fix hf mf sim:

* more timing fixes
* correctly determine correction bit (taken from iceman's fork)
* add checking of Access Conditions for Read command
* never allow reading KeyA
This commit is contained in:
pwpiwi 2017-10-24 07:49:14 +02:00
parent bb04ef216d
commit b35e04a7c6
7 changed files with 257 additions and 70 deletions

View file

@ -900,11 +900,11 @@ static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int
}
static int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
static int EmSend4bitEx(uint8_t resp);
int EmSend4bit(uint8_t resp);
static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
int EmSendPrecompiledCmd(tag_response_info_t *response_info, bool correctionNeeded);
static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
int EmSendCmdEx(uint8_t *resp, uint16_t respLen);
int EmSendPrecompiledCmd(tag_response_info_t *response_info);
static bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
@ -1138,7 +1138,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
p_response = &responses[4]; order = 30;
} else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
EmSendCmdEx(data+(4*receivedCmd[1]),16);
// Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
p_response = NULL;
@ -1231,7 +1231,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
cmdsRecvd++;
if (p_response != NULL) {
EmSendPrecompiledCmd(p_response, receivedCmd[0] == 0x52);
EmSendPrecompiledCmd(p_response);
}
if (!tracing) {
@ -1413,12 +1413,6 @@ int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
int analogCnt = 0;
int analogAVG = 0;
// Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
// only, since we are receiving, not transmitting).
// Signal field is off with the appropriate LED
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
// Set ADC to read field strength
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
AT91C_BASE_ADC->ADC_MR =
@ -1429,12 +1423,23 @@ int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
// start ADC
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
// Now run a 'software UART' on the stream of incoming samples.
// Run a 'software UART' on the stream of incoming samples.
UartInit(received, parity);
// Clear RXRDY:
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
// Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN
do {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = SEC_F;
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; (void) b;
}
} while (GetCountSspClk() < LastTimeProxToAirStart + LastProxToAirDuration + (FpgaSendQueueDelay>>3));
// Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
// only, since we are receiving, not transmitting).
// Signal field is off with the appropriate LED
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
for(;;) {
WDT_HIT();
@ -1460,7 +1465,7 @@ int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
// receive and test the miller decoding
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
if(MillerDecoding(b, 0)) {
*len = Uart.len;
EmLogTraceReader();
@ -1472,18 +1477,27 @@ int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
}
static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen)
{
uint8_t b;
uint16_t i = 0;
bool correctionNeeded;
// Modulate Manchester
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
// include correction bit if necessary
if (Uart.parityBits & 0x01) {
correctionNeeded = true;
if (Uart.bitCount == 7)
{
// Short tags (7 bits) don't have parity, determine the correct value from MSB
correctionNeeded = Uart.output[0] & 0x40;
}
else
{
// Look at the last parity bit
correctionNeeded = Uart.parity[(Uart.len-1)/8] & (0x80 >> ((Uart.len-1) & 7));
}
if(correctionNeeded) {
// 1236, so correction bit needed
i = 0;
@ -1517,23 +1531,13 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe
}
}
// Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
for (i = 0; i < fpga_queued_bits/8; ) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = SEC_F;
FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
i++;
}
}
return 0;
}
static int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
static int EmSend4bitEx(uint8_t resp){
Code4bitAnswerAsTag(resp);
int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
int res = EmSendCmd14443aRaw(ToSend, ToSendMax);
// do the tracing for the previous reader request and this tag answer:
EmLogTraceTag(&resp, 1, NULL, LastProxToAirDuration);
return res;
@ -1541,40 +1545,40 @@ static int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
int EmSend4bit(uint8_t resp){
return EmSend4bitEx(resp, false);
return EmSend4bitEx(resp);
}
static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
CodeIso14443aAsTagPar(resp, respLen, par);
int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
int res = EmSendCmd14443aRaw(ToSend, ToSendMax);
// do the tracing for the previous reader request and this tag answer:
EmLogTraceTag(resp, respLen, par, LastProxToAirDuration);
return res;
}
int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
int EmSendCmdEx(uint8_t *resp, uint16_t respLen){
uint8_t par[MAX_PARITY_SIZE];
GetParity(resp, respLen, par);
return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
return EmSendCmdExPar(resp, respLen, par);
}
int EmSendCmd(uint8_t *resp, uint16_t respLen){
uint8_t par[MAX_PARITY_SIZE];
GetParity(resp, respLen, par);
return EmSendCmdExPar(resp, respLen, false, par);
return EmSendCmdExPar(resp, respLen, par);
}
int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
return EmSendCmdExPar(resp, respLen, false, par);
return EmSendCmdExPar(resp, respLen, par);
}
int EmSendPrecompiledCmd(tag_response_info_t *response_info, bool correctionNeeded) {
int ret = EmSendCmd14443aRaw(response_info->modulation, response_info->modulation_n, correctionNeeded);
int EmSendPrecompiledCmd(tag_response_info_t *response_info) {
int ret = EmSendCmd14443aRaw(response_info->modulation, response_info->modulation_n);
// do the tracing for the previous reader request and this tag answer:
EmLogTraceTag(response_info->response, response_info->response_n, &(response_info->par), response_info->ProxToAirDuration);
return ret;

