fixes: armside

This commit is contained in:
iceman1001 2017-07-30 10:01:30 +02:00
commit b3f787a64f
11 changed files with 397 additions and 812 deletions

View file

@ -1043,7 +1043,12 @@ void UsbPacketReceived(uint8_t *packet, int len)
ReadHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes); ReadHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
break; break;
case CMD_WR_HITAG_S: //writer for Hitag tags args=data to write,page and key or challenge case CMD_WR_HITAG_S: //writer for Hitag tags args=data to write,page and key or challenge
if ((hitag_function)c->arg[0] < 10) {
WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]); WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
}
else if ((hitag_function)c->arg[0] >= 10) {
WriterHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes, c->arg[2]);
}
break; break;
#endif #endif

View file

@ -212,6 +212,7 @@ void iClass_ReadCheck(uint8_t blockNo, uint8_t keyType);
void SnoopHitag(uint32_t type); void SnoopHitag(uint32_t type);
void SimulateHitagTag(bool tag_mem_supplied, byte_t* data); void SimulateHitagTag(bool tag_mem_supplied, byte_t* data);
void ReaderHitag(hitag_function htf, hitag_data* htd); void ReaderHitag(hitag_function htf, hitag_data* htd);
void WriterHitag(hitag_function htf, hitag_data* htd, int page);
//hitagS.h //hitagS.h
void SimulateHitagSTag(bool tag_mem_supplied, byte_t* data); void SimulateHitagSTag(bool tag_mem_supplied, byte_t* data);

View file

@ -1,541 +0,0 @@
/* crapto1.c
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, US$
Copyright (C) 2008-2014 bla <blapost@gmail.com>
*/
#include "crapto1.h"
#include <stdlib.h>
#if !defined LOWMEM && defined __GNUC__
static uint8_t filterlut[1 << 20];
static void __attribute__((constructor)) fill_lut()
{
uint32_t i;
for(i = 0; i < 1 << 20; ++i)
filterlut[i] = filter(i);
}
#define filter(x) (filterlut[(x) & 0xfffff])
#endif
static void quicksort(uint32_t* const start, uint32_t* const stop)
{
uint32_t *it = start + 1, *rit = stop, t;
if(it > rit)
return;
while(it < rit)
if(*it <= *start)
++it;
else if(*rit > *start)
--rit;
else
t = *it, *it = *rit, *rit = t;
if(*rit >= *start)
--rit;
if(rit != start)
t = *rit, *rit = *start, *start = t;
quicksort(start, rit - 1);
quicksort(rit + 1, stop);
}
/** binsearch
* Binary search for the first occurence of *stop's MSB in sorted [start,stop]
*/
static inline uint32_t* binsearch(uint32_t *start, uint32_t *stop)
{
uint32_t mid, val = *stop & 0xff000000;
while(start != stop)
if(start[mid = (stop - start) >> 1] > val)
stop = &start[mid];
else
start += mid + 1;
return start;
}
/** update_contribution
* helper, calculates the partial linear feedback contributions and puts in MSB
*/
static inline void
update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)
{
uint32_t p = *item >> 25;
p = p << 1 | parity(*item & mask1);
p = p << 1 | parity(*item & mask2);
*item = p << 24 | (*item & 0xffffff);
}
/** extend_table
* using a bit of the keystream extend the table of possible lfsr states
*/
static inline void
extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
{
in <<= 24;
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else if(filter(*tbl) == bit) {
*++*end = tbl[1];
tbl[1] = tbl[0] | 1;
update_contribution(tbl, m1, m2);
*tbl++ ^= in;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else
*tbl-- = *(*end)--;
}
/** extend_table_simple
* using a bit of the keystream extend the table of possible lfsr states
*/
static inline void extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
{
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1))
*tbl |= filter(*tbl) ^ bit;
else if(filter(*tbl) == bit) {
*++*end = *++tbl;
*tbl = tbl[-1] | 1;
} else
*tbl-- = *(*end)--;
}
/** recover
* recursively narrow down the search space, 4 bits of keystream at a time
*/
static struct Crypto1State*
recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
struct Crypto1State *sl, uint32_t in)
{
uint32_t *o, *e, i;
if(rem == -1) {
for(e = e_head; e <= e_tail; ++e) {
*e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);
for(o = o_head; o <= o_tail; ++o, ++sl) {
sl->even = *o;
sl->odd = *e ^ parity(*o & LF_POLY_ODD);
sl[1].odd = sl[1].even = 0;
}
}
return sl;
}
for(i = 0; i < 4 && rem--; i++) {
oks >>= 1;
eks >>= 1;
in >>= 2;
extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1,
LF_POLY_ODD << 1, 0);
if(o_head > o_tail)
return sl;
extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD,
LF_POLY_EVEN << 1 | 1, in & 3);
if(e_head > e_tail)
return sl;
}
quicksort(o_head, o_tail);
quicksort(e_head, e_tail);
while(o_tail >= o_head && e_tail >= e_head)
if(((*o_tail ^ *e_tail) >> 24) == 0) {
o_tail = binsearch(o_head, o = o_tail);
e_tail = binsearch(e_head, e = e_tail);
sl = recover(o_tail--, o, oks,
e_tail--, e, eks, rem, sl, in);
}
else if(*o_tail > *e_tail)
o_tail = binsearch(o_head, o_tail) - 1;
else
e_tail = binsearch(e_head, e_tail) - 1;
return sl;
}
/** lfsr_recovery
* recover the state of the lfsr given 32 bits of the keystream
* additionally you can use the in parameter to specify the value
* that was fed into the lfsr at the time the keystream was generated
*/
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
{
struct Crypto1State *statelist;
uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
uint32_t *even_head = 0, *even_tail = 0, eks = 0;
int i;
// split the keystream into an odd and even part
for(i = 31; i >= 0; i -= 2)
oks = oks << 1 | BEBIT(ks2, i);
for(i = 30; i >= 0; i -= 2)
eks = eks << 1 | BEBIT(ks2, i);
odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
even_head = even_tail = malloc(sizeof(uint32_t) << 21);
statelist = malloc(sizeof(struct Crypto1State) << 18);
if(!odd_tail-- || !even_tail-- || !statelist) {
free(statelist);
statelist = 0;
goto out;
}
statelist->odd = statelist->even = 0;
// initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
for(i = 1 << 20; i >= 0; --i) {
if(filter(i) == (oks & 1))
*++odd_tail = i;
if(filter(i) == (eks & 1))
*++even_tail = i;
}
// extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
for(i = 0; i < 4; i++) {
extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
}
// the statelists now contain all states which could have generated the last 10 Bits of the keystream.
// 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
// parameter into account.
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);
recover(odd_head, odd_tail, oks,
even_head, even_tail, eks, 11, statelist, in << 1);
out:
free(odd_head);
free(even_head);
return statelist;
}
static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
0x7EC7EE90, 0x7F63F748, 0x79117020};
static const uint32_t T1[] = {
0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};
static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
/** Reverse 64 bits of keystream into possible cipher states
* Variation mentioned in the paper. Somewhat optimized version
*/
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
{
struct Crypto1State *statelist, *sl;
uint8_t oks[32], eks[32], hi[32];
uint32_t low = 0, win = 0;
uint32_t *tail, table[1 << 16];
int i, j;
sl = statelist = malloc(sizeof(struct Crypto1State) << 4);
if(!sl)
return 0;
sl->odd = sl->even = 0;
for(i = 30; i >= 0; i -= 2) {
oks[i >> 1] = BEBIT(ks2, i);
oks[16 + (i >> 1)] = BEBIT(ks3, i);
}
for(i = 31; i >= 0; i -= 2) {
eks[i >> 1] = BEBIT(ks2, i);
eks[16 + (i >> 1)] = BEBIT(ks3, i);
}
for(i = 0xfffff; i >= 0; --i) {
if (filter(i) != oks[0])
continue;
*(tail = table) = i;
for(j = 1; tail >= table && j < 29; ++j)
extend_table_simple(table, &tail, oks[j]);
if(tail < table)
continue;
for(j = 0; j < 19; ++j)
low = low << 1 | parity(i & S1[j]);
for(j = 0; j < 32; ++j)
hi[j] = parity(i & T1[j]);
for(; tail >= table; --tail) {
for(j = 0; j < 3; ++j) {
*tail = *tail << 1;
*tail |= parity((i & C1[j]) ^ (*tail & C2[j]));
if(filter(*tail) != oks[29 + j])
goto continue2;
}
for(j = 0; j < 19; ++j)
win = win << 1 | parity(*tail & S2[j]);
win ^= low;
for(j = 0; j < 32; ++j) {
win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);
if(filter(win) != eks[j])
goto continue2;
}
*tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);
sl->odd = *tail ^ parity(LF_POLY_ODD & win);
sl->even = win;
++sl;
sl->odd = sl->even = 0;
continue2:;
}
}
return statelist;
}
/** lfsr_rollback_bit
* Rollback the shift register in order to get previous states
*/
uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
{
int out;
uint8_t ret;
uint32_t t;
s->odd &= 0xffffff;
t = s->odd, s->odd = s->even, s->even = t;
out = s->even & 1;
out ^= LF_POLY_EVEN & (s->even >>= 1);
out ^= LF_POLY_ODD & s->odd;
out ^= !!in;
out ^= (ret = filter(s->odd)) & !!fb;
s->even |= parity(out) << 23;
return ret;
}
/** lfsr_rollback_byte
* Rollback the shift register in order to get previous states
*/
uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
{
/*
int i, ret = 0;
for (i = 7; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
*/
// unfold loop 20160112
uint8_t ret = 0;
ret |= lfsr_rollback_bit(s, BIT(in, 7), fb) << 7;
ret |= lfsr_rollback_bit(s, BIT(in, 6), fb) << 6;
ret |= lfsr_rollback_bit(s, BIT(in, 5), fb) << 5;
ret |= lfsr_rollback_bit(s, BIT(in, 4), fb) << 4;
ret |= lfsr_rollback_bit(s, BIT(in, 3), fb) << 3;
ret |= lfsr_rollback_bit(s, BIT(in, 2), fb) << 2;
ret |= lfsr_rollback_bit(s, BIT(in, 1), fb) << 1;
ret |= lfsr_rollback_bit(s, BIT(in, 0), fb) << 0;
return ret;
}
/** lfsr_rollback_word
* Rollback the shift register in order to get previous states
*/
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
{
/*
int i;
uint32_t ret = 0;
for (i = 31; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
*/
// unfold loop 20160112
uint32_t ret = 0;
ret |= lfsr_rollback_bit(s, BEBIT(in, 31), fb) << (31 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 30), fb) << (30 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 29), fb) << (29 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 28), fb) << (28 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 27), fb) << (27 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 26), fb) << (26 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 25), fb) << (25 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 24), fb) << (24 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 23), fb) << (23 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 22), fb) << (22 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 21), fb) << (21 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 20), fb) << (20 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 19), fb) << (19 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 18), fb) << (18 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 17), fb) << (17 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 16), fb) << (16 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 15), fb) << (15 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 14), fb) << (14 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 13), fb) << (13 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 12), fb) << (12 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 11), fb) << (11 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 10), fb) << (10 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 9), fb) << (9 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 8), fb) << (8 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 7), fb) << (7 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 6), fb) << (6 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 5), fb) << (5 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 4), fb) << (4 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 3), fb) << (3 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 2), fb) << (2 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 1), fb) << (1 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 0), fb) << (0 ^ 24);
return ret;
}
/** nonce_distance
* x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
*/
static uint16_t *dist = 0;
int nonce_distance(uint32_t from, uint32_t to)
{
uint16_t x, i;
// generate distance lookup table
if (!dist) {
dist = malloc(2 << 16);
if (!dist) return -1;
for (x = i = 1; i; ++i) {
dist[(x & 0xff) << 8 | x >> 8] = i;
x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
}
}
return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
}
static uint32_t fastfwd[2][8] = {
{ 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
{ 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
/** lfsr_prefix_ks
*
* Is an exported helper function from the common prefix attack
* Described in the "dark side" paper. It returns an -1 terminated array
* of possible partial(21 bit) secret state.
* The required keystream(ks) needs to contain the keystream that was used to
* encrypt the NACK which is observed when varying only the 3 last bits of Nr
* only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
*/
uint32_t* lfsr_prefix_ks(uint8_t ks[8], int isodd)
{
uint32_t *candidates = malloc(4 << 10);
if(!candidates) return 0;
uint32_t c, entry;
int size = 0, i, good;
for(i = 0; i < 1 << 21; ++i) {
for(c = 0, good = 1; good && c < 8; ++c) {
entry = i ^ fastfwd[isodd][c];
good &= (BIT(ks[c], isodd) == filter(entry >> 1));
good &= (BIT(ks[c], isodd + 2) == filter(entry));
}
if(good)
candidates[size++] = i;
}
candidates[size] = -1;
return candidates;
}
/** check_pfx_parity
* helper function which eliminates possible secret states using parity bits
*/
static struct Crypto1State* check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8], uint32_t odd, uint32_t even, struct Crypto1State* sl)
{
uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;
for(c = 0; good && c < 8; ++c) {
sl->odd = odd ^ fastfwd[1][c];
sl->even = even ^ fastfwd[0][c];
lfsr_rollback_bit(sl, 0, 0);
lfsr_rollback_bit(sl, 0, 0);
ks3 = lfsr_rollback_bit(sl, 0, 0);
ks2 = lfsr_rollback_word(sl, 0, 0);
ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);
nr = ks1 ^ (prefix | c << 5);
rr = ks2 ^ rresp;
good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
}
return sl + good;
}
/** lfsr_common_prefix
* Implentation of the common prefix attack.
* Requires the 28 bit constant prefix used as reader nonce (pfx)
* The reader response used (rr)
* The keystream used to encrypt the observed NACK's (ks)
* The parity bits (par)
* It returns a zero terminated list of possible cipher states after the
* tag nonce was fed in
*/
struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])
{
struct Crypto1State *statelist, *s;
uint32_t *odd, *even, *o, *e, top;
odd = lfsr_prefix_ks(ks, 1);
even = lfsr_prefix_ks(ks, 0);
s = statelist = malloc((sizeof *statelist) << 21);
if(!s || !odd || !even) {
free(statelist);
statelist = 0;
goto out;
}
for(o = odd; *o + 1; ++o)
for(e = even; *e + 1; ++e)
for(top = 0; top < 64; ++top) {
*o += 1 << 21;
*e += (!(top & 7) + 1) << 21;
s = check_pfx_parity(pfx, rr, par, *o, *e, s);
}
s->odd = s->even = 0;
out:
free(odd);
free(even);
return statelist;
}

