mirror of
https://github.com/Proxmark/proxmark3.git
synced 2025-07-06 05:01:17 -07:00
add a specific check function for static nonces (used in 'hf mf nested') (#911)
* add a specific check function for static nonces in 'hf mf nested' * uses a fixed nr_enc and does all the crypto operations on client * for all possible keys calculate par_enc and ar_enc and send them to device * CHANGELOG update
This commit is contained in:
parent
bedae7768c
commit
aa8ff592ae
7 changed files with 308 additions and 232 deletions
|
@ -17,6 +17,7 @@ This project uses the changelog in accordance with [keepchangelog](http://keepac
|
||||||
- `hf mf chk t` save to emulator memory now works as expected (mwalker)
|
- `hf mf chk t` save to emulator memory now works as expected (mwalker)
|
||||||
- Fix `hf mf sim` - wrong access rights to write key B in trailer (@McEloff)
|
- Fix `hf mf sim` - wrong access rights to write key B in trailer (@McEloff)
|
||||||
- allow files > 512Bytes in 'hf iclass eload' (@Sherhannn79)
|
- allow files > 512Bytes in 'hf iclass eload' (@Sherhannn79)
|
||||||
|
- `hf mf nested` now works with fixed nonce tags too (uzlonewolf, piwi)
|
||||||
|
|
||||||
### Added
|
### Added
|
||||||
- Added to `hf 14a apdu` print apdu and compose apdu (@merlokk)
|
- Added to `hf 14a apdu` print apdu and compose apdu (@merlokk)
|
||||||
|
|
|
@ -640,8 +640,7 @@ int valid_nonce(uint32_t Nt, uint32_t NtEnc, uint32_t Ks1, uint8_t *parity) {
|
||||||
// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
|
// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
|
||||||
// Computer and Communications Security, 2015
|
// Computer and Communications Security, 2015
|
||||||
//-----------------------------------------------------------------------------
|
//-----------------------------------------------------------------------------
|
||||||
void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags, uint8_t *datain)
|
void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags, uint8_t *datain) {
|
||||||
{
|
|
||||||
uint64_t ui64Key = 0;
|
uint64_t ui64Key = 0;
|
||||||
uint8_t uid[10];
|
uint8_t uid[10];
|
||||||
uint32_t cuid;
|
uint32_t cuid;
|
||||||
|
@ -666,7 +665,6 @@ void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags,
|
||||||
bool field_off = flags & 0x0004;
|
bool field_off = flags & 0x0004;
|
||||||
|
|
||||||
LED_A_ON();
|
LED_A_ON();
|
||||||
LED_C_OFF();
|
|
||||||
|
|
||||||
if (initialize) {
|
if (initialize) {
|
||||||
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
||||||
|
@ -674,8 +672,6 @@ void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags,
|
||||||
set_tracing(true);
|
set_tracing(true);
|
||||||
}
|
}
|
||||||
|
|
||||||
LED_C_ON();
|
|
||||||
|
|
||||||
uint16_t num_nonces = 0;
|
uint16_t num_nonces = 0;
|
||||||
bool have_uid = false;
|
bool have_uid = false;
|
||||||
for (uint16_t i = 0; i <= USB_CMD_DATA_SIZE - 9; ) {
|
for (uint16_t i = 0; i <= USB_CMD_DATA_SIZE - 9; ) {
|
||||||
|
@ -747,21 +743,18 @@ void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags,
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
LED_C_OFF();
|
|
||||||
|
|
||||||
crypto1_destroy(pcs);
|
crypto1_destroy(pcs);
|
||||||
|
|
||||||
if (field_off) {
|
if (field_off) {
|
||||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||||||
LEDsoff();
|
LED_D_OFF();
|
||||||
}
|
}
|
||||||
|
|
||||||
LED_B_ON();
|
|
||||||
cmd_send(CMD_ACK, isOK, cuid, num_nonces, buf, sizeof(buf));
|
|
||||||
LED_B_OFF();
|
|
||||||
|
|
||||||
if (MF_DBGLEVEL >= 3) DbpString("AcquireEncryptedNonces finished");
|
if (MF_DBGLEVEL >= 3) DbpString("AcquireEncryptedNonces finished");
|
||||||
|
|
||||||
|
cmd_send(CMD_ACK, isOK, cuid, num_nonces, buf, sizeof(buf));