View file

@ -41,10 +41,10 @@ extern void ReaderMifare(bool first_try);
extern int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity);
extern int EmSendCmd(uint8_t *resp, uint16_t respLen);
extern int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
extern int EmSendCmdEx(uint8_t *resp, uint16_t respLen);
extern int EmSend4bit(uint8_t resp);
extern int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
extern int EmSendPrecompiledCmd(tag_response_info_t *response_info, bool correctionNeeded);
extern int EmSendPrecompiledCmd(tag_response_info_t *response_info);
extern bool prepare_allocated_tag_modulation(tag_response_info_t *response_info, uint8_t **buffer, size_t *buffer_size);

View file

@ -41,6 +41,132 @@
#define cardSTATE_TO_IDLE() { cardSTATE = MFEMUL_IDLE; LED_B_OFF(); LED_C_OFF(); }
#define AC_DATA_READ 0
#define AC_DATA_WRITE 1
#define AC_DATA_INC 2
#define AC_DATA_DEC_TRANS_REST 3
#define AC_KEYA_READ 0
#define AC_KEYA_WRITE 1
#define AC_KEYB_READ 2
#define AC_KEYB_WRITE 3
#define AC_AC_READ 4
#define AC_AC_WRITE 5
#define AUTHKEYA 0
#define AUTHKEYB 1
#define AUTHKEYNONE 0xff
static bool IsTrailerAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) {
uint8_t sector_trailer[16];
emlGetMem(sector_trailer, blockNo, 1);
uint8_t AC = ((sector_trailer[7] >> 5) & 0x04)
| ((sector_trailer[8] >> 2) & 0x02)
| ((sector_trailer[8] >> 7) & 0x01);
switch (action) {
case AC_KEYA_READ: {
return false;
break;
}
case AC_KEYA_WRITE: {
return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x01))
|| (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03)));
break;
}
case AC_KEYB_READ: {
return (keytype == AUTHKEYA && (AC == 0x00 || AC == 0x02 || AC == 0x01));
break;
}
case AC_KEYB_WRITE: {
return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x04))
|| (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03)));
break;
}
case AC_AC_READ: {
return ((keytype == AUTHKEYA)
|| (keytype == AUTHKEYB && !(AC == 0x00 || AC == 0x02 || AC == 0x01)));
break;
}
case AC_AC_WRITE: {
return ((keytype == AUTHKEYA && (AC == 0x01))
|| (keytype == AUTHKEYB && (AC == 0x03 || AC == 0x05)));
break;
}
default: return false;
}
}
static bool IsDataAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action)
{
uint8_t sector_trailer[16];
emlGetMem(sector_trailer, SectorTrailer(blockNo), 1);
uint8_t sector_block;
if (blockNo < 32*4) {
sector_block = blockNo & 0x03;
} else {
sector_block = (blockNo & 0x0f) / 5;
}
uint8_t AC;
switch (sector_block) {
case 0x00: {
AC = ((sector_trailer[7] >> 2) & 0x04)
| ((sector_trailer[8] << 1) & 0x02)
| ((sector_trailer[8] >> 4) & 0x01);
break;
}
case 0x01: {
AC = ((sector_trailer[7] >> 3) & 0x04)
| ((sector_trailer[8] >> 0) & 0x02)
| ((sector_trailer[8] >> 5) & 0x01);
break;
}
case 0x02: {
AC = ((sector_trailer[7] >> 4) & 0x04)
| ((sector_trailer[8] >> 1) & 0x02)
| ((sector_trailer[8] >> 6) & 0x01);
break;
}
default:
return false;
}
switch (action) {
case AC_DATA_READ: {
return ((keytype == AUTHKEYA && !(AC == 0x03 || AC == 0x05 || AC == 0x07))
|| (keytype == AUTHKEYB && !(AC == 0x07)));
break;
}
case AC_DATA_WRITE: {
return ((keytype == AUTHKEYA && (AC == 0x00))
|| (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x04 || AC == 0x06 || AC == 0x03)));
break;
}
case AC_DATA_INC: {
return ((keytype == AUTHKEYA && (AC == 0x00))
|| (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06)));
break;
}
case AC_DATA_DEC_TRANS_REST: {
return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x06 || AC == 0x01))
|| (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06 || AC == 0x01)));
break;
}
}
return false;
}
static bool IsAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) {
if (IsSectorTrailer(blockNo)) {
return IsTrailerAccessAllowed(blockNo, keytype, action);
} else {
return IsDataAccessAllowed(blockNo, keytype, action);
}
