add a specific check function for static nonces (used in 'hf mf nested') (#911)

* add a specific check function for static nonces in 'hf mf nested'
* uses a fixed nr_enc and does all the crypto operations on client
* for all possible keys calculate par_enc and ar_enc and send them to device
* CHANGELOG update
This commit is contained in:
pwpiwi 2020-03-16 13:32:00 +01:00 committed by GitHub
parent bedae7768c
commit aa8ff592ae
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
7 changed files with 308 additions and 232 deletions

View file

@ -17,6 +17,7 @@ This project uses the changelog in accordance with [keepchangelog](http://keepac
- `hf mf chk t` save to emulator memory now works as expected (mwalker)
- Fix `hf mf sim` - wrong access rights to write key B in trailer (@McEloff)
- allow files > 512Bytes in 'hf iclass eload' (@Sherhannn79)
- `hf mf nested` now works with fixed nonce tags too (uzlonewolf, piwi)
### Added
- Added to `hf 14a apdu` print apdu and compose apdu (@merlokk)

View file

@ -640,8 +640,7 @@ int valid_nonce(uint32_t Nt, uint32_t NtEnc, uint32_t Ks1, uint8_t *parity) {
// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
// Computer and Communications Security, 2015
//-----------------------------------------------------------------------------
void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags, uint8_t *datain)
{
void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags, uint8_t *datain) {
uint64_t ui64Key = 0;
uint8_t uid[10];
uint32_t cuid;
@ -666,7 +665,6 @@ void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags,
bool field_off = flags & 0x0004;
LED_A_ON();
LED_C_OFF();
if (initialize) {
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
@ -674,8 +672,6 @@ void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags,
set_tracing(true);
}
LED_C_ON();
uint16_t num_nonces = 0;
bool have_uid = false;
for (uint16_t i = 0; i <= USB_CMD_DATA_SIZE - 9; ) {
@ -747,21 +743,18 @@ void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags,
}
LED_C_OFF();
crypto1_destroy(pcs);
if (field_off) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
LED_D_OFF();
}
LED_B_ON();
cmd_send(CMD_ACK, isOK, cuid, num_nonces, buf, sizeof(buf));
LED_B_OFF();
if (MF_DBGLEVEL >= 3) DbpString("AcquireEncryptedNonces finished");
cmd_send(CMD_ACK, isOK, cuid, num_nonces, buf, sizeof(buf));
LED_A_OFF();
}
@ -783,9 +776,10 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *dat
uint16_t davg;
static uint16_t dmin, dmax;
uint8_t uid[10];
uint32_t cuid, nt1, nt2, nttmp, nttest, ks1;
uint32_t cuid, nt1, nt2_enc, nttmp, nttest, ks1;
uint8_t par[1];
uint32_t target_nt[2], target_ks[2];
uint32_t fixed_nt = 0;
uint8_t target_nt_duplicate_count = 0;
uint8_t par_array[4];
@ -812,7 +806,6 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *dat
#define NESTED_MAX_TRIES 12
uint16_t unsuccessfull_tries = 0;
if (calibrate) { // for first call only. Otherwise reuse previous calibration
LED_B_ON();
WDT_HIT();
davg = dmax = 0;
@ -846,13 +839,14 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *dat
rtr--;
continue;
};
fixed_nt = nt1;
if (delta_time) {
auth2_time = auth1_time + delta_time;
} else {
auth2_time = 0;
}
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_NESTED, &nt2, &auth2_time, NULL)) {
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_NESTED, &nt2_enc, &auth2_time, NULL)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Nested: Auth2 error");
rtr--;
continue;
@ -861,7 +855,7 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *dat