|
||||||
|
|
||||||
|
LED_A_OFF();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -783,9 +776,10 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *dat
|
||||||
uint16_t davg;
|
uint16_t davg;
|
||||||
static uint16_t dmin, dmax;
|
static uint16_t dmin, dmax;
|
||||||
uint8_t uid[10];
|
uint8_t uid[10];
|
||||||
uint32_t cuid, nt1, nt2, nttmp, nttest, ks1;
|
uint32_t cuid, nt1, nt2_enc, nttmp, nttest, ks1;
|
||||||
uint8_t par[1];
|
uint8_t par[1];
|
||||||
uint32_t target_nt[2], target_ks[2];
|
uint32_t target_nt[2], target_ks[2];
|
||||||
|
uint32_t fixed_nt = 0;
|
||||||
uint8_t target_nt_duplicate_count = 0;
|
uint8_t target_nt_duplicate_count = 0;
|
||||||
|
|
||||||
uint8_t par_array[4];
|
uint8_t par_array[4];
|
||||||
|
@ -812,7 +806,6 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *dat
|
||||||
#define NESTED_MAX_TRIES 12
|
#define NESTED_MAX_TRIES 12
|
||||||
uint16_t unsuccessfull_tries = 0;
|
uint16_t unsuccessfull_tries = 0;
|
||||||
if (calibrate) { // for first call only. Otherwise reuse previous calibration
|
if (calibrate) { // for first call only. Otherwise reuse previous calibration
|
||||||
LED_B_ON();
|
|
||||||
WDT_HIT();
|
WDT_HIT();
|
||||||
|
|
||||||
davg = dmax = 0;
|
davg = dmax = 0;
|
||||||
|
@ -846,13 +839,14 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *dat
|
||||||
rtr--;
|
rtr--;
|
||||||
continue;
|
continue;
|
||||||
};
|
};
|
||||||
|
fixed_nt = nt1;
|
||||||
|
|
||||||
if (delta_time) {
|
if (delta_time) {
|
||||||
auth2_time = auth1_time + delta_time;
|
auth2_time = auth1_time + delta_time;
|
||||||
} else {
|
} else {
|
||||||
auth2_time = 0;
|
auth2_time = 0;
|
||||||
}
|
}
|
||||||
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_NESTED, &nt2, &auth2_time, NULL)) {
|
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_NESTED, &nt2_enc, &auth2_time, NULL)) {
|
||||||
if (MF_DBGLEVEL >= 1) Dbprintf("Nested: Auth2 error");
|
if (MF_DBGLEVEL >= 1) Dbprintf("Nested: Auth2 error");
|
||||||
rtr--;
|
rtr--;
|
||||||
continue;
|
continue;
|
||||||
|
@ -861,7 +855,7 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *dat
|
||||||
nttmp = prng_successor(nt1, 100); //NXP Mifare is typical around 840,but for some unlicensed/compatible mifare card this can be 160
|
nttmp = prng_successor(nt1, 100); //NXP Mifare is typical around 840,but for some unlicensed/compatible mifare card this can be 160
|
||||||
for (i = 101; i < 1200; i++) {
|
for (i = 101; i < 1200; i++) {
|
||||||
nttmp = prng_successor(nttmp, 1);
|
nttmp = prng_successor(nttmp, 1);
|
||||||
if (nttmp == nt2) break;
|
if (nttmp == nt2_enc) break;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (i != 1200) {
|
if (i != 1200) {
|
||||||
|
@ -889,21 +883,17 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *dat
|
||||||
dmin = davg - 2;
|
dmin = davg - 2;
|
||||||
dmax = davg + 2;
|
dmax = davg + 2;
|
||||||
|
|
||||||
LED_B_OFF();
|
|
||||||
|
|
||||||
}
|
}
|
||||||
// -------------------------------------------------------------------------------------------------
|
// -------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
LED_C_ON();
|
|
||||||
|
|
||||||
// get crypted nonces for target sector
|
// get crypted nonces for target sector
|
||||||
for (i=0; i < 2 && !isOK; i++) { // look for exactly two different nonces
|
for (i = 0; i < 2 && !isOK; i++) { // look for exactly two different nonces
|
||||||
|
|
||||||
target_nt[i] = 0;
|
target_nt[i] = 0;
|
||||||
while (target_nt[i] == 0 && !isOK) { // continue until we have an unambiguous nonce
|
while (target_nt[i] == 0 && !isOK) { // continue until we have an unambiguous nonce
|
||||||
|
|
||||||
// prepare next select. No need to power down the card.