}
static void MifareSimInit(uint8_t flags, uint8_t *datain, tag_response_info_t **responses, uint32_t *cuid, uint8_t *uid_len) {
@ -155,7 +281,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
uint32_t cuid = 0;
uint8_t cardWRBL = 0;
uint8_t cardAUTHSC = 0;
uint8_t cardAUTHKEY = 0xff; // no authentication
uint8_t cardAUTHKEY = AUTHKEYNONE; // no authentication
uint32_t cardRr = 0;
//uint32_t rn_enc = 0;
uint32_t ans = 0;
@ -244,11 +370,11 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
// WUPA in HALTED state or REQA or WUPA in any other state
if (receivedCmd_len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) {
EmSendPrecompiledCmd(&responses[ATQA], (receivedCmd[0] == ISO14443A_CMD_WUPA));
EmSendPrecompiledCmd(&responses[ATQA]);
// init crypto block
crypto1_destroy(pcs);
cardAUTHKEY = 0xff;
cardAUTHKEY = AUTHKEYNONE;
if (flags & FLAG_RANDOM_NONCE) {
nonce = prand();
}
@ -268,7 +394,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
// select all - 0x93 0x20
if (receivedCmd_len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x20)) {
if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL CL1 received");
EmSendPrecompiledCmd(&responses[UIDBCC1], false);
EmSendPrecompiledCmd(&responses[UIDBCC1]);
break;
}
// select card - 0x93 0x70 ...
@ -276,12 +402,12 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
(receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], responses[UIDBCC1].response, 4) == 0)) {
if (MF_DBGLEVEL >= 4) Dbprintf("SELECT CL1 %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
if (uid_len == 4) {
EmSendPrecompiledCmd(&responses[SAKfinal], false);
EmSendPrecompiledCmd(&responses[SAKfinal]);
LED_B_ON();
cardSTATE = MFEMUL_WORK;
break;
} else if (uid_len == 7) {
EmSendPrecompiledCmd(&responses[SAK1], false);
EmSendPrecompiledCmd(&responses[SAK1]);
cardSTATE = MFEMUL_SELECT2;
break;
}
@ -293,7 +419,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
// select all cl2 - 0x95 0x20
if (receivedCmd_len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x20)) {
if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL CL2 received");
EmSendPrecompiledCmd(&responses[UIDBCC2], false);
EmSendPrecompiledCmd(&responses[UIDBCC2]);
break;
}
// select cl2 card - 0x95 0x70 xxxxxxxxxxxx
@ -301,7 +427,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
(receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], responses[UIDBCC2].response, 4) == 0)) {
if (uid_len == 7) {
if (MF_DBGLEVEL >= 4) Dbprintf("SELECT CL2 %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
EmSendPrecompiledCmd(&responses[SAKfinal], false);
EmSendPrecompiledCmd(&responses[SAKfinal]);
LED_B_ON();
cardSTATE = MFEMUL_WORK;
break;
@ -314,7 +440,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
if (receivedCmd_len != 4) { // all commands must have exactly 4 bytes
break;
}
bool encrypted_data = (cardAUTHKEY != 0xFF) ;
bool encrypted_data = (cardAUTHKEY != AUTHKEYNONE) ;
if (encrypted_data) {
// decrypt seqence
mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, receivedCmd_dec);
@ -371,10 +497,24 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
}
}
if (receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK) {
uint8_t blockNo = receivedCmd_dec[1];
if (MF_DBGLEVEL >= 4) {
Dbprintf("Reader reading block %d (0x%02x)",receivedCmd_dec[1],receivedCmd_dec[1]);
Dbprintf("Reader reading block %d (0x%02x)", blockNo, blockNo);
}
emlGetMem(response, blockNo, 1);
if (IsSectorTrailer(blockNo)) {
memset(response, 0x00, 6); // keyA can never be read
if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_KEYB_READ)) {
memset(response+10, 0x00, 6); // keyB cannot be read
}
if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_AC_READ)) {
memset(response+6, 0x00, 4); // AC bits cannot be read
}
} else {
if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_DATA_READ)) {