nttmp = prng_successor(nt1, 100); //NXP Mifare is typical around 840,but for some unlicensed/compatible mifare card this can be 160
for (i = 101; i < 1200; i++) {
nttmp = prng_successor(nttmp, 1);
if (nttmp == nt2) break;
if (nttmp == nt2_enc) break;
}
if (i != 1200) {
@ -889,21 +883,17 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *dat
dmin = davg - 2;
dmax = davg + 2;
LED_B_OFF();
}
// -------------------------------------------------------------------------------------------------
LED_C_ON();
// get crypted nonces for target sector
for (i=0; i < 2 && !isOK; i++) { // look for exactly two different nonces
for (i = 0; i < 2 && !isOK; i++) { // look for exactly two different nonces
target_nt[i] = 0;
while (target_nt[i] == 0 && !isOK) { // continue until we have an unambiguous nonce
// prepare next select. No need to power down the card.
if(mifare_classic_halt(pcs, cuid)) {
if (mifare_classic_halt(pcs, cuid)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Nested: Halt error");
continue;
}
@ -934,8 +924,8 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *dat
continue;
}
nt2 = bytes_to_num(receivedAnswer, 4);
if (MF_DBGLEVEL >= 3) Dbprintf("Nonce#%d: Testing nt1=%08x nt2enc=%08x nt2par=%02x", i+1, nt1, nt2, par[0]);
nt2_enc = bytes_to_num(receivedAnswer, 4);
if (MF_DBGLEVEL >= 3) Dbprintf("Nonce#%d: Testing nt1=%08x nt2enc=%08x nt2par=%02x", i+1, nt1, nt2_enc, par[0]);
// Parity validity check
for (j = 0; j < 4; j++) {
@ -946,9 +936,9 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *dat
nttest = prng_successor(nt1, dmin - 1);
for (j = dmin; j < dmax + 1; j++) {
nttest = prng_successor(nttest, 1);
ks1 = nt2 ^ nttest;
ks1 = nt2_enc ^ nttest;
if (valid_nonce(nttest, nt2, ks1, par_array)){
if (valid_nonce(nttest, nt2_enc, ks1, par_array)){
if (ncount > 0) { // we are only interested in disambiguous nonces, try again
if (MF_DBGLEVEL >= 3) Dbprintf("Nonce#%d: dismissed (ambigous), ntdist=%d", i+1, j);
target_nt[i] = 0;
@ -974,28 +964,25 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *dat
}
}
LED_C_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
// ----------------------------- crypto1 destroy
crypto1_destroy(pcs);
uint8_t buf[4 + 4 * 4 + 4];
uint8_t buf[4 + 4 * 4 + 4 + 4];
memcpy(buf, &cuid, 4);
memcpy(buf+4, &target_nt[0], 4);
memcpy(buf+8, &target_ks[0], 4);
memcpy(buf+12, &target_nt[1], 4);
memcpy(buf+16, &target_ks[1], 4);
memcpy(buf+20, &authentication_timeout, 4);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
memcpy(buf+24, &fixed_nt, 4);
if (MF_DBGLEVEL >= 3) DbpString("NESTED FINISHED");
LED_B_ON();
cmd_send(CMD_ACK, isOK, 0, targetBlockNo + (targetKeyType * 0x100), buf, sizeof(buf));
LED_B_OFF();
LEDsoff();
LED_A_OFF();
}
@ -1011,6 +998,7 @@ void MifareChkKeys(uint16_t arg0, uint32_t arg1, uint8_t arg2, uint8_t *datain)
bool multisectorCheck = arg1 & 0x02;
bool init = arg1 & 0x04;
bool drop_field = arg1 & 0x08;
bool fixed_nonce = arg1 & 0x10;
uint32_t auth_timeout = arg1 >> 16;
uint8_t keyCount = arg2;
@ -1039,6 +1027,13 @@ void MifareChkKeys(uint16_t arg0, uint32_t arg1, uint8_t arg2, uint8_t *datain)
} else {
cmd_send(CMD_ACK, 0, res, 0, NULL, 0);
}
} else if (fixed_nonce) {
res = MifareChkBlockKeysFixedNonce(datain, keyCount, blockNo, keyType, &auth_timeout, OLD_MF_DBGLEVEL);
if (res > 0) {
cmd_send(CMD_ACK, 1, res, 0, NULL, 0); // key found
} else {
cmd_send(CMD_ACK, 0, res, 0, NULL, 0); // no key found or aborted
}
} else {
res = MifareChkBlockKeys(datain, keyCount, blockNo, keyType, &auth_timeout, OLD_MF_DBGLEVEL);
if (res > 0) {

