||||||
|
|
||||||
|
// Give it a bit of time for the resonant antenna to settle.
|
||||||
|
SpinDelay(30);
|
||||||
|
|
||||||
|
// Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
|
||||||
|
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0);
|
||||||
|
|
||||||
|
// Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the tag frames
|
||||||
|
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
|
||||||
|
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
|
||||||
|
|
||||||
|
// Disable timer during configuration
|
||||||
|
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
|
||||||
|
|
||||||
|
// Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
|
||||||
|
// external trigger rising edge, load RA on falling edge of TIOA.
|
||||||
|
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_FALLING | AT91C_TC_ABETRG | AT91C_TC_LDRA_FALLING;
|
||||||
|
|
||||||
|
// Enable and reset counters
|
||||||
|
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
|
||||||
|
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
|
||||||
|
|
||||||
|
// Reset the received frame, frame count and timing info
|
||||||
|
frame_count = 0;
|
||||||
|
response = 0;
|
||||||
|
lastbit = 1;
|
||||||
|
bStop = false;
|
||||||
|
|
||||||
|
// Tag specific configuration settings (sof, timings, etc.)
|
||||||
|
if (htf < 10){
|
||||||
|
// hitagS settings
|
||||||
|
reset_sof = 1;
|
||||||
|
t_wait = 200;
|
||||||
|
//DbpString("Configured for hitagS reader");
|
||||||
|
} else if (htf < 20) {
|
||||||
|
// hitag1 settings
|
||||||
|
reset_sof = 1;
|
||||||
|
t_wait = 200;
|
||||||
|
//DbpString("Configured for hitag1 reader");
|
||||||
|
} else if (htf < 30) {
|
||||||
|
// hitag2 settings
|
||||||
|
reset_sof = 4;
|
||||||
|
t_wait = HITAG_T_WAIT_2;
|
||||||
|
//DbpString("Configured for hitag2 reader");
|
||||||
|
} else {
|
||||||
|
Dbprintf("Error, unknown hitag reader type: %d",htf);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
while(!bStop && !BUTTON_PRESS()) {
|
||||||
|
// Watchdog hit
|
||||||
|
WDT_HIT();
|
||||||
|
|
||||||
|
// Check if frame was captured and store it
|
||||||
|
if(rxlen > 0) {
|
||||||
|
frame_count++;
|
||||||
|
if (!bQuiet) {
|
||||||
|
if (!LogTraceHitag(rx,rxlen,response,0,false)) {
|
||||||
|
DbpString("Trace full");
|
||||||
|
if (bQuitTraceFull) {
|
||||||
|
break;
|
||||||
|
} else {
|
||||||
|
bQuiet = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// By default reset the transmission buffer
|
||||||
|
tx = txbuf;
|
||||||
|
switch(htf) {
|
||||||
|
case WHT2F_CRYPTO: {
|
||||||
|
bStop = !hitag2_crypto(rx,rxlen,tx,&txlen, true);
|
||||||
|
} break;
|
||||||
|
default: {
|
||||||
|
Dbprintf("Error, unknown function: %d",htf);
|
||||||
|
return;
|
||||||
|
} break;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Send and store the reader command
|
||||||
|
// Disable timer 1 with external trigger to avoid triggers during our own modulation
|
||||||
|
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
|
||||||
|
|
||||||
|
// Wait for HITAG_T_WAIT_2 carrier periods after the last tag bit before transmitting,
|
||||||
|
// Since the clock counts since the last falling edge, a 'one' means that the
|
||||||
|
// falling edge occured halfway the period. with respect to this falling edge,
|
||||||
|
// we need to wait (T_Wait2 + half_tag_period) when the last was a 'one'.