memset(response, 0x00, 16); // datablock cannot be read
}
}
emlGetMem(response, receivedCmd_dec[1], 1);
AppendCrc14443a(response, 16);
mf_crypto1_encrypt(pcs, response, 18, response_par);
EmSendCmdPar(response, 18, response_par);
@ -386,21 +526,23 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
break;
}
if (receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK) {
if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd_dec[1],receivedCmd_dec[1]);
uint8_t blockNo = receivedCmd_dec[1];
if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)", blockNo, blockNo);
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
cardWRBL = receivedCmd_dec[1];
cardWRBL = blockNo;
cardSTATE = MFEMUL_WRITEBL2;
break;
}
if (receivedCmd_dec[0] == MIFARE_CMD_INC || receivedCmd_dec[0] == MIFARE_CMD_DEC || receivedCmd_dec[0] == MIFARE_CMD_RESTORE) {
if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd_dec[0],receivedCmd_dec[1],receivedCmd_dec[1]);
if (emlCheckValBl(receivedCmd_dec[1])) {
uint8_t blockNo = receivedCmd_dec[1];
if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo);
if (emlCheckValBl(blockNo)) {
if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
break;
}
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
cardWRBL = receivedCmd_dec[1];
cardWRBL = blockNo;
if (receivedCmd_dec[0] == MIFARE_CMD_INC)
cardSTATE = MFEMUL_INTREG_INC;
if (receivedCmd_dec[0] == MIFARE_CMD_DEC)
@ -410,7 +552,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
break;
}
if (receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) {
if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd_dec[0],receivedCmd_dec[1],receivedCmd_dec[1]);
uint8_t blockNo = receivedCmd_dec[1];
if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo);
if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd_dec[1]))
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
else
@ -508,20 +651,20 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
// test if auth OK
if (cardRr != prng_successor(nonce, 64)){
if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
cardAUTHSC, cardAUTHKEY == AUTHKEYA ? 'A' : 'B',
cardRr, prng_successor(nonce, 64));
// Shouldn't we respond anything here?
// Right now, we don't nack or anything, which causes the
// reader to do a WUPA after a while. /Martin
// -- which is the correct response. /piwi
cardAUTHKEY = 0xff; // not authenticated
cardAUTHKEY = AUTHKEYNONE; // not authenticated
cardSTATE_TO_IDLE();
break;
}
ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
num_to_bytes(ans, 4, rAUTH_AT);
EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c.", cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B');
if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c.", cardAUTHSC, cardAUTHKEY == AUTHKEYA ? 'A' : 'B');
LED_C_ON();
cardSTATE = MFEMUL_WORK;
break;
@ -530,8 +673,24 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
if (receivedCmd_len == 18) {
mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, receivedCmd_dec);
if (HasValidCRC(receivedCmd_dec, receivedCmd_len)) {
if (IsSectorTrailer(cardWRBL)) {
emlGetMem(response, cardWRBL, 1);
if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYA_WRITE)) {
memcpy(receivedCmd_dec, response, 6); // don't change KeyA
}
if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYB_WRITE)) {
memcpy(receivedCmd_dec+10, response+10, 6); // don't change KeyA
}
if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_AC_WRITE)) {
memcpy(receivedCmd_dec+6, response+6, 4); // don't change AC bits
}
} else {
if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_DATA_WRITE)) {
memcpy(receivedCmd_dec, response, 16); // don't change anything
}
}
emlSetMem(receivedCmd_dec, cardWRBL, 1);
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); // always ACK?
cardSTATE = MFEMUL_WORK;
break;
}