View file

@ -78,8 +78,7 @@ uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data) {
}
// send X byte basic commands
int mifare_sendcmd(uint8_t cmd, uint8_t* data, uint8_t data_size, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing)
{
int mifare_sendcmd(uint8_t cmd, uint8_t* data, uint8_t data_size, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing) {
uint8_t dcmd[data_size+3];
dcmd[0] = cmd;
memcpy(dcmd+1,data,data_size);
@ -95,8 +94,7 @@ int mifare_sendcmd(uint8_t cmd, uint8_t* data, uint8_t data_size, uint8_t* answe
}
// send 2 byte commands
int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t *answer, uint8_t *answer_parity, uint32_t *timing)
{
int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t *answer, uint8_t *answer_parity, uint32_t *timing) {
uint8_t dcmd[4], ecmd[4];
uint16_t pos, res;
uint8_t par[1]; // 1 Byte parity is enough here
@ -211,7 +209,7 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
// ar+parity
for (pos = 4; pos < 8; pos++) {
nt = prng_successor(nt,8);
mf_nr_ar[pos] = crypto1_byte(pcs,0x00,0) ^ (nt & 0xff);
mf_nr_ar[pos] = crypto1_byte(pcs, 0x00, 0) ^ (nt & 0xff);
par[0] |= (((filter(pcs->odd) ^ oddparity8(nt)) & 0x01) << (7-pos));
}
@ -814,18 +812,17 @@ int mifare_desfire_des_auth2(uint32_t uid, uint8_t *key, uint8_t *blockData){
//
//-----------------------------------------------------------------------------
// one key check
int MifareChkBlockKey(uint8_t *uid, uint32_t *cuid, uint8_t *cascade_levels, uint64_t ui64Key, uint8_t blockNo, uint8_t keyType, uint32_t *auth_timeout, uint8_t debugLevel) {
static int MifareChkBlockKey(uint8_t *uid, uint32_t *cuid, uint8_t *cascade_levels, uint8_t *key, uint8_t blockNo, uint8_t keyType, uint32_t *auth_timeout, uint8_t debugLevel, bool fixed_nonce) {
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
// Iceman: use piwi's faster nonce collecting part in hardnested.
if (*cascade_levels == 0) { // need a full select cycle to get the uid first
iso14a_card_select_t card_info;
if (!iso14443a_select_card(uid, &card_info, cuid, true, 0, true)) {
if (debugLevel >= 1) Dbprintf("ChkKeys: Can't select card");
return 1;
return -1;
}
switch (card_info.uidlen) {
case 4 : *cascade_levels = 1; break;
@ -836,63 +833,85 @@ int MifareChkBlockKey(uint8_t *uid, uint32_t *cuid, uint8_t *cascade_levels, uin
} else { // no need for anticollision. We can directly select the card
if (!iso14443a_select_card(uid, NULL, NULL, false, *cascade_levels, true)) {
if (debugLevel >= 1) Dbprintf("ChkKeys: Can't select card (UID) lvl=%d", *cascade_levels);
return 1;
return -1;
}
}
if (mifare_classic_auth(pcs, *cuid, blockNo, keyType, ui64Key, AUTH_FIRST, auth_timeout)) { // authentication failed
return 2;
if (!fixed_nonce) {
uint64_t ui64Key = bytes_to_num(key, 6);
if (mifare_classic_auth(pcs, *cuid, blockNo, keyType, ui64Key, AUTH_FIRST, auth_timeout)) { // authentication failed
return -2;
} else {
mifare_classic_halt(pcs, *cuid);
}
} else {
mifare_classic_halt(pcs, *cuid);
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
// Transmit MIFARE_CLASSIC_AUTH
int len = mifare_sendcmd_short(pcs, false, keyType & 0x01 ? MIFARE_AUTH_KEYB : MIFARE_AUTH_KEYA, blockNo, receivedAnswer, receivedAnswerPar, NULL);
if (len != 4) return -2;
// Transmit encrypted reader nonce and reader answer
uint8_t mf_nr_ar[8] = NESTED_FIXED_NR_ENC;
memcpy(mf_nr_ar + 4, key, 4);
ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), key + 4, NULL);
uint32_t save_timeout = iso14a_get_timeout(); // save standard timeout
iso14a_set_timeout(*auth_timeout); // set timeout for authentication response
len = ReaderReceive(receivedAnswer, receivedAnswerPar);
iso14a_set_timeout(save_timeout); // restore standard timeout
if (!len) return -2;
}
return 0;
return 0; // success
}
// multi key check
int MifareChkBlockKeys(uint8_t *keys, uint8_t keyCount, uint8_t blockNo, uint8_t keyType, uint32_t *auth_timeout, uint8_t debugLevel) {
static int MifareChkBlockKeysEx(uint8_t *keys, uint8_t keyCount, uint8_t blockNo, uint8_t keyType, uint32_t *auth_timeout, uint8_t debugLevel, bool fixed_nonce) {
uint8_t uid[10];
uint32_t cuid = 0;
uint8_t cascade_levels = 0;
uint64_t ui64Key = 0;
int retryCount = 0;
for (uint8_t i = 0; i < keyCount; i++) {
ui64Key = bytes_to_num(keys + i * 6, 6);
int res = MifareChkBlockKey(uid, &cuid, &cascade_levels, ui64Key, blockNo, keyType, auth_timeout, debugLevel);
// can't select
if (res == 1) {
uint8_t bytes_per_key = fixed_nonce ? 5 : 6;
int res = MifareChkBlockKey(uid, &cuid, &cascade_levels, keys + i*bytes_per_key, blockNo, keyType, auth_timeout, debugLevel, fixed_nonce);
if (res == -1) { // couldn't select
retryCount++;
if (retryCount >= 5) {
Dbprintf("ChkKeys: block=%d key=%d. Can't select. Exit...", blockNo, keyType);
Dbprintf("ChkKeys: block=%d key=%d. Couldn't select. Exit...", blockNo, keyType);
return -1;
} else {
--i; // try the same key once again
SpinDelay(20);
// Dbprintf("ChkKeys: block=%d key=%d. Try the same key once again...", blockNo, keyType);
continue;
}
--i; // try the same key once again
SpinDelay(20);
// Dbprintf("ChkKeys: block=%d key=%d. Try the same key once again...", blockNo, keyType);
}
if (res == -2) { // couldn't authenticate with this key
retryCount = 0;
continue;
}
// can't authenticate
if (res == 2) {
retryCount = 0;
continue; // can't auth. wrong key.
}
return i + 1; // successful authentication
// successful authentication
return i + 1;
}
if (BUTTON_PRESS()) {
return -2;
}
return 0;
return 0; // couldn't authenticate with any key
}
int MifareChkBlockKeys(uint8_t *keys, uint8_t keyCount, uint8_t blockNo, uint8_t keyType, uint32_t *auth_timeout, uint8_t debugLevel) {
return MifareChkBlockKeysEx(keys, keyCount, blockNo, keyType, auth_timeout, debugLevel, false);
}
// fixed nonce check
int MifareChkBlockKeysFixedNonce(uint8_t *ar_par, uint8_t ar_par_cnt, uint8_t blockNo, uint8_t keyType, uint32_t *auth_timeout, uint8_t debugLevel) {
return MifareChkBlockKeysEx(ar_par, ar_par_cnt, blockNo, keyType, auth_timeout, debugLevel, true);
}