View file

@ -1,96 +0,0 @@
/* crapto1.h
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, US$
Copyright (C) 2008-2014 bla <blapost@gmail.com>
*/
#ifndef CRAPTO1_INCLUDED
#define CRAPTO1_INCLUDED
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
struct Crypto1State {uint32_t odd, even;};
void crypto1_create(struct Crypto1State *s, uint64_t key);
void crypto1_destroy(struct Crypto1State*);
void crypto1_get_lfsr(struct Crypto1State*, uint64_t*);
uint8_t crypto1_bit(struct Crypto1State*, uint8_t, int);
uint8_t crypto1_byte(struct Crypto1State*, uint8_t, int);
uint32_t crypto1_word(struct Crypto1State*, uint32_t, int);
uint32_t prng_successor(uint32_t x, uint32_t n);
uint32_t prng_successor_one(uint32_t x);
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in);
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3);
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd);
struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]);
uint8_t lfsr_rollback_bit(struct Crypto1State* s, uint32_t in, int fb);
uint8_t lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb);
uint32_t lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb);
int nonce_distance(uint32_t from, uint32_t to);
#define SWAPENDIAN(x)\
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
#define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\
uint32_t __n = 0,__M = 0, N = 0;\
int __i;\
for(; __n < 1 << 16; N = prng_successor(__M = ++__n, 16))\
for(__i = FSIZE - 1; __i >= 0; __i--)\
if(BIT(FILTER, __i) ^ parity(__M & 0xFF01))\
break;\
else if(__i)\
__M = prng_successor(__M, (__i == 7) ? 48 : 8);\
else
#define LF_POLY_ODD (0x29CE5C)
#define LF_POLY_EVEN (0x870804)
#define BIT(x, n) ((x) >> (n) & 1)
#define BEBIT(x, n) BIT(x, (n) ^ 24)
static inline int parity(uint32_t x)
{
#if !defined __i386__ || !defined __GNUC__
x ^= x >> 16;
x ^= x >> 8;
x ^= x >> 4;
return BIT(0x6996, x & 0xf);
#else
__asm__( "movl %1, %%eax\n"
"mov %%ax, %%cx\n"
"shrl $0x10, %%eax\n"
"xor %%ax, %%cx\n"
"xor %%ch, %%cl\n"
"setpo %%al\n"
"movzx %%al, %0\n": "=r"(x) : "r"(x): "eax","ecx");
return x;
#endif
}
static inline int filter(uint32_t const x)
{
uint32_t f;
f = 0xf22c0 >> (x & 0xf) & 16;
f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8;
f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4;
f |= 0x1e458 >> (x >> 12 & 0xf) & 2;
f |= 0x0d938 >> (x >> 16 & 0xf) & 1;
return BIT(0xEC57E80A, f);
}
#ifdef __cplusplus
}
#endif
#endif

View file

@ -1,143 +0,0 @@
/* crypto1.c
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, US
Copyright (C) 2008-2008 bla <blapost@gmail.com>
*/
#include "crapto1.h"
#include <stdlib.h>
void crypto1_create(struct Crypto1State *s, uint64_t key)
{
// struct Crypto1State *s = malloc(sizeof(*s));
int i;
for(i = 47;s && i > 0; i -= 2) {
s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7);
s->even = s->even << 1 | BIT(key, i ^ 7);
}
}
void crypto1_destroy(struct Crypto1State *state)
{
// free(state);
state->odd = 0;
state->even = 0;
}
void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr)
{
int i;
for(*lfsr = 0, i = 23; i >= 0; --i) {
*lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3);
*lfsr = *lfsr << 1 | BIT(state->even, i ^ 3);
}
}
uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
{
uint32_t feedin;
uint32_t tmp;
uint8_t ret = filter(s->odd);
feedin = ret & !!is_encrypted;
feedin ^= !!in;
feedin ^= LF_POLY_ODD & s->odd;
feedin ^= LF_POLY_EVEN & s->even;
s->even = s->even << 1 | parity(feedin);
tmp = s->odd;
s->odd = s->even;
s->even = tmp;
return ret;
}
uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted)
{
/*
uint8_t i, ret = 0;
for (i = 0; i < 8; ++i)
ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i;
*/
// unfold loop 20161012
uint8_t ret = 0;
ret |= crypto1_bit(s, BIT(in, 0), is_encrypted) << 0;
ret |= crypto1_bit(s, BIT(in, 1), is_encrypted) << 1;
ret |= crypto1_bit(s, BIT(in, 2), is_encrypted) << 2;
ret |= crypto1_bit(s, BIT(in, 3), is_encrypted) << 3;
ret |= crypto1_bit(s, BIT(in, 4), is_encrypted) << 4;
ret |= crypto1_bit(s, BIT(in, 5), is_encrypted) << 5;
ret |= crypto1_bit(s, BIT(in, 6), is_encrypted) << 6;
ret |= crypto1_bit(s, BIT(in, 7), is_encrypted) << 7;
return ret;
}
uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
{
/*
uint32_t i, ret = 0;
for (i = 0; i < 32; ++i)
ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24);
*/
//unfold loop 2016012
uint32_t ret = 0;
ret |= crypto1_bit(s, BEBIT(in, 0), is_encrypted) << (0 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 1), is_encrypted) << (1 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 2), is_encrypted) << (2 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 3), is_encrypted) << (3 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 4), is_encrypted) << (4 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 5), is_encrypted) << (5 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 6), is_encrypted) << (6 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 7), is_encrypted) << (7 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 8), is_encrypted) << (8 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 9), is_encrypted) << (9 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 10), is_encrypted) << (10 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 11), is_encrypted) << (11 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 12), is_encrypted) << (12 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 13), is_encrypted) << (13 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 14), is_encrypted) << (14 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 15), is_encrypted) << (15 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 16), is_encrypted) << (16 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 17), is_encrypted) << (17 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 18), is_encrypted) << (18 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 19), is_encrypted) << (19 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 20), is_encrypted) << (20 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 21), is_encrypted) << (21 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 22), is_encrypted) << (22 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 23), is_encrypted) << (23 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 24), is_encrypted) << (24 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 25), is_encrypted) << (25 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 26), is_encrypted) << (26 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 27), is_encrypted) << (27 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 28), is_encrypted) << (28 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 29), is_encrypted) << (29 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 30), is_encrypted) << (30 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 31), is_encrypted) << (31 ^ 24);
return ret;
}
/* prng_successor
* helper used to obscure the keystream during authentication
*/
uint32_t prng_successor(uint32_t x, uint32_t n)
{
SWAPENDIAN(x);
while(n--)
x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31;
return SWAPENDIAN(x);
}