|
// prepare next select. No need to power down the card.
|
||||||
if(mifare_classic_halt(pcs, cuid)) {
|
if (mifare_classic_halt(pcs, cuid)) {
|
||||||
if (MF_DBGLEVEL >= 1) Dbprintf("Nested: Halt error");
|
if (MF_DBGLEVEL >= 1) Dbprintf("Nested: Halt error");
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
@ -934,8 +924,8 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *dat
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
nt2 = bytes_to_num(receivedAnswer, 4);
|
nt2_enc = bytes_to_num(receivedAnswer, 4);
|
||||||
if (MF_DBGLEVEL >= 3) Dbprintf("Nonce#%d: Testing nt1=%08x nt2enc=%08x nt2par=%02x", i+1, nt1, nt2, par[0]);
|
if (MF_DBGLEVEL >= 3) Dbprintf("Nonce#%d: Testing nt1=%08x nt2enc=%08x nt2par=%02x", i+1, nt1, nt2_enc, par[0]);
|
||||||
|
|
||||||
// Parity validity check
|
// Parity validity check
|
||||||
for (j = 0; j < 4; j++) {
|
for (j = 0; j < 4; j++) {
|
||||||
|
@ -946,9 +936,9 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *dat
|
||||||
nttest = prng_successor(nt1, dmin - 1);
|
nttest = prng_successor(nt1, dmin - 1);
|
||||||
for (j = dmin; j < dmax + 1; j++) {
|
for (j = dmin; j < dmax + 1; j++) {
|
||||||
nttest = prng_successor(nttest, 1);
|
nttest = prng_successor(nttest, 1);
|
||||||
ks1 = nt2 ^ nttest;
|
ks1 = nt2_enc ^ nttest;
|
||||||
|
|
||||||
if (valid_nonce(nttest, nt2, ks1, par_array)){
|
if (valid_nonce(nttest, nt2_enc, ks1, par_array)){
|
||||||
if (ncount > 0) { // we are only interested in disambiguous nonces, try again
|
if (ncount > 0) { // we are only interested in disambiguous nonces, try again
|
||||||
if (MF_DBGLEVEL >= 3) Dbprintf("Nonce#%d: dismissed (ambigous), ntdist=%d", i+1, j);
|
if (MF_DBGLEVEL >= 3) Dbprintf("Nonce#%d: dismissed (ambigous), ntdist=%d", i+1, j);
|
||||||
target_nt[i] = 0;
|
target_nt[i] = 0;
|
||||||
|
@ -974,28 +964,25 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *dat
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
LED_C_OFF();
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||||||
|
LED_D_OFF();
|
||||||
|
|
||||||
// ----------------------------- crypto1 destroy
|
|
||||||
crypto1_destroy(pcs);
|
crypto1_destroy(pcs);
|
||||||
|
|
||||||
uint8_t buf[4 + 4 * 4 + 4];
|
uint8_t buf[4 + 4 * 4 + 4 + 4];
|
||||||
memcpy(buf, &cuid, 4);
|
memcpy(buf, &cuid, 4);
|
||||||
memcpy(buf+4, &target_nt[0], 4);
|
memcpy(buf+4, &target_nt[0], 4);
|
||||||
memcpy(buf+8, &target_ks[0], 4);
|
memcpy(buf+8, &target_ks[0], 4);
|
||||||
memcpy(buf+12, &target_nt[1], 4);