View file

@ -87,7 +87,7 @@ int emlCheckValBl(int blockNum);
// mifare check keys
typedef uint8_t TKeyIndex[2][40];
int MifareChkBlockKey(uint8_t *uid, uint32_t *cuid, uint8_t *cascade_levels, uint64_t ui64Key, uint8_t blockNo, uint8_t keyType, uint32_t *auth_timeout, uint8_t debugLevel);
int MifareChkBlockKeysFixedNonce(uint8_t *ar_par, uint8_t ar_par_cnt, uint8_t blockNo, uint8_t keyType, uint32_t *auth_timeout, uint8_t debugLevel);
int MifareChkBlockKeys(uint8_t *keys, uint8_t keyCount, uint8_t blockNo, uint8_t keyType, uint32_t *auth_timeout, uint8_t debugLevel);
int MifareMultisectorChk(uint8_t *keys, uint8_t keyCount, uint8_t SectorCount, uint8_t keyType, uint32_t *auth_timeout, uint8_t debugLevel, TKeyIndex *keyIndex);

View file

@ -677,7 +677,7 @@ int CmdHF14AMfNested(const char *Cmd) {
// check if we can authenticate to sector
res = mfCheckKeys(blockNo, keyType, timeout14a, true, 1, key, &key64);
if (res) {
PrintAndLog("Can't authenticate to block:%3d key type:%c key:%s", blockNo, keyType?'B':'A', sprint_hex(key, 6));
PrintAndLog("Can't authenticate to block %d, key type %c, key %s", blockNo, keyType?'B':'A', sprint_hex(key, 6));
return 3;
}