|
||||||
|
// All timer values are in terms of T0 units
|
||||||
|
while(AT91C_BASE_TC0->TC_CV < T0*(t_wait+(HITAG_T_TAG_HALF_PERIOD*lastbit)));
|
||||||
|
|
||||||
|
//Dbprintf("DEBUG: Sending reader frame");
|
||||||
|
|
||||||
|
// Transmit the reader frame
|
||||||
|
hitag_reader_send_frame(tx,txlen);
|
||||||
|
|
||||||
|
// Enable and reset external trigger in timer for capturing future frames
|
||||||
|
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
|
||||||
|
|
||||||
|
// Add transmitted frame to total count
|
||||||
|
if(txlen > 0) {
|
||||||
|
frame_count++;
|
||||||
|
if (!bQuiet) {
|
||||||
|
// Store the frame in the trace
|
||||||
|
if (!LogTraceHitag(tx,txlen,HITAG_T_WAIT_2,0,true)) {
|
||||||
|
if (bQuitTraceFull) {
|
||||||
|
break;
|
||||||
|
} else {
|
||||||
|
bQuiet = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Reset values for receiving frames
|
||||||
|
memset(rx,0x00,sizeof(rx));
|
||||||
|
rxlen = 0;
|
||||||
|
lastbit = 1;
|
||||||
|
bSkip = true;
|
||||||
|
tag_sof = reset_sof;
|
||||||
|
response = 0;
|
||||||
|
//Dbprintf("DEBUG: Waiting to receive frame");
|
||||||
|
uint32_t errorCount = 0;
|
||||||
|
|
||||||
|
// Receive frame, watch for at most T0*EOF periods
|
||||||
|
while (AT91C_BASE_TC1->TC_CV < T0*HITAG_T_WAIT_MAX) {
|
||||||
|
// Check if falling edge in tag modulation is detected
|
||||||
|
if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
|
||||||
|
// Retrieve the new timing values
|
||||||
|
int ra = (AT91C_BASE_TC1->TC_RA/T0);
|
||||||
|
|
||||||
|
// Reset timer every frame, we have to capture the last edge for timing
|
||||||
|
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
|
||||||
|
|
||||||
|
LED_B_ON();
|
||||||
|
|
||||||
|
// Capture tag frame (manchester decoding using only falling edges)
|
||||||
|
if(ra >= HITAG_T_EOF) {
|
||||||
|
if (rxlen != 0) {
|
||||||
|
//Dbprintf("DEBUG: Wierd1");
|
||||||
|
}
|
||||||
|
// Capture the T0 periods that have passed since last communication or field drop (reset)
|
||||||
|
// We always recieve a 'one' first, which has the falling edge after a half period |-_|
|
||||||
|
response = ra-HITAG_T_TAG_HALF_PERIOD;
|
||||||
|
} else if(ra >= HITAG_T_TAG_CAPTURE_FOUR_HALF) {
|
||||||
|
// Manchester coding example |-_|_-|-_| (101)
|
||||||
|
|
||||||
|
//need to test to verify we don't exceed memory...
|
||||||
|
//if ( ((rxlen+2) / 8) > HITAG_FRAME_LEN) {
|
||||||
|
// break;
|
||||||
|
//}
|
||||||
|
rx[rxlen / 8] |= 0 << (7-(rxlen%8));
|
||||||
|
rxlen++;
|
||||||
|
rx[rxlen / 8] |= 1 << (7-(rxlen%8));
|
||||||
|
rxlen++;
|
||||||
|
} else if(ra >= HITAG_T_TAG_CAPTURE_THREE_HALF) {
|
||||||
|
// Manchester coding example |_-|...|_-|-_| (0...01)
|
||||||
|
|
||||||
|
//need to test to verify we don't exceed memory...
|
||||||
|
//if ( ((rxlen+2) / 8) > HITAG_FRAME_LEN) {
|
||||||
|
// break;
|
||||||
|
//}
|
||||||
|
rx[rxlen / 8] |= 0 << (7-(rxlen%8));
|
||||||
|
rxlen++;
|
||||||
|
// We have to skip this half period at start and add the 'one' the second time
|
||||||
|
if (!bSkip) {
|
||||||
|
rx[rxlen / 8] |= 1 << (7-(rxlen%8));
|
||||||
|
rxlen++;
|
||||||
|
}
|
||||||
|
lastbit = !lastbit;
|
||||||
|
bSkip = !bSkip;
|
||||||
|
} else if(ra >= HITAG_T_TAG_CAPTURE_TWO_HALF) {
|
||||||
|
// Manchester coding example |_-|_-| (00) or |-_|-_| (11)
|
||||||
|
|
||||||
|
//need to test to verify we don't exceed memory...
|
||||||
|
//if ( ((rxlen+2) / 8) > HITAG_FRAME_LEN) {
|
||||||
|
// break;
|
||||||
|
//}
|
||||||
|
if (tag_sof) {
|
||||||
|
// Ignore bits that are transmitted during SOF
|
||||||
|
tag_sof--;
|
||||||
|
} else {
|
||||||
|
// bit is same as last bit
|
||||||
|
rx[rxlen / 8] |= lastbit << (7-(rxlen%8));
|
||||||
|
rxlen++;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
//Dbprintf("DEBUG: Wierd2");
|
||||||
|
errorCount++;
|
||||||
|
// Ignore wierd value, is to small to mean anything
|
||||||
|
}
|
||||||
|
}
|
||||||
|
//if we saw over 100 wierd values break it probably isn't hitag...
|
||||||
|
if (errorCount >100) break;
|
||||||
|
// We can break this loop if we received the last bit from a frame
|
||||||
|
if (AT91C_BASE_TC1->TC_CV > T0*HITAG_T_EOF) {
|
||||||
|
if (rxlen>0) break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Wait some extra time for flash to be programmed
|
||||||
|
if ((rxlen == 0) && (writestate == WRITE_STATE_PROG))
|
||||||
|
{
|
||||||
|
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
|
||||||
|
while(AT91C_BASE_TC0->TC_CV < T0*(HITAG_T_PROG - HITAG_T_WAIT_MAX));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
//Dbprintf("DEBUG: Done waiting for frame");
|
||||||
|
|
||||||
|
LED_B_OFF();
|
||||||
|
LED_D_OFF();
|
||||||
|
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
|
||||||
|
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
|
||||||
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||||||
|
//Dbprintf("frame received: %d",frame_count);
|
||||||
|
//DbpString("All done");
|
||||||
|
cmd_send(CMD_ACK,bSuccessful,0,0,(byte_t*)tag.sectors,48);
|
||||||
|
}
|
||||||
|
|
|
@ -1679,27 +1679,32 @@ void ReaderIClass(uint8_t arg0) {
|
||||||
|
|
||||||
uint8_t card_data[6 * 8] = {0};
|
uint8_t card_data[6 * 8] = {0};
|
||||||
memset(card_data, 0xFF, sizeof(card_data));
|
memset(card_data, 0xFF, sizeof(card_data));
|
||||||
uint8_t last_csn[8] = {0};
|
uint8_t last_csn[8]={0,0,0,0,0,0,0,0};
|
||||||
|
uint8_t resp[ICLASS_BUFFER_SIZE];
|
||||||
|
memset(resp, 0xFF, sizeof(resp));
|
||||||
//Read conf block CRC(0x01) => 0xfa 0x22
|
//Read conf block CRC(0x01) => 0xfa 0x22
|
||||||
uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22};
|
uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22};
|
||||||
//Read conf block CRC(0x05) => 0xde 0x64
|
//Read App Issuer Area block CRC(0x05) => 0xde 0x64
|
||||||
uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64};
|
uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64};
|
||||||
|
|
||||||
int read_status= 0;
|
int read_status= 0;
|
||||||
uint8_t result_status = 0;
|
uint8_t result_status = 0;
|
||||||
|
// flag to read until one tag is found successfully
|
||||||
bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE;
|
bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE;
|
||||||
|
// flag to only try 5 times to find one tag then return
|
||||||
bool try_once = arg0 & FLAG_ICLASS_READER_ONE_TRY;
|
bool try_once = arg0 & FLAG_ICLASS_READER_ONE_TRY;
|
||||||
bool use_credit_key = false;
|
// if neither abort_after_read nor try_once then continue reading until button pressed.
|
||||||
uint16_t tryCnt = 0;
|
|
||||||
|
|
||||||
if ((arg0 & FLAG_ICLASS_READER_CEDITKEY) == FLAG_ICLASS_READER_CEDITKEY)
|
|
||||||
use_credit_key = true;
|
|
||||||
|
|
||||||
set_tracing(true);
|
|
||||||
|
|
||||||
setupIclassReader();
|
|
||||||
|
|
||||||
|
bool use_credit_key = arg0 & FLAG_ICLASS_READER_CEDITKEY;
|
||||||
|
// test flags for what blocks to be sure to read
|
||||||
|
uint8_t flagReadConfig = arg0 & FLAG_ICLASS_READER_CONF;
|
||||||
|
uint8_t flagReadCC = arg0 & FLAG_ICLASS_READER_CC;
|
||||||
|
uint8_t flagReadAA = arg0 & FLAG_ICLASS_READER_AA;
|
||||||
|
|
||||||
|
set_tracing(true);
|
||||||
|
setupIclassReader();
|
||||||
|
|
||||||
|
uint16_t tryCnt = 0;
|
||||||
bool userCancelled = BUTTON_PRESS() || usb_poll_validate_length();
|
bool userCancelled = BUTTON_PRESS() || usb_poll_validate_length();
|
||||||
while (!userCancelled) {
|
while (!userCancelled) {
|
||||||
// if only looking for one card try 2 times if we missed it the first time
|
// if only looking for one card try 2 times if we missed it the first time
|
||||||
|
@ -1724,18 +1729,22 @@ void ReaderIClass(uint8_t arg0) {
|
||||||
// moving CC forward 8 bytes
|
// moving CC forward 8 bytes
|
||||||
memcpy(card_data+16, card_data+8, 8);
|
memcpy(card_data+16, card_data+8, 8);
|
||||||
//Read block 1, config
|
//Read block 1, config
|
||||||
if ( (arg0 & FLAG_ICLASS_READER_CONF) == FLAG_ICLASS_READER_CONF ) {
|
if(flagReadConfig) {
|
||||||
if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), card_data+8, 10, 10)) {
|
if(sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, 10, 10))
|
||||||
|
{
|
||||||
result_status |= FLAG_ICLASS_READER_CONF;
|
result_status |= FLAG_ICLASS_READER_CONF;
|
||||||
|
memcpy(card_data+8, resp, 8);
|
||||||
} else {
|
} else {
|
||||||
Dbprintf("Failed to dump config block");
|
Dbprintf("Failed to dump config block");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
//Read block 5, AA
|
//Read block 5, AA
|
||||||
if ( (arg0 & FLAG_ICLASS_READER_AA) == FLAG_ICLASS_READER_AA ) {
|
if(flagReadAA) {
|
||||||
if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), card_data+(8*5), 10, 10)) {
|
if(sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, 10, 10))
|
||||||
|
{
|
||||||
result_status |= FLAG_ICLASS_READER_AA;
|
result_status |= FLAG_ICLASS_READER_AA;
|
||||||
|
memcpy(card_data+(8*5), resp, 8);
|
||||||
} else {
|
} else {
|
||||||
//Dbprintf("Failed to dump AA block");
|
//Dbprintf("Failed to dump AA block");
|
||||||
}
|
}
|
||||||
|
@ -1751,12 +1760,12 @@ void ReaderIClass(uint8_t arg0) {
|
||||||
// with 0xFF:s in block 3 and 4.
|
// with 0xFF:s in block 3 and 4.
|
||||||
|
|
||||||
LED_B_ON();
|
LED_B_ON();
|
||||||
//Send back to client, but don't bother if we already sent this
|
//Send back to client, but don't bother if we already sent this -
|
||||||
if(memcmp(last_csn, card_data, 8) != 0) {
|
|
||||||
// If caller requires that we get CC, continue until we got it
|
|
||||||
// only useful if looping in arm (not try_once && not abort_after_read)
|
// only useful if looping in arm (not try_once && not abort_after_read)
|
||||||
if( (arg0 & read_status & FLAG_ICLASS_READER_CC) || !(arg0 & FLAG_ICLASS_READER_CC))
|
if(memcmp(last_csn, card_data, 8) != 0)
|
||||||
{
|
{
|
||||||
|
// If caller requires that we get Conf, CC, AA, continue until we got it
|
||||||
|
if( (result_status ^ FLAG_ICLASS_READER_CSN ^ flagReadConfig ^ flagReadCC ^ flagReadAA) == 0) {
|
||||||
cmd_send(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data) );
|
cmd_send(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data) );
|
||||||
if (abort_after_read) {
|
if (abort_after_read) {
|
||||||
LEDsoff();
|
LEDsoff();
|
||||||
|
|
|
@ -23,7 +23,7 @@ extern "C" {
|
||||||
#include "string.h"
|
#include "string.h"
|
||||||
#include "iso14443crc.h"
|
#include "iso14443crc.h"
|
||||||
#include "mifaresniff.h"
|
#include "mifaresniff.h"
|
||||||
#include "crapto1.h"
|
#include "crapto1/crapto1.h"
|
||||||
#include "mifareutil.h"
|
#include "mifareutil.h"
|
||||||
#include "parity.h"
|
#include "parity.h"
|
||||||
#include "random.h"
|
#include "random.h"
|
||||||
|
|
|
@ -19,7 +19,7 @@
|
||||||
#include "string.h"
|
#include "string.h"
|
||||||
#include "iso14443crc.h"
|
#include "iso14443crc.h"
|
||||||
#include "iso14443a.h"
|
#include "iso14443a.h"
|
||||||
#include "crapto1.h"
|
#include "crapto1/crapto1.h"
|
||||||
#include "mifareutil.h"
|
#include "mifareutil.h"
|
||||||
#include "common.h"
|
#include "common.h"
|
||||||
#include "crc.h"
|
#include "crc.h"
|
||||||
|
|
|
@ -17,7 +17,7 @@
|
||||||
#include "string.h"
|
#include "string.h"
|
||||||
#include "iso14443crc.h"
|
#include "iso14443crc.h"
|
||||||
#include "iso14443a.h"
|
#include "iso14443a.h"
|
||||||
#include "crapto1.h"
|
#include "crapto1/crapto1.h"
|
||||||
#include "mifareutil.h"
|
#include "mifareutil.h"
|
||||||
#include "common.h"
|
#include "common.h"
|
||||||
|
|
||||||
|
|
|
@ -19,7 +19,7 @@
|
||||||
#include "string.h"
|
#include "string.h"
|
||||||
#include "iso14443crc.h"
|
#include "iso14443crc.h"
|
||||||
#include "iso14443a.h"
|
#include "iso14443a.h"
|
||||||
#include "crapto1.h"
|
#include "crapto1/crapto1.h"
|
||||||
#include "des.h"
|
#include "des.h"
|
||||||
#include "random.h" // fast_prand, prand
|
#include "random.h" // fast_prand, prand
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue