Final touches on IO prox and HID prox demod

makes both more robust and handles various error situations.
This commit is contained in:
marshmellow42 2014-12-19 12:14:27 -05:00
parent 083ca3de73
commit b3b706693b
3 changed files with 568 additions and 99 deletions

View file

@ -630,17 +630,32 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
LED_A_OFF();
}
//translate wave to 11111100000 (1 for each short wave 0 for each long wave)
size_t fsk_demod(uint8_t * dest, size_t size)
{
uint32_t last_transition = 0;
uint32_t idx = 1;
// we don't care about actual value, only if it's more or less than a
// threshold essentially we capture zero crossings for later analysis
uint8_t threshold_value = 127;
uint32_t maxVal=0;
// // we don't care about actual value, only if it's more or less than a
// // threshold essentially we capture zero crossings for later analysis
// we do care about the actual value as sometimes near the center of the
// wave we may get static that changes direction of wave for one value
// if our value is too low it might affect the read. and if our tag or
// antenna is weak a setting too high might not see anything. [marshmellow]
if (size<100) return size;
for(idx=1; idx<100; idx++){
if(maxVal<dest[idx]) maxVal = dest[idx];
}
// set close to the top of the wave threshold with 13% margin for error
// less likely to get a false transition up there.
// (but have to be careful not to go too high and miss some short waves)
uint32_t threshold_value = (uint32_t)(maxVal*.87); idx=1;
//uint8_t threshold_value = 127;
// sync to first lo-hi transition, and threshold
//Need to threshold first sample
// Need to threshold first sample
if(dest[0] < threshold_value) dest[0] = 0;
else dest[0] = 1;
@ -655,11 +670,12 @@ size_t fsk_demod(uint8_t * dest, size_t size)
// Check for 0->1 transition
if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
if (idx-last_transition < 9) {
dest[numBits]=1;
if (idx-last_transition<6){
//do nothing with extra garbage
} else if (idx-last_transition < 9) {
dest[numBits]=1;
} else {
dest[numBits]=0;
dest[numBits]=0;
}
last_transition = idx;
numBits++;
@ -668,8 +684,14 @@ size_t fsk_demod(uint8_t * dest, size_t size)
return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
}
uint32_t myround(float f)
{
if (f >= 2000) return 2000;//something bad happened
return (uint32_t) (f + (float)0.5);
}
size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, uint8_t maxConsequtiveBits, uint8_t invert )
//translate 11111100000 to 10
size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value,
{
uint8_t lastval=dest[0];
uint32_t idx=0;
@ -684,9 +706,11 @@ size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t h2l_crossing_value,uint
}
//if lastval was 1, we have a 1->0 crossing
if ( dest[idx-1]==1 ) {
n=(n+1) / h2l_crossing_value;
n=myround((float)(n+1)/((float)(rfLen)/(float)8));
//n=(n+1) / h2l_crossing_value;
} else {// 0->1 crossing
n=(n+1) / l2h_crossing_value;
n=myround((float)(n+1)/((float)(rfLen-2)/(float)10));
//n=(n+1) / l2h_crossing_value;
}
if (n == 0) n = 1;
@ -696,8 +720,7 @@ size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t h2l_crossing_value,uint
memset(dest+numBits, dest[idx-1] , n);
}else{
memset(dest+numBits, dest[idx-1]^1 , n);
}
}
numBits += n;
}
n=0;
@ -705,7 +728,7 @@ size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t h2l_crossing_value,uint
}//end for
return numBits;
}
// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = (uint8_t *)BigBuf;
@ -723,7 +746,7 @@ void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
DoAcquisition125k_internal(-1,true);
size = sizeof(BigBuf);
if (size < 2000) continue;
// FSK demodulator
size = fsk_demod(dest, size);
@ -731,7 +754,7 @@ void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
// 1->0 : fc/8 in sets of 6 (RF/50 / 8 = 6.25)
// 0->1 : fc/10 in sets of 5 (RF/50 / 10= 5)
// do not invert
size = aggregate_bits(dest,size, 6,5,5,0);
size = aggregate_bits(dest,size, 50,5,0); //6,5,5,0
WDT_HIT();
@ -740,8 +763,11 @@ void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
int numshifts = 0;
idx = 0;
//one scan
uint8_t sameCardCount =0;
while( idx + sizeof(frame_marker_mask) < size) {
// search for a start of frame marker
if (sameCardCount>2) break; //only up to 2 valid sets of data for the same read of looping card data
if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{ // frame marker found
idx+=sizeof(frame_marker_mask);
@ -818,6 +844,7 @@ void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
(unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
}
sameCardCount++;
if (findone){
if (ledcontrol) LED_A_OFF();
return;
@ -864,51 +891,68 @@ void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
if (ledcontrol) LED_A_ON();
DoAcquisition125k_internal(-1,true);
size = sizeof(BigBuf);
// FSK demodulator
size = fsk_demod(dest, size);
// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
// 1->0 : fc/8 in sets of 7 (RF/64 / 8 = 8)
// 0->1 : fc/10 in sets of 6 (RF/64 / 10 = 6.4)
size = aggregate_bits(dest, size, 7,6,13,1); //13 max Consecutive should be ok as most 0s in row should be 10 for init seq - invert bits
WDT_HIT();
//Index map
//0 10 20 30 40 50 60
//| | | | | | |
//01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
//-----------------------------------------------------------------------------
//00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
//
//XSF(version)facility:codeone+codetwo
//Handle the data
uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
for( idx=0; idx < (size - 64); idx++) {
if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
//frame marker found
if(findone){ //only print binary if we are doing one
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
}
code = bytebits_to_byte(dest+idx,32);
code2 = bytebits_to_byte(dest+idx+32,32);
short version = bytebits_to_byte(dest+idx+28,8); //14,4
char facilitycode = bytebits_to_byte(dest+idx+19,8) ;
uint16_t number = (bytebits_to_byte(dest+idx+37,8)<<8)|(bytebits_to_byte(dest+idx+46,8)); //36,9
Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2);
// if we're only looking for one tag
if (findone){
if (ledcontrol) LED_A_OFF();
//LED_A_OFF();
return;
}
}
//make sure buffer has data
if (size < 64) return;
//test samples are not just noise
uint8_t testMax=0;
for(idx=0;idx<64;idx++){
if (testMax<dest[idx]) testMax=dest[idx];
}
idx=0;
//if not just noise
if (testMax>170){
//Dbprintf("testMax: %d",testMax);
// FSK demodulator
size = fsk_demod(dest, size);
// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
// 1->0 : fc/8 in sets of 7 (RF/64 / 8 = 8)
// 0->1 : fc/10 in sets of 6 (RF/64 / 10 = 6.4)
size = aggregate_bits(dest, size, 64, 13, 1); //13 max Consecutive should be ok as most 0s in row should be 10 for init seq - invert bits
WDT_HIT();
//Index map
//0 10 20 30 40 50 60
//| | | | | | |
//01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
//-----------------------------------------------------------------------------
//00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
//
//XSF(version)facility:codeone+codetwo
//Handle the data
uint8_t sameCardCount=0;
uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
for( idx=0; idx < (size - 74); idx++) {
if (sameCardCount>2) break;
if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
//frame marker found
if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){
//confirmed proper separator bits found
if(findone){ //only print binary if we are doing one
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
}
code = bytebits_to_byte(dest+idx,32);
code2 = bytebits_to_byte(dest+idx+32,32);
short version = bytebits_to_byte(dest+idx+27,8); //14,4
uint8_t facilitycode = bytebits_to_byte(dest+idx+19,8) ;
uint16_t number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2);
// if we're only looking for one tag
if (findone){
if (ledcontrol) LED_A_OFF();
//LED_A_OFF();
return;
}
sameCardCount++;
}
}
}
}
WDT_HIT();
}
DbpString("Stopped");

View file

@ -69,6 +69,9 @@ int CmdAmp(const char *Cmd)
* Arguments:
* c : 0 or 1
*/
//this method is dependant on all highs and lows to be the same(or clipped) this could be an issue[marshmellow]
//might be able to use clock to help identify highs and lows with some more tolerance
//but for now I will try a fuzz factor
int Cmdaskdemod(const char *Cmd)
{
int i;
@ -79,7 +82,7 @@ int Cmdaskdemod(const char *Cmd)
sscanf(Cmd, "%i", &c);
/* Detect high and lows and clock */
// (AL - clock???)
// (AL - clock???)
for (i = 0; i < GraphTraceLen; ++i)
{
if (GraphBuffer[i] > high)
@ -91,12 +94,15 @@ int Cmdaskdemod(const char *Cmd)
PrintAndLog("Invalid argument: %s", Cmd);
return 0;
}
//prime loop
if (GraphBuffer[0] > 0) {
GraphBuffer[0] = 1-c;
} else {
GraphBuffer[0] = c;
}
//20% fuzz [marshmellow]
high=(int)(.8*high);
low=(int)(.8*low);
for (i = 1; i < GraphTraceLen; ++i) {
/* Transitions are detected at each peak
* Transitions are either:
@ -106,9 +112,10 @@ int Cmdaskdemod(const char *Cmd)
* low for long periods, others just reach the peak and go
* down)
*/
if ((GraphBuffer[i] == high) && (GraphBuffer[i - 1] == c)) {
//[marhsmellow] changed == to >= for high and <= for low
if ((GraphBuffer[i] >= high) && (GraphBuffer[i - 1] == c)) {
GraphBuffer[i] = 1 - c;
} else if ((GraphBuffer[i] == low) && (GraphBuffer[i - 1] == (1 - c))){
} else if ((GraphBuffer[i] <= low) && (GraphBuffer[i - 1] == (1 - c))){
GraphBuffer[i] = c;
} else {
/* No transition */
@ -264,7 +271,421 @@ int CmdDetectClockRate(const char *Cmd)
return 0;
}
//demod GraphBuffer wave to 0s and 1s for each wave - 0s for short waves 1s for long waves
size_t fsk_wave_demod(int size)
{
uint32_t last_transition = 0;
uint32_t idx = 1;
uint32_t maxVal = 0;
// we don't care about actual value, only if it's more or less than a
// threshold essentially we capture zero crossings for later analysis
for(idx=1; idx<size; idx++){
if(maxVal<GraphBuffer[idx]) maxVal = GraphBuffer[idx];
}
// set close to the top of the wave threshold with 13% margin for error
// less likely to get a false transition up there.
// (but have to be careful not to go too high and miss some short waves)
uint32_t threshold_value = (uint32_t)(maxVal*.87);
idx=1;
// int threshold_value = 100;
// sync to first lo-hi transition, and threshold
// PrintAndLog("FSK init complete size: %d",size);//debug
// Need to threshold first sample
if(GraphBuffer[0] < threshold_value) GraphBuffer[0] = 0;
else GraphBuffer[0] = 1;
size_t numBits = 0;
// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
// or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
for(idx = 1; idx < size; idx++) {
// threshold current value
if (GraphBuffer[idx] < threshold_value) GraphBuffer[idx] = 0;
else GraphBuffer[idx] = 1;
// Check for 0->1 transition
if (GraphBuffer[idx-1] < GraphBuffer[idx]) { // 0 -> 1 transition
if (idx-last_transition<6){
// do nothing with extra garbage (shouldn't be any) noise tolerance?