View file

@ -30,14 +30,14 @@
#include "mifare4.h"
// mifare tracer flags used in mfTraceDecode()
#define TRACE_IDLE 0x00
#define TRACE_AUTH1 0x01
#define TRACE_AUTH2 0x02
#define TRACE_AUTH_OK 0x03
#define TRACE_READ_DATA 0x04
#define TRACE_WRITE_OK 0x05
#define TRACE_WRITE_DATA 0x06
#define TRACE_ERROR 0xFF
#define TRACE_IDLE 0x00
#define TRACE_AUTH1 0x01
#define TRACE_AUTH2 0x02
#define TRACE_AUTH_OK 0x03
#define TRACE_READ_DATA 0x04
#define TRACE_WRITE_OK 0x05
#define TRACE_WRITE_DATA 0x06
#define TRACE_ERROR 0xFF
static int compare_uint64(const void *a, const void *b) {
@ -90,7 +90,7 @@ static uint32_t nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint32_t ar, u
for (pos=0; pos<8; pos++) {
ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
bt = (par_info >> (pos*8)) & 0xff;
for (i=0; i<8; i++) {
for (i=0; i<8; i++) {
par[7-pos][i] = (bt >> i) & 0x01;
}
}
@ -221,19 +221,20 @@ int mfDarkside(uint64_t *key) {
}
int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint64_t *found_key) {
static int mfCheckKeysEx(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint64_t *found_key, bool fixed_nonce) {
bool display_progress = false;
uint64_t start_time = msclock();
uint64_t next_print_time = start_time + 5 * 1000;
if (keycnt > 1000) {
PrintAndLog("We have %d keys to check. This will take some time!", keycnt);
PrintAndLog("We have %d keys to check. This can take some time!", keycnt);
PrintAndLog("Press button to abort.");
display_progress = true;
}
uint32_t max_keys = (keycnt > (USB_CMD_DATA_SIZE / 6)) ? (USB_CMD_DATA_SIZE / 6) : keycnt;
uint8_t bytes_per_key = fixed_nonce ? 5 : 6;
uint32_t max_keys = keycnt > USB_CMD_DATA_SIZE/bytes_per_key ? USB_CMD_DATA_SIZE/bytes_per_key : keycnt;
*found_key = -1;
bool multisectorCheck = false;
@ -245,10 +246,10 @@ int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clea
bool init = (i == 0);
bool drop_field = (max_keys == keycnt);
uint8_t flags = clear_trace | multisectorCheck << 1 | init << 2 | drop_field << 3;
uint8_t flags = clear_trace | multisectorCheck << 1 | init << 2 | drop_field << 3 | fixed_nonce << 4;
UsbCommand c = {CMD_MIFARE_CHKKEYS, {((blockNo & 0xff) | ((keyType & 0xff) << 8)), flags | timeout14a << 16, max_keys}};
memcpy(c.d.asBytes, keys + i * 6, max_keys * 6);
memcpy(c.d.asBytes, keys + i * bytes_per_key, max_keys * bytes_per_key);
SendCommand(&c);
UsbCommand resp;
@ -256,7 +257,7 @@ int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clea
return 1;
if ((resp.arg[0] & 0xff) != 0x01) {
if (((int)resp.arg[1]) < 0) { // error
if ((int)resp.arg[1] < 0) { // error or user aborted
return (int)resp.arg[1];
} else { // nothing found yet
if (display_progress && msclock() >= next_print_time) {
@ -267,17 +268,31 @@ int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clea
PrintAndLog(" %8d keys left | %5.1f keys/sec | worst case %6.1f seconds remaining", keycnt - i, brute_force_per_second, (keycnt-i)/brute_force_per_second);
}
}
} else { // success
*found_key = bytes_to_num(resp.d.asBytes, 6);
} else { // success
if (fixed_nonce) {
*found_key = i + resp.arg[1] - 1;
} else {
*found_key = bytes_to_num(resp.d.asBytes, 6);
}
return 0;
}
}
return 2; // nothing found
return 2; // nothing found
}
int mfCheckKeysSec(uint8_t sectorCnt, uint8_t keyType, uint16_t timeout14a, bool clear_trace, bool init, bool drop_field, uint8_t keycnt, uint8_t * keyBlock, sector_t * e_sector) {
int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint64_t *found_key) {
return mfCheckKeysEx(blockNo, keyType, timeout14a, clear_trace, keycnt, keys, found_key, false);
}
static int mfCheckKeysFixedNonce(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint32_t *key_index) {
return mfCheckKeysEx(blockNo, keyType, timeout14a, clear_trace, keycnt, keys, (uint64_t*)key_index, true);
}
int mfCheckKeysSec(uint8_t sectorCnt, uint8_t keyType, uint16_t timeout14a, bool clear_trace, bool init, bool drop_field, uint8_t keycnt, uint8_t *keyBlock, sector_t *e_sector) {
uint8_t keyPtr = 0;
@ -330,7 +345,7 @@ typedef
uint32_t uid;
uint32_t blockNo;
uint32_t keyType;
uint32_t nt_enc;
uint32_t nt;
uint32_t ks1;
} StateList_t;