View file

@ -61,6 +61,13 @@ static struct hitag2_tag tag = {
}, },
}; };
static enum {
WRITE_STATE_START = 0x0,
WRITE_STATE_PAGENUM_WRITTEN,
WRITE_STATE_PROG
} writestate;
// ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces. // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.
// Historically it used to be FREE_BUFFER_SIZE, which was 2744. // Historically it used to be FREE_BUFFER_SIZE, which was 2744.
#define AUTH_TABLE_LENGTH 2744 #define AUTH_TABLE_LENGTH 2744
@ -71,6 +78,7 @@ static size_t auth_table_len = AUTH_TABLE_LENGTH;
static byte_t password[4]; static byte_t password[4];
static byte_t NrAr[8]; static byte_t NrAr[8];
static byte_t key[8]; static byte_t key[8];
static byte_t writedata[4];
static uint64_t cipher_state; static uint64_t cipher_state;
/* Following is a modified version of cryptolib.com/ciphers/hitag2/ */ /* Following is a modified version of cryptolib.com/ciphers/hitag2/ */
@ -225,6 +233,7 @@ static int hitag2_cipher_transcrypt(uint64_t* cs, byte_t *data, unsigned int byt
#define HITAG_T_WAIT_1 200 /* T_wresp should be 199..206 */ #define HITAG_T_WAIT_1 200 /* T_wresp should be 199..206 */
#define HITAG_T_WAIT_2 90 /* T_wresp should be 199..206 */ #define HITAG_T_WAIT_2 90 /* T_wresp should be 199..206 */
#define HITAG_T_WAIT_MAX 300 /* bit more than HITAG_T_WAIT_1 + HITAG_T_WAIT_2 */ #define HITAG_T_WAIT_MAX 300 /* bit more than HITAG_T_WAIT_1 + HITAG_T_WAIT_2 */
#define HITAG_T_PROG 614
#define HITAG_T_TAG_ONE_HALF_PERIOD 10 #define HITAG_T_TAG_ONE_HALF_PERIOD 10
#define HITAG_T_TAG_TWO_HALF_PERIOD 25 #define HITAG_T_TAG_TWO_HALF_PERIOD 25
@ -509,14 +518,65 @@ static bool hitag2_password(byte_t* rx, const size_t rxlen, byte_t* tx, size_t*
return true; return true;
} }
static bool hitag2_crypto(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) { static bool hitag2_write_page(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen)
{
switch (writestate) {
case WRITE_STATE_START:
*txlen = 10;
tx[0] = 0x82 | (blocknr << 3) | ((blocknr^7) >> 2);
tx[1] = ((blocknr^7) << 6);
writestate = WRITE_STATE_PAGENUM_WRITTEN;
break;
case WRITE_STATE_PAGENUM_WRITTEN:
// Check if page number was received correctly
if ((rxlen == 10) &&
(rx[0] == (0x82 | (blocknr << 3) | ((blocknr^7) >> 2))) &&
(rx[1] == (((blocknr & 0x3) ^ 0x3) << 6))) {
*txlen = 32;
memset(tx, 0, HITAG_FRAME_LEN);
memcpy(tx, writedata, 4);
writestate = WRITE_STATE_PROG;
} else {
Dbprintf("hitag2_write_page: Page number was not received correctly: rxlen=%d rx=%02x%02x%02x%02x",
rxlen, rx[0], rx[1], rx[2], rx[3]);
bSuccessful = false;
return false;
}
break;
case WRITE_STATE_PROG:
if (rxlen == 0) {
bSuccessful = true;
} else {
bSuccessful = false;
Dbprintf("hitag2_write_page: unexpected rx data (%d) after page write", rxlen);
}
return false;
default:
DbpString("hitag2_write_page: Unknown state %d");
bSuccessful = false;
return false;
}
return true;
}
static bool hitag2_crypto(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen, bool write) {
// Reset the transmission frame length // Reset the transmission frame length
*txlen = 0; *txlen = 0;
if(bCrypto) { if(bCrypto) {
hitag2_cipher_transcrypt(&cipher_state,rx,rxlen/8,rxlen%8); hitag2_cipher_transcrypt(&cipher_state,rx,rxlen/8,rxlen%8);
} }
if (bCrypto && !bAuthenticating && write) {
if (!hitag2_write_page(rx, rxlen, tx, txlen)) {
return false;
}
}
else
{
// Try to find out which command was send by selecting on length (in bits) // Try to find out which command was send by selecting on length (in bits)
switch (rxlen) { switch (rxlen) {
// No answer, try to resurrect // No answer, try to resurrect
@ -549,13 +609,14 @@ static bool hitag2_crypto(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* tx
*txlen = 5; *txlen = 5;
memcpy(tx,"\xc0",nbytes(*txlen)); memcpy(tx,"\xc0",nbytes(*txlen));
} }
} break; break;
}
// Received UID, crypto tag answer // Received UID, crypto tag answer
case 32: { case 32: {
if (!bCrypto) { if (!bCrypto) {
uint64_t ui64key = key[0] | ((uint64_t)key[1]) << 8 | ((uint64_t)key[2]) << 16 | ((uint64_t)key[3]) << 24 | ((uint64_t)key[4]) << 32 | ((uint64_t)key[5]) << 40; uint64_t ui64key = key[0] | ((uint64_t)key[1]) << 8 | ((uint64_t)key[2]) << 16 | ((uint64_t)key[3]) << 24 | ((uint64_t)key[4]) << 32 | ((uint64_t)key[5]) << 40;
uint32_t ui32uid = rx[0] | ((uint32_t)rx[1]) << 8 | ((uint32_t)rx[2]) << 16 | ((uint32_t)rx[3]) << 24; uint32_t ui32uid = rx[0] | ((uint32_t)rx[1]) << 8 | ((uint32_t)rx[2]) << 16 | ((uint32_t)rx[3]) << 24;
Dbprintf("hitag2_crypto: key=0x%x%x uid=0x%x", (uint32_t) ((rev64(ui64key)) >> 32), (uint32_t) ((rev64(ui64key)) & 0xffffffff), rev32(ui32uid));
cipher_state = _hitag2_init(rev64(ui64key), rev32(ui32uid), 0); cipher_state = _hitag2_init(rev64(ui64key), rev32(ui32uid), 0);
memset(tx,0x00,4); memset(tx,0x00,4);
memset(tx+4,0xff,4); memset(tx+4,0xff,4);
@ -567,6 +628,12 @@ static bool hitag2_crypto(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* tx
// Check if we received answer tag (at) // Check if we received answer tag (at)
if (bAuthenticating) { if (bAuthenticating) {
bAuthenticating = false; bAuthenticating = false;
if (write) {
if (!hitag2_write_page(rx, rxlen, tx, txlen)) {
return false;
}
break;
}
} else { } else {
// Store the received block // Store the received block
memcpy(tag.sectors[blocknr],rx,4); memcpy(tag.sectors[blocknr],rx,4);
@ -576,11 +643,12 @@ static bool hitag2_crypto(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* tx
DbpString("Read succesful!"); DbpString("Read succesful!");
bSuccessful = true; bSuccessful = true;
return false; return false;
} } else {
*txlen = 10; *txlen = 10;
tx[0] = 0xc0 | (blocknr << 3) | ((blocknr^7) >> 2); tx[0] = 0xc0 | (blocknr << 3) | ((blocknr^7) >> 2);
tx[1] = ((blocknr^7) << 6); tx[1] = ((blocknr^7) << 6);
} }
}
} break; } break;
// Unexpected response // Unexpected response
@ -589,7 +657,7 @@ static bool hitag2_crypto(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* tx
return false; return false;
} break; } break;
} }
}
if(bCrypto) { if(bCrypto) {
// We have to return now to avoid double encryption // We have to return now to avoid double encryption
@ -1318,7 +1386,7 @@ void ReaderHitag(hitag_function htf, hitag_data* htd) {
bStop = !hitag2_authenticate(rx,rxlen,tx,&txlen); bStop = !hitag2_authenticate(rx,rxlen,tx,&txlen);
} break; } break;
case RHT2F_CRYPTO: { case RHT2F_CRYPTO: {
bStop = !hitag2_crypto(rx,rxlen,tx,&txlen); bStop = !hitag2_crypto(rx,rxlen,tx,&txlen, false);
} break; } break;
case RHT2F_TEST_AUTH_ATTEMPTS: { case RHT2F_TEST_AUTH_ATTEMPTS: {
bStop = !hitag2_test_auth_attempts(rx,rxlen,tx,&txlen); bStop = !hitag2_test_auth_attempts(rx,rxlen,tx,&txlen);
@ -1447,3 +1515,285 @@ void ReaderHitag(hitag_function htf, hitag_data* htd) {
cmd_send(CMD_ACK,bSuccessful,0,0,(byte_t*)tag.sectors,48); cmd_send(CMD_ACK,bSuccessful,0,0,(byte_t*)tag.sectors,48);
set_tracing(false); set_tracing(false);
} }
void WriterHitag(hitag_function htf, hitag_data* htd, int page) {
int frame_count;
int response;
byte_t rx[HITAG_FRAME_LEN];
size_t rxlen=0;
byte_t txbuf[HITAG_FRAME_LEN];
byte_t* tx = txbuf;
size_t txlen=0;
int lastbit;