} else if(idx-last_transition < 9) {
GraphBuffer[numBits]=1;
// Other fsk demods reverse this making the short waves 1 and long waves 0
// this is really backwards... smaller waves will typically be 0 and larger 1 [marshmellow]
// but will leave as is and invert when needed later
} else{
GraphBuffer[numBits]=0;
}
last_transition = idx;
numBits++;
// PrintAndLog("numbits %d",numBits);
}
}
return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
}
uint32_t myround(float f)
{
if (f >= UINT_MAX) return UINT_MAX;
return (uint32_t) (f + (float)0.5);
}
//translate 11111100000 to 10
size_t aggregate_bits(int size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert) //,uint8_t l2h_crossing_value
{
int lastval=GraphBuffer[0];
uint32_t idx=0;
size_t numBits=0;
uint32_t n=1;
uint32_t n2=0;
for( idx=1; idx < size; idx++) {
if (GraphBuffer[idx]==lastval) {
n++;
continue;
}
// if lastval was 1, we have a 1->0 crossing
if ( GraphBuffer[idx-1]==1 ) {
n=myround((float)(n+1)/((float)(rfLen)/(float)8)); //-2 noise tolerance
// n=(n+1) / h2l_crossing_value;
//truncating could get us into trouble
//now we will try with actual clock (RF/64 or RF/50) variable instead
//then devide with float casting then truncate after more acurate division
//and round to nearest int
//like n = (((float)n)/(float)rfLen/(float)10);
} else {// 0->1 crossing
n=myround((float)(n+1)/((float)(rfLen-2)/(float)10)); // as int 120/6 = 20 as float 120/(64/10) = 18 (18.75)
//n=(n+1) / l2h_crossing_value;
}
if (n == 0) n = 1; //this should never happen... should we error if it does?
if (n < maxConsequtiveBits) // Consecutive //when the consecutive bits are low - the noise tolerance can be high
//if it is high then we must be careful how much noise tolerance we allow
{
if (invert==0){ // do not invert bits
for (n2=0; n2<n; n2++){
GraphBuffer[numBits+n2]=GraphBuffer[idx-1];
}
//memset(GraphBuffer+numBits, GraphBuffer[idx-1] , n);
}else{ // invert bits
for (n2=0; n2<n; n2++){
GraphBuffer[numBits+n2]=GraphBuffer[idx-1]^1;
}
//memset(GraphBuffer+numBits, GraphBuffer[idx-1]^1 , n);
}
numBits += n;
}
n=0;
lastval=GraphBuffer[idx];
}//end for
return numBits;
}
// full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
size_t fskdemod(uint8_t rfLen, uint8_t invert)
{
//uint8_t h2l_crossing_value = 6;
//uint8_t l2h_crossing_value = 5;
// if (rfLen==64) //currently only know settings for RF/64 change from default if option entered
// {
// h2l_crossing_value=8; //or 8 as 64/8 = 8
// l2h_crossing_value=6; //or 6.4 as 64/10 = 6.4
// }
size_t size = GraphTraceLen;
// FSK demodulator
size = fsk_wave_demod(size);
size = aggregate_bits(size,rfLen,192,invert);
// size = aggregate_bits(size, h2l_crossing_value, l2h_crossing_value,192, invert); //192=no limit to same values
//done messing with GraphBuffer - repaint
RepaintGraphWindow();
return size;
}
uint32_t bytebits_to_byte(int* src, int numbits)
{
uint32_t num = 0;
for(int i = 0 ; i < numbits ; i++)
{
num = (num << 1) | (*src);
src++;
}
return num;
}
//fsk demod and print binary
int CmdFSKdemod(const char *Cmd)
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
//set defaults
uint8_t rfLen = 50;
uint8_t invert=0;
//set options from parameters entered with the command
if (strlen(Cmd)>0 && strlen(Cmd)<=2) {
rfLen=param_get8(Cmd, 0); //if rfLen option only is used
if (rfLen==1){
invert=1; //if invert option only is used
rfLen = 50;
} else if(rfLen==0) rfLen=50;
}
if (strlen(Cmd)>2) {
rfLen=param_get8(Cmd, 0); //if both options are used
invert=param_get8(Cmd,1);
}
PrintAndLog("Args invert: %d \nClock:%d",invert,rfLen);
size_t size = fskdemod(rfLen,invert);
PrintAndLog("FSK decoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
if(size > (7*32)+2) size = (7*32)+2; //only output a max of 7 blocks of 32 bits most tags will have full bit stream inside that sample size
for (int i = 2; i < (size-16); i+=16) {
PrintAndLog("%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i",
GraphBuffer[i],
GraphBuffer[i+1],
GraphBuffer[i+2],
GraphBuffer[i+3],
GraphBuffer[i+4],
GraphBuffer[i+5],
GraphBuffer[i+6],
GraphBuffer[i+7],
GraphBuffer[i+8],
GraphBuffer[i+9],
GraphBuffer[i+10],
GraphBuffer[i+11],
GraphBuffer[i+12],
GraphBuffer[i+13],
GraphBuffer[i+14],
GraphBuffer[i+15]);
}
ClearGraph(1);
return 0;
}
int CmdFSKdemodHID(const char *Cmd)
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
//set defaults
uint8_t rfLen = 50;
uint8_t invert=0;//param_get8(Cmd, 0);
size_t idx=0;
uint32_t hi2=0, hi=0, lo=0;
//get binary from fsk wave
size_t size = fskdemod(rfLen,invert);
// final loop, go over previously decoded fsk data and now manchester decode into usable tag ID
// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
int frame_marker_mask[] = {1,1,1,0,0,0};
int numshifts = 0;
idx = 0;
while( idx + 6 < size) {
// search for a start of frame marker
if ( memcmp(GraphBuffer+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{ // frame marker found
idx+=6;//sizeof(frame_marker_mask); //size of int is >6
while(GraphBuffer[idx] != GraphBuffer[idx+1] && idx < size-2)
{
// Keep going until next frame marker (or error)
// Shift in a bit. Start by shifting high registers
hi2 = (hi2<<1)|(hi>>31);
hi = (hi<<1)|(lo>>31);
//Then, shift in a 0 or one into low
if (GraphBuffer[idx] && !GraphBuffer[idx+1]) // 1 0
lo=(lo<<1)|0;
else // 0 1
lo=(lo<<1)|1;
numshifts++;
idx += 2;
}
//PrintAndLog("Num shifts: %d ", numshifts);
// Hopefully, we read a tag and hit upon the next frame marker
if(idx + 6 < size)
{
if ( memcmp(GraphBuffer+(idx), frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{
if (hi2 != 0){ //extra large HID tags
PrintAndLog("TAG ID: %x%08x%08x (%d)",
(unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
}
else { //standard HID tags <38 bits
//Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
uint8_t bitlen = 0;
uint32_t fc = 0;
uint32_t cardnum = 0;
if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
uint32_t lo2=0;
lo2=(((hi & 15) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
uint8_t idx3 = 1;
while(lo2>1){ //find last bit set to 1 (format len bit)
lo2=lo2>>1;
idx3++;
}
bitlen =idx3+19;
fc =0;
cardnum=0;
if(bitlen==26){
cardnum = (lo>>1)&0xFFFF;
fc = (lo>>17)&0xFF;
}
if(bitlen==37){
cardnum = (lo>>1)&0x7FFFF;
fc = ((hi&0xF)<<12)|(lo>>20);
}
if(bitlen==34){
cardnum = (lo>>1)&0xFFFF;
fc= ((hi&1)<<15)|(lo>>17);
}
if(bitlen==35){
cardnum = (lo>>1)&0xFFFFF;
fc = ((hi&1)<<11)|(lo>>21);
}
}
else { //if bit 38 is not set then 37 bit format is used
bitlen= 37;
fc =0;
cardnum=0;
if(bitlen==37){
cardnum = (lo>>1)&0x7FFFF;
fc = ((hi&0xF)<<12)|(lo>>20);
}
}
PrintAndLog("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
(unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
ClearGraph(1);
return 0;
}
}
}
// reset
hi2 = hi = lo = 0;
numshifts = 0;
}else
{
idx++;
}
}
if (idx + sizeof(frame_marker_mask) >= size){
PrintAndLog("start bits for hid not found");
PrintAndLog("FSK decoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
if(size > (7*32)+2) size = (7*32)+2; //only output a max of 7 blocks of 32 bits most tags will have full bit stream inside that sample size
for (int i = 2; i < (size-16); i+=16) {
PrintAndLog("%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i",
GraphBuffer[i],
GraphBuffer[i+1],
GraphBuffer[i+2],
GraphBuffer[i+3],
GraphBuffer[i+4],
GraphBuffer[i+5],
GraphBuffer[i+6],
GraphBuffer[i+7],
GraphBuffer[i+8],
GraphBuffer[i+9],
GraphBuffer[i+10],
GraphBuffer[i+11],
GraphBuffer[i+12],
GraphBuffer[i+13],
GraphBuffer[i+14],
GraphBuffer[i+15]);
}
}
ClearGraph(1);
return 0;
}
int CmdFSKdemodIO(const char *Cmd)
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
//set defaults
uint8_t rfLen = 64;
uint8_t invert=1;
size_t idx=0;
uint8_t testMax=0;
//test samples are not just noise
if (GraphTraceLen < 64) return 0;
for(idx=0;idx<64;idx++){
if (testMax<GraphBuffer[idx]) testMax=GraphBuffer[idx];
}
idx=0;
//get full binary from fsk wave
size_t size = fskdemod(rfLen,invert);
//if not just noise
//PrintAndLog("testMax %d",testMax);
if (testMax>40){
//Index map
//0 10 20 30 40 50 60
//| | | | | | |
//01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
//-----------------------------------------------------------------------------
//00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
//
//XSF(version)facility:codeone+codetwo (raw)
//Handle the data
int mask[] = {0,0,0,0,0,0,0,0,0,1};
for( idx=0; idx < (size - 74); idx++) {
if ( memcmp(GraphBuffer + idx, mask, sizeof(mask))==0) {
//frame marker found
if (GraphBuffer[idx+17]==1 && GraphBuffer[idx+26]==1 && GraphBuffer[idx+35]==1 && GraphBuffer[idx+44]==1 && GraphBuffer[idx+53]==1){
//confirmed proper separator bits found
PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx], GraphBuffer[idx+1], GraphBuffer[idx+2], GraphBuffer[idx+3], GraphBuffer[idx+4], GraphBuffer[idx+5], GraphBuffer[idx+6], GraphBuffer[idx+7], GraphBuffer[idx+8]);
PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx+9], GraphBuffer[idx+10], GraphBuffer[idx+11],GraphBuffer[idx+12],GraphBuffer[idx+13],GraphBuffer[idx+14],GraphBuffer[idx+15],GraphBuffer[idx+16],GraphBuffer[idx+17]);
PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx+18], GraphBuffer[idx+19], GraphBuffer[idx+20],GraphBuffer[idx+21],GraphBuffer[idx+22],GraphBuffer[idx+23],GraphBuffer[idx+24],GraphBuffer[idx+25],GraphBuffer[idx+26]);
PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx+27], GraphBuffer[idx+28], GraphBuffer[idx+29],GraphBuffer[idx+30],GraphBuffer[idx+31],GraphBuffer[idx+32],GraphBuffer[idx+33],GraphBuffer[idx+34],GraphBuffer[idx+35]);
PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx+36], GraphBuffer[idx+37], GraphBuffer[idx+38],GraphBuffer[idx+39],GraphBuffer[idx+40],GraphBuffer[idx+41],GraphBuffer[idx+42],GraphBuffer[idx+43],GraphBuffer[idx+44]);
PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx+45], GraphBuffer[idx+46], GraphBuffer[idx+47],GraphBuffer[idx+48],GraphBuffer[idx+49],GraphBuffer[idx+50],GraphBuffer[idx+51],GraphBuffer[idx+52],GraphBuffer[idx+53]);
PrintAndLog("%d%d%d%d%d%d%d%d %d%d",GraphBuffer[idx+54],GraphBuffer[idx+55],GraphBuffer[idx+56],GraphBuffer[idx+57],GraphBuffer[idx+58],GraphBuffer[idx+59],GraphBuffer[idx+60],GraphBuffer[idx+61],GraphBuffer[idx+62],GraphBuffer[idx+63]);
uint32_t code = bytebits_to_byte(GraphBuffer+idx,32);
uint32_t code2 = bytebits_to_byte(GraphBuffer+idx+32,32);
short version = bytebits_to_byte(GraphBuffer+idx+27,8); //14,4
uint8_t facilitycode = bytebits_to_byte(GraphBuffer+idx+19,8) ;
uint16_t number = (bytebits_to_byte(GraphBuffer+idx+36,8)<<8)|(bytebits_to_byte(GraphBuffer+idx+45,8)); //36,9
PrintAndLog("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2);
ClearGraph(1);
return 0;
} else {
PrintAndLog("thought we had a valid tag but did not match format");
}
}
}
if (idx >= (size-74)){
PrintAndLog("start bits for io prox not found");
PrintAndLog("FSK decoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
if(size > (7*32)+2) size = (7*32)+2; //only output a max of 7 blocks of 32 bits most tags will have full bit stream inside that sample size
for (int i = 2; i < (size-16); i+=16) {
PrintAndLog("%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i",
GraphBuffer[i],
GraphBuffer[i+1],
GraphBuffer[i+2],
GraphBuffer[i+3],
GraphBuffer[i+4],
GraphBuffer[i+5],
GraphBuffer[i+6],
GraphBuffer[i+7],
GraphBuffer[i+8],
GraphBuffer[i+9],
GraphBuffer[i+10],
GraphBuffer[i+11],
GraphBuffer[i+12],
GraphBuffer[i+13],
GraphBuffer[i+14],
GraphBuffer[i+15]);
}
}
}
ClearGraph(1);
return 0;
}
/*
int CmdFSKdemodHIDold(const char *Cmd)//not put in commands yet //old CmdFSKdemod needs updating
{
static const int LowTone[] = {
1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
@ -284,12 +705,12 @@ int CmdFSKdemod(const char *Cmd)
int lowLen = sizeof (LowTone) / sizeof (int);
int highLen = sizeof (HighTone) / sizeof (int);
int convLen = (highLen > lowLen) ? highLen : lowLen;
int convLen = (highLen > lowLen) ? highLen : lowLen; //if highlen > lowLen then highlen else lowlen
uint32_t hi = 0, lo = 0;
int i, j;
int minMark = 0, maxMark = 0;
for (i = 0; i < GraphTraceLen - convLen; ++i) {
int lowSum = 0, highSum = 0;
@ -321,7 +742,7 @@ int CmdFSKdemod(const char *Cmd)
GraphTraceLen -= (convLen + 16);
RepaintGraphWindow();
// Find bit-sync (3 lo followed by 3 high)
// Find bit-sync (3 lo followed by 3 high) (HID ONLY)
int max = 0, maxPos = 0;
for (i = 0; i < 6000; ++i) {
int dec = 0;
@ -382,7 +803,7 @@ int CmdFSKdemod(const char *Cmd)
PrintAndLog("hex: %08x %08x", hi, lo);
return 0;
}
*/
int CmdGrid(const char *Cmd)
{
sscanf(Cmd, "%i %i", &PlotGridX, &PlotGridY);
@ -463,7 +884,7 @@ int CmdSamples(const char *Cmd)
uint8_t got[40000];
n = strtol(Cmd, NULL, 0);
if (n == 0) n = 512;
if (n == 0) n = 6000;
if (n > sizeof(got)) n = sizeof(got);
PrintAndLog("Reading %d samples\n", n);
@ -657,30 +1078,30 @@ int CmdManchesterDemod(const char *Cmd)
{
if (GraphBuffer[i-1] != GraphBuffer[i])
{
lc = i-lastval;
lastval = i;
lc = i-lastval;
lastval = i;
// Error check: if bitidx becomes too large, we do not
// have a Manchester encoded bitstream or the clock is really
// wrong!