@ -346,7 +361,7 @@ __attribute__((force_align_arg_pointer))
struct Crypto1State *p1;
StateList_t *statelist = arg;
statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt_enc ^ statelist->uid);
statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid);
for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++);
statelist->len = p1 - statelist->head.slhead;
statelist->tail.sltail = --p1;
@ -356,94 +371,84 @@ __attribute__((force_align_arg_pointer))
}
int mfnested(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *resultKey, bool calibrate) {
uint32_t i;
uint32_t uid;
UsbCommand resp;
static int nested_fixed_nonce(StateList_t statelist, uint32_t fixed_nt, uint32_t authentication_timeout, uint8_t *resultKey) {
// We have a tag with a fixed nonce (nt) and therefore only one (usually long) list of possible crypto states.
// Instead of testing all those keys on the device with a complete authentication cycle, we do all of the crypto operations here.
uint8_t nr_enc[4] = NESTED_FIXED_NR_ENC; // we use a fixed {nr}
uint8_t ar[4];
num_to_bytes(prng_successor(fixed_nt, 64), 4, ar); // ... and ar is fixed too
int num_unique_nonces;
StateList_t statelists[2];
struct Crypto1State *p1, *p2, *p3, *p4;
uint8_t *keyBlock = NULL;
uint64_t key64;
int isOK = 1;
// flush queue
(void)WaitForResponseTimeout(CMD_ACK,NULL,100);
UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
memcpy(c.d.asBytes, key, 6);
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) {
// some cards can cause it to get stuck in a loop, so break out of it
UsbCommand c = {CMD_PING};
SendCommand(&c);
(void)WaitForResponseTimeout(CMD_ACK,NULL,500);
return -1;
// create an array of possible {ar} and parity bits
uint32_t num_ar_par = statelist.len;
uint8_t *ar_par = calloc(num_ar_par, 5);
if (ar_par == NULL) {
free(statelist.head.slhead);
return -4;
}
if (resp.arg[0]) {
return resp.arg[0]; // error during nested
for (int i = 0; i < num_ar_par; i++) {
// roll back to initial state using the nt observed with the nested authentication
lfsr_rollback_word(statelist.head.slhead + i, statelist.nt ^ statelist.uid, 0);
// instead feed in the fixed_nt for the first authentication
struct Crypto1State cs = *(statelist.head.slhead + i);
crypto1_word(&cs, fixed_nt ^ statelist.uid, 0);
// determine nr such that the resulting {nr} is constant and feed it into the cypher. Calculate the encrypted parity bits
uint8_t par_enc = 0;
for (int j = 0; j < 4; j++) {
uint8_t nr_byte = crypto1_byte(&cs, nr_enc[j], 1) ^ nr_enc[j];
par_enc |= (((filter(cs.odd) ^ oddparity8(nr_byte)) & 0x01) << (7-j));
}
// calculate the encrypted reader response {ar} and its parity bits
for (int j = 0; j < 4; j++) {
ar_par[5*i + j] = crypto1_byte(&cs, 0, 0) ^ ar[j];
par_enc |= ((filter(cs.odd) ^ oddparity8(ar[j])) & 0x01) << (3-j);
}
ar_par[5*i + 4] = par_enc;
}
memcpy(&uid, resp.d.asBytes, 4);
PrintAndLog("uid:%08x trgbl=%d trgkey=%x", uid, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8);
// test each {ar} response
uint32_t key_index;
for (i = 0; i < 2; i++) {
statelists[i].blockNo = resp.arg[2] & 0xff;
statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
statelists[i].uid = uid;
memcpy(&statelists[i].nt_enc, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
int isOK = mfCheckKeysFixedNonce(statelist.blockNo, statelist.keyType, authentication_timeout, true, num_ar_par, ar_par, &key_index);
if (isOK == 0) { // success, key found
// key_index contains the index into the cypher state list
struct Crypto1State *p1 = statelist.head.slhead + key_index;
uint64_t key64;
crypto1_get_lfsr(p1, &key64);
num_to_bytes(key64, 6, resultKey);
}
uint32_t authentication_timeout;
memcpy(&authentication_timeout, resp.d.asBytes + 20, 4);
PrintAndLog("Setting authentication timeout to %" PRIu32 "us", authentication_timeout * 1000 / 106);
if (statelists[0].nt_enc == statelists[1].nt_enc && statelists[0].ks1 == statelists[1].ks1)
num_unique_nonces = 1;
else
num_unique_nonces = 2;
// calc keys
pthread_t thread_id[2];
// create and run worker threads
for (i = 0; i < 2; i++) {
pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
}
// wait for threads to terminate:
for (i = 0; i < 2; i++) {
pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
if (isOK == 1) { // timeout
isOK = -1;
}
free(statelist.head.slhead);
free(ar_par);
return isOK;
}
// the first 16 Bits of the cryptostate already contain part of our key.
static int nested_standard(StateList_t statelists[2], uint32_t authentication_timeout, uint8_t *resultKey) {
// the first 16 Bits of the crypto states already contain part of our key.
// Create the intersection of the two lists based on these 16 Bits and
// roll back the cryptostate
// roll back the crypto state for the remaining states
struct Crypto1State *p1, *p2, *p3, *p4;
p1 = p3 = statelists[0].head.slhead;
p2 = p4 = statelists[1].head.slhead;
while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) {
if (Compare16Bits(p1, p2) == 0) {
struct Crypto1State savestate, *savep = &savestate;
savestate = *p1;
while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
while (Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
*p3 = *p1;
lfsr_rollback_word(p3, statelists[0].nt_enc ^ statelists[0].uid, 0);
lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0);
p3++;
p1++;
}
savestate = *p2;
while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
while (Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
*p4 = *p2;
lfsr_rollback_word(p4, statelists[1].nt_enc ^ statelists[1].uid, 0);
lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0);
p4++;
p2++;
}
@ -460,84 +465,137 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, uint8_t *key
statelists[0].tail.sltail=--p3;
statelists[1].tail.sltail=--p4;
for (i = 0; i < 2; i++) {
PrintAndLog("statelist %d: length:%d block:%02d keytype:%d nt_enc:%08X ks1:%08X", i, statelists[i].len, statelists[i].blockNo, statelists[i].keyType, statelists[i].nt_enc, statelists[i].ks1);
}
// the statelists now contain possible keys. The key we are searching for must be in the
// intersection of both lists. Create the intersection:
// the statelists now contain possible crypto states initialized with the key. The key we are searching for
// must be in the intersection of both lists. Sort the lists and create the intersection:
qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compare_uint64);
qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compare_uint64);
statelists[0].len = intersection(statelists[0].head.keyhead, statelists[1].head.keyhead);
if (num_unique_nonces > 1) {
qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compare_uint64);
statelists[0].len = intersection(statelists[0].head.keyhead, statelists[1].head.keyhead);
}
else {
PrintAndLog("Nonce 1 and 2 are the same!");
}
// create an array of the possible keys
uint32_t num_keys = statelists[0].len;
keyBlock = calloc(num_keys, 6);
if (keyBlock == NULL) {
uint8_t *keys = calloc(num_keys, 6);
if (keys == NULL) {
free(statelists[0].head.slhead);
free(statelists[1].head.slhead);
return -4;
}
for (i = 0; i < num_keys; i++) {
uint64_t key64 = 0;
for (int i = 0; i < num_keys; i++) {
crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
num_to_bytes(key64, 6, keyBlock + i*6);
num_to_bytes(key64, 6, keys + i*6);
}
// The list may still contain several key candidates. Test each of them with mfCheckKeys
isOK = mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, authentication_timeout, true, num_keys, keyBlock, &key64);
// and test each key with mfCheckKeys
int isOK = mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, authentication_timeout, true, num_keys, keys, &key64);
if (isOK == 0) { // success, key found
num_to_bytes(key64, 6, resultKey);
}
if (isOK == 1) { // timeout
isOK = -1;
}
free(statelists[0].head.slhead);
free(statelists[1].head.slhead);
free(keyBlock);
free(keys);
return isOK;
}
int mfnested(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *resultKey, bool calibrate) {
// flush queue
clearCommandBuffer();
UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
memcpy(c.d.asBytes, key, 6);
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
return -1;
}
if ((int)resp.arg[0]) {
return (int)resp.arg[0]; // error during nested
}
uint32_t uid;
memcpy(&uid, resp.d.asBytes, 4);