View file

@ -9,13 +9,15 @@
// Work with mifare cards.
//-----------------------------------------------------------------------------
#include <string.h>
#include "mifareutil.h"
#include <string.h>
#include <stdbool.h>
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
#include "parity.h"
#include "iso14443crc.h"
#include "iso14443a.h"
#include "crapto1/crapto1.h"
@ -585,6 +587,19 @@ uint8_t FirstBlockOfSector(uint8_t sectorNo)
}
uint8_t SectorTrailer(uint8_t blockNo)
{
if (blockNo < 32*4) {
return (blockNo | 0x03);
} else {
return (blockNo | 0x0f);
}
}
bool IsSectorTrailer(uint8_t blockNo)
{
return (blockNo == SectorTrailer(blockNo));
}
// work with emulator memory
void emlSetMem(uint8_t *data, int blockNum, int blocksCount) {

View file

@ -12,6 +12,9 @@
#ifndef __MIFAREUTIL_H
#define __MIFAREUTIL_H
#include <stdint.h>
#include <stdbool.h>
#include "crapto1/crapto1.h"
#include "usb_cdc.h"
@ -75,6 +78,8 @@ uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data);
// Mifare memory structure
uint8_t NumBlocksPerSector(uint8_t sectorNo);
uint8_t FirstBlockOfSector(uint8_t sectorNo);
bool IsSectorTrailer(uint8_t blockNo);
uint8_t SectorTrailer(uint8_t blockNo);
// emulator functions
void emlClearMem(void);

Binary file not shown.

View file

@ -311,9 +311,13 @@ reg [3:0] sub_carrier_cnt;
// The ARM must not send too early, otherwise the mod_sig_buf will overflow, therefore signal that we are ready
// with fdt_indicator. The mod_sig_buf can buffer 29 excess data bits, i.e. a maximum delay of 29 * 16 = 464 adc_clk ticks.
// fdt_indicator could appear at ssp_din after 1 tick, the transfer needs 16 ticks, the ARM can send 128 ticks later.
// 1128 - 464 - 1 - 128 - 8 = 535
`define FDT_INDICATOR_COUNT 11'd535
// fdt_indicator is assigned to sendbit after at least 1 tick, the transfer to ARM needs minimum 8 ticks. Response from
// ARM could appear at ssp_dout 8 ticks later.
// 1128 - 464 - 1 - 8 - 8 = 647
`define FDT_INDICATOR_COUNT 11'd647
// Note: worst case, assignment to sendbit takes 15 ticks more, and transfer to ARM needs 7*16 = 112 ticks more.
// When the ARM's response then appears, the fdt_count is already 647 + 15 + 112 = 774, which still allows the ARM a possible
// response window of 1128 - 774 = 354 ticks.
// reset on a pause in listen mode. I.e. the counter starts when the pause is over:
assign fdt_reset = ~after_hysteresis && mod_type == `TAGSIM_LISTEN;