if (bitidx > (GraphTraceLen*2/clock+8) ) {
PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
return 0;
}
// Then switch depending on lc length:
// Tolerance is 1/4 of clock rate (arbitrary)
if (abs(lc-clock/2) < tolerance) {
// Short pulse : either "1" or "0"
BitStream[bitidx++]=GraphBuffer[i-1];
} else if (abs(lc-clock) < tolerance) {
// Long pulse: either "11" or "00"
BitStream[bitidx++]=GraphBuffer[i-1];
BitStream[bitidx++]=GraphBuffer[i-1];
} else {
// Error check: if bitidx becomes too large, we do not
// have a Manchester encoded bitstream or the clock is really
// wrong!
if (bitidx > (GraphTraceLen*2/clock+8) ) {
PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
return 0;
}
// Then switch depending on lc length:
// Tolerance is 1/4 of clock rate (arbitrary)
if (abs(lc-clock/2) < tolerance) {
// Short pulse : either "1" or "0"
BitStream[bitidx++]=GraphBuffer[i-1];
} else if (abs(lc-clock) < tolerance) {
// Long pulse: either "11" or "00"
BitStream[bitidx++]=GraphBuffer[i-1];
BitStream[bitidx++]=GraphBuffer[i-1];
} else {
// Error
warnings++;
PrintAndLog("Warning: Manchester decode error for pulse width detection.");
PrintAndLog("(too many of those messages mean either the stream is not Manchester encoded, or clock is wrong)");
PrintAndLog("Warning: Manchester decode error for pulse width detection.");
PrintAndLog("(too many of those messages mean either the stream is not Manchester encoded, or clock is wrong)");
if (warnings > 10)
{
@ -697,15 +1118,15 @@ int CmdManchesterDemod(const char *Cmd)
for (i = 0; i < bitidx; i += 2) {
if ((BitStream[i] == 0) && (BitStream[i+1] == 1)) {
BitStream[bit2idx++] = 1 ^ invert;
} else if ((BitStream[i] == 1) && (BitStream[i+1] == 0)) {
BitStream[bit2idx++] = 0 ^ invert;
} else {
// We cannot end up in this state, this means we are unsynchronized,
// move up 1 bit:
i++;
} else if ((BitStream[i] == 1) && (BitStream[i+1] == 0)) {
BitStream[bit2idx++] = 0 ^ invert;
} else {
// We cannot end up in this state, this means we are unsynchronized,
// move up 1 bit:
i++;
warnings++;
PrintAndLog("Unsynchronized, resync...");
PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)");
PrintAndLog("Unsynchronized, resync...");
PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)");
if (warnings > 10)
{
@ -914,7 +1335,9 @@ static command_t CommandTable[] =
{"buffclear", CmdBuffClear, 1, "Clear sample buffer and graph window"},
{"dec", CmdDec, 1, "Decimate samples"},
{"detectclock", CmdDetectClockRate, 1, "Detect clock rate"},
{"fskdemod", CmdFSKdemod, 1, "Demodulate graph window as a HID FSK"},
{"fskdemod", CmdFSKdemod, 1, "[clock rate] [invert] Demodulate graph window from FSK to binary (clock = 64 or 50)(invert = 1 or 0)"},
{"fskdemodhid", CmdFSKdemodHID, 1, "Demodulate graph window as a HID FSK"},
{"fskdemodio", CmdFSKdemodIO, 1, "Demodulate graph window as an IO Prox FSK"},
{"grid", CmdGrid, 1, "<x> <y> -- overlay grid on graph window, use zero value to turn off either"},
{"hexsamples", CmdHexsamples, 0, "<bytes> [<offset>] -- Dump big buffer as hex bytes"},
{"hide", CmdHide, 1, "Hide graph window"},

View file

@ -24,6 +24,8 @@ int CmdBuffClear(const char *Cmd);
int CmdDec(const char *Cmd);
int CmdDetectClockRate(const char *Cmd);
int CmdFSKdemod(const char *Cmd);
int CmdFSKdemodHID(const char *Cmd);
int CmdFSKdemodIO(const char *Cmd);
int CmdGrid(const char *Cmd);
int CmdHexsamples(const char *Cmd);
int CmdHide(const char *Cmd);