PrintAndLog("uid:%08x trgbl=%d trgkey=%x", uid, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8);
StateList_t statelists[2];
for (int i = 0; i < 2; i++) {
statelists[i].blockNo = resp.arg[2] & 0xff;
statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
statelists[i].uid = uid;
memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
}
uint32_t authentication_timeout;
memcpy(&authentication_timeout, resp.d.asBytes + 20, 4);
PrintAndLog("Setting authentication timeout to %" PRIu32 "us", authentication_timeout * 1000 / 106);
uint8_t num_unique_nonces;
uint32_t fixed_nt = 0;
if (statelists[0].nt == statelists[1].nt && statelists[0].ks1 == statelists[1].ks1) {
num_unique_nonces = 1;
memcpy(&fixed_nt, resp.d.asBytes + 24, 4);
PrintAndLog("Fixed nt detected: %08" PRIx32 " on first authentication, %08" PRIx32 " on nested authentication", fixed_nt, statelists[0].nt);
} else {
num_unique_nonces = 2;
}
// create and run worker threads to calculate possible crypto states
pthread_t thread_id[2];
for (int i = 0; i < num_unique_nonces; i++) {
pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
}
// wait for threads to terminate:
for (int i = 0; i < num_unique_nonces; i++) {
pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
}
if (num_unique_nonces == 2) {
return nested_standard(statelists, authentication_timeout, resultKey);
} else {
return nested_fixed_nonce(statelists[0], fixed_nt, authentication_timeout, resultKey);
}
}
// MIFARE
int mfReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *data) {
UsbCommand c = {CMD_MIFARE_READSC, {sectorNo, keyType, 0}};
memcpy(c.d.asBytes, key, 6);
clearCommandBuffer();
SendCommand(&c);
UsbCommand c = {CMD_MIFARE_READSC, {sectorNo, keyType, 0}};
memcpy(c.d.asBytes, key, 6);
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
uint8_t isOK = resp.arg[0] & 0xff;
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
uint8_t isOK = resp.arg[0] & 0xff;
if (isOK) {
memcpy(data, resp.d.asBytes, mfNumBlocksPerSector(sectorNo) * 16);
return 0;
} else {
return 1;
}
} else {
PrintAndLogEx(ERR, "Command execute timeout");
return 2;
}
if (isOK) {
memcpy(data, resp.d.asBytes, mfNumBlocksPerSector(sectorNo) * 16);
return 0;
} else {
return 1;
}
} else {
PrintAndLogEx(ERR, "Command execute timeout");
return 2;
}
return 0;
return 0;
}
// EMULATOR
int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}};
SendCommand(&c);
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1;
@ -760,7 +818,7 @@ int loadTraceCard(uint8_t *tuid) {
PrintAndLog("File reading error.");
fclose(f);
return 2;
}
}
if (strlen(buf) < 32){
if (feof(f)) break;
@ -802,7 +860,7 @@ int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFil
}
void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){
uint8_t bt = 0;
uint8_t bt = 0;
int i;
if (len != 1) {
@ -1150,7 +1208,7 @@ bool validate_prng_nonce(uint32_t nonce) {
* function performs a partial AUTH, where it tries to authenticate against block0, key A, but only collects tag nonce.
* the tag nonce is check to see if it has a predictable PRNG.
* @returns
* TRUE if tag uses WEAK prng (ie Now the NACK bug also needs to be present for Darkside attack)
* TRUE if tag uses WEAK prng (ie Now the NACK bug also needs to be present for Darkside attack)
* FALSE is tag uses HARDEND prng (ie hardnested attack possible, with known key)
*/
int DetectClassicPrng(void){
@ -1165,7 +1223,7 @@ int DetectClassicPrng(void){
clearCommandBuffer();
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_NACK, &resp, 2000)) {
PrintAndLog("PRNG UID: Reply timeout.");
PrintAndLog("PRNG UID: Reply timeout.");
return -1;
}
@ -1176,7 +1234,7 @@ int DetectClassicPrng(void){
}
if (!WaitForResponseTimeout(CMD_ACK, &respA, 5000)) {
PrintAndLog("PRNG data: Reply timeout.");
PrintAndLog("PRNG data: Reply timeout.");
return -1;
}

View file

@ -19,6 +19,9 @@
#define MF_MAD1_SECTOR 0x00
#define MF_MAD2_SECTOR 0x10
// Fixed encrypted nonce used for nested attack with fixed nonce tags
#define NESTED_FIXED_NR_ENC {0x70, 0x69, 0x77, 0x69}
//-----------------------------------------------------------------------------
// ISO 14443A
//-----------------------------------------------------------------------------