bool bSkip;
int reset_sof;
int tag_sof;
int t_wait = HITAG_T_WAIT_MAX;
bool bStop;
bool bQuitTraceFull = false;
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
// Reset the return status
bSuccessful = false;
// Clean up trace and prepare it for storing frames
set_tracing(true);
clear_trace();
//DbpString("Starting Hitag reader family");
// Check configuration
switch(htf) {
case WHT2F_CRYPTO:
{
DbpString("Authenticating using key:");
memcpy(key,htd->crypto.key,6); //HACK; 4 or 6?? I read both in the code.
memcpy(writedata, htd->crypto.data, 4);
Dbhexdump(6,key,false);
blocknr = page;
bQuiet = false;
bCrypto = false;
bAuthenticating = false;
bQuitTraceFull = true;
writestate = WRITE_STATE_START;
} break;
default: {
Dbprintf("Error, unknown function: %d",htf);
return;
} break;
}
LED_D_ON();
hitag2_init();
// Configure output and enable pin that is connected to the FPGA (for modulating)
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
// Set fpga in edge detect with reader field, we can modulate as reader now
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
// Set Frequency divisor which will drive the FPGA and analog mux selection
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
RELAY_OFF();
// Disable modulation at default, which means enable the field
LOW(GPIO_SSC_DOUT);
// Give it a bit of time for the resonant antenna to settle.
SpinDelay(30);
// Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0);
// Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the tag frames
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
// Disable timer during configuration
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
// Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// external trigger rising edge, load RA on falling edge of TIOA.
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_FALLING | AT91C_TC_ABETRG | AT91C_TC_LDRA_FALLING;
// Enable and reset counters
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
// Reset the received frame, frame count and timing info
frame_count = 0;
response = 0;
lastbit = 1;
bStop = false;
// Tag specific configuration settings (sof, timings, etc.)
if (htf < 10){
// hitagS settings
reset_sof = 1;
t_wait = 200;
//DbpString("Configured for hitagS reader");
} else if (htf < 20) {
// hitag1 settings
reset_sof = 1;
t_wait = 200;
//DbpString("Configured for hitag1 reader");
} else if (htf < 30) {
// hitag2 settings
reset_sof = 4;
t_wait = HITAG_T_WAIT_2;
//DbpString("Configured for hitag2 reader");
} else {
Dbprintf("Error, unknown hitag reader type: %d",htf);
return;
}
while(!bStop && !BUTTON_PRESS()) {
// Watchdog hit
WDT_HIT();
// Check if frame was captured and store it
if(rxlen > 0) {
frame_count++;
if (!bQuiet) {
if (!LogTraceHitag(rx,rxlen,response,0,false)) {
DbpString("Trace full");
if (bQuitTraceFull) {
break;
} else {
bQuiet = true;
}
}
}
}
// By default reset the transmission buffer
tx = txbuf;
switch(htf) {
case WHT2F_CRYPTO: {
bStop = !hitag2_crypto(rx,rxlen,tx,&txlen, true);
} break;
default: {
Dbprintf("Error, unknown function: %d",htf);
return;
} break;
}
// Send and store the reader command
// Disable timer 1 with external trigger to avoid triggers during our own modulation
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
// Wait for HITAG_T_WAIT_2 carrier periods after the last tag bit before transmitting,
// Since the clock counts since the last falling edge, a 'one' means that the
// falling edge occured halfway the period. with respect to this falling edge,
// we need to wait (T_Wait2 + half_tag_period) when the last was a 'one'.
// All timer values are in terms of T0 units
while(AT91C_BASE_TC0->TC_CV < T0*(t_wait+(HITAG_T_TAG_HALF_PERIOD*lastbit)));
//Dbprintf("DEBUG: Sending reader frame");
// Transmit the reader frame
hitag_reader_send_frame(tx,txlen);
// Enable and reset external trigger in timer for capturing future frames
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
// Add transmitted frame to total count
if(txlen > 0) {
frame_count++;
if (!bQuiet) {
// Store the frame in the trace
if (!LogTraceHitag(tx,txlen,HITAG_T_WAIT_2,0,true)) {
if (bQuitTraceFull) {
break;
} else {
bQuiet = true;
}
}
}
}
// Reset values for receiving frames
memset(rx,0x00,sizeof(rx));
rxlen = 0;
lastbit = 1;
bSkip = true;
tag_sof = reset_sof;
response = 0;
//Dbprintf("DEBUG: Waiting to receive frame");
uint32_t errorCount = 0;
// Receive frame, watch for at most T0*EOF periods
while (AT91C_BASE_TC1->TC_CV < T0*HITAG_T_WAIT_MAX) {
// Check if falling edge in tag modulation is detected
if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
// Retrieve the new timing values
int ra = (AT91C_BASE_TC1->TC_RA/T0);
// Reset timer every frame, we have to capture the last edge for timing
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
LED_B_ON();
// Capture tag frame (manchester decoding using only falling edges)
if(ra >= HITAG_T_EOF) {
if (rxlen != 0) {
//Dbprintf("DEBUG: Wierd1");
}
// Capture the T0 periods that have passed since last communication or field drop (reset)
// We always recieve a 'one' first, which has the falling edge after a half period |-_|
response = ra-HITAG_T_TAG_HALF_PERIOD;
} else if(ra >= HITAG_T_TAG_CAPTURE_FOUR_HALF) {
// Manchester coding example |-_|_-|-_| (101)
//need to test to verify we don't exceed memory...
//if ( ((rxlen+2) / 8) > HITAG_FRAME_LEN) {
// break;
//}
rx[rxlen / 8] |= 0 << (7-(rxlen%8));
rxlen++;
rx[rxlen / 8] |= 1 << (7-(rxlen%8));
rxlen++;
} else if(ra >= HITAG_T_TAG_CAPTURE_THREE_HALF) {
// Manchester coding example |_-|...|_-|-_| (0...01)
//need to test to verify we don't exceed memory...
//if ( ((rxlen+2) / 8) > HITAG_FRAME_LEN) {
// break;
//}
rx[rxlen / 8] |= 0 << (7-(rxlen%8));
rxlen++;
// We have to skip this half period at start and add the 'one' the second time
if (!bSkip) {
rx[rxlen / 8] |= 1 << (7-(rxlen%8));
rxlen++;
}
lastbit = !lastbit;
bSkip = !bSkip;
} else if(ra >= HITAG_T_TAG_CAPTURE_TWO_HALF) {
// Manchester coding example |_-|_-| (00) or |-_|-_| (11)
//need to test to verify we don't exceed memory...
//if ( ((rxlen+2) / 8) > HITAG_FRAME_LEN) {
// break;
//}
if (tag_sof) {
// Ignore bits that are transmitted during SOF
tag_sof--;
} else {
// bit is same as last bit
rx[rxlen / 8] |= lastbit << (7-(rxlen%8));
rxlen++;
}
} else {
//Dbprintf("DEBUG: Wierd2");
errorCount++;
// Ignore wierd value, is to small to mean anything
}
}
//if we saw over 100 wierd values break it probably isn't hitag...
if (errorCount >100) break;
// We can break this loop if we received the last bit from a frame
if (AT91C_BASE_TC1->TC_CV > T0*HITAG_T_EOF) {
if (rxlen>0) break;
}
}
// Wait some extra time for flash to be programmed
if ((rxlen == 0) && (writestate == WRITE_STATE_PROG))
{
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
while(AT91C_BASE_TC0->TC_CV < T0*(HITAG_T_PROG - HITAG_T_WAIT_MAX));
}
}
//Dbprintf("DEBUG: Done waiting for frame");
LED_B_OFF();
LED_D_OFF();
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
//Dbprintf("frame received: %d",frame_count);
//DbpString("All done");
cmd_send(CMD_ACK,bSuccessful,0,0,(byte_t*)tag.sectors,48);
}

View file

@ -1679,27 +1679,32 @@ void ReaderIClass(uint8_t arg0) {
uint8_t card_data[6 * 8] = {0}; uint8_t card_data[6 * 8] = {0};
memset(card_data, 0xFF, sizeof(card_data)); memset(card_data, 0xFF, sizeof(card_data));
uint8_t last_csn[8] = {0}; uint8_t last_csn[8]={0,0,0,0,0,0,0,0};
uint8_t resp[ICLASS_BUFFER_SIZE];
memset(resp, 0xFF, sizeof(resp));
//Read conf block CRC(0x01) => 0xfa 0x22 //Read conf block CRC(0x01) => 0xfa 0x22
uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22}; uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22};
//Read conf block CRC(0x05) => 0xde 0x64 //Read App Issuer Area block CRC(0x05) => 0xde 0x64
uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64}; uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64};
int read_status= 0; int read_status= 0;
uint8_t result_status = 0; uint8_t result_status = 0;
// flag to read until one tag is found successfully
bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE; bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE;
// flag to only try 5 times to find one tag then return
bool try_once = arg0 & FLAG_ICLASS_READER_ONE_TRY; bool try_once = arg0 & FLAG_ICLASS_READER_ONE_TRY;
bool use_credit_key = false; // if neither abort_after_read nor try_once then continue reading until button pressed.
uint16_t tryCnt = 0;
if ((arg0 & FLAG_ICLASS_READER_CEDITKEY) == FLAG_ICLASS_READER_CEDITKEY) bool use_credit_key = arg0 & FLAG_ICLASS_READER_CEDITKEY;
use_credit_key = true; // test flags for what blocks to be sure to read
uint8_t flagReadConfig = arg0 & FLAG_ICLASS_READER_CONF;
uint8_t flagReadCC = arg0 & FLAG_ICLASS_READER_CC;
uint8_t flagReadAA = arg0 & FLAG_ICLASS_READER_AA;
set_tracing(true); set_tracing(true);
setupIclassReader(); setupIclassReader();
uint16_t tryCnt = 0;
bool userCancelled = BUTTON_PRESS() || usb_poll_validate_length(); bool userCancelled = BUTTON_PRESS() || usb_poll_validate_length();
while (!userCancelled) { while (!userCancelled) {
// if only looking for one card try 2 times if we missed it the first time // if only looking for one card try 2 times if we missed it the first time
@ -1724,18 +1729,22 @@ void ReaderIClass(uint8_t arg0) {
// moving CC forward 8 bytes // moving CC forward 8 bytes
memcpy(card_data+16, card_data+8, 8); memcpy(card_data+16, card_data+8, 8);
//Read block 1, config //Read block 1, config
if ( (arg0 & FLAG_ICLASS_READER_CONF) == FLAG_ICLASS_READER_CONF ) { if(flagReadConfig) {
if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), card_data+8, 10, 10)) { if(sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, 10, 10))
{
result_status |= FLAG_ICLASS_READER_CONF; result_status |= FLAG_ICLASS_READER_CONF;
memcpy(card_data+8, resp, 8);
} else { } else {
Dbprintf("Failed to dump config block"); Dbprintf("Failed to dump config block");
} }
} }
//Read block 5, AA //Read block 5, AA
if ( (arg0 & FLAG_ICLASS_READER_AA) == FLAG_ICLASS_READER_AA ) { if(flagReadAA) {
if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), card_data+(8*5), 10, 10)) { if(sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, 10, 10))
{
result_status |= FLAG_ICLASS_READER_AA; result_status |= FLAG_ICLASS_READER_AA;
memcpy(card_data+(8*5), resp, 8);
} else { } else {
//Dbprintf("Failed to dump AA block"); //Dbprintf("Failed to dump AA block");
} }
@ -1751,12 +1760,12 @@ void ReaderIClass(uint8_t arg0) {
// with 0xFF:s in block 3 and 4. // with 0xFF:s in block 3 and 4.
LED_B_ON(); LED_B_ON();
//Send back to client, but don't bother if we already sent this //Send back to client, but don't bother if we already sent this -
if(memcmp(last_csn, card_data, 8) != 0) {
// If caller requires that we get CC, continue until we got it
// only useful if looping in arm (not try_once && not abort_after_read) // only useful if looping in arm (not try_once && not abort_after_read)
if( (arg0 & read_status & FLAG_ICLASS_READER_CC) || !(arg0 & FLAG_ICLASS_READER_CC)) if(memcmp(last_csn, card_data, 8) != 0)
{ {
// If caller requires that we get Conf, CC, AA, continue until we got it
if( (result_status ^ FLAG_ICLASS_READER_CSN ^ flagReadConfig ^ flagReadCC ^ flagReadAA) == 0) {
cmd_send(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data) ); cmd_send(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data) );
if (abort_after_read) { if (abort_after_read) {
LEDsoff(); LEDsoff();

View file

@ -23,7 +23,7 @@ extern "C" {
#include "string.h" #include "string.h"
#include "iso14443crc.h" #include "iso14443crc.h"
#include "mifaresniff.h" #include "mifaresniff.h"
#include "crapto1.h" #include "crapto1/crapto1.h"
#include "mifareutil.h" #include "mifareutil.h"
#include "parity.h" #include "parity.h"
#include "random.h" #include "random.h"

View file

@ -19,7 +19,7 @@
#include "string.h" #include "string.h"
#include "iso14443crc.h" #include "iso14443crc.h"
#include "iso14443a.h" #include "iso14443a.h"
#include "crapto1.h" #include "crapto1/crapto1.h"
#include "mifareutil.h" #include "mifareutil.h"
#include "common.h" #include "common.h"
#include "crc.h" #include "crc.h"

View file

@ -17,7 +17,7 @@
#include "string.h" #include "string.h"
#include "iso14443crc.h" #include "iso14443crc.h"
#include "iso14443a.h" #include "iso14443a.h"
#include "crapto1.h" #include "crapto1/crapto1.h"
#include "mifareutil.h" #include "mifareutil.h"
#include "common.h" #include "common.h"

View file

@ -19,7 +19,7 @@
#include "string.h" #include "string.h"
#include "iso14443crc.h" #include "iso14443crc.h"
#include "iso14443a.h" #include "iso14443a.h"
#include "crapto1.h" #include "crapto1/crapto1.h"
#include "des.h" #include "des.h"
#include "random.h" // fast_prand, prand #include "random.h" // fast_prand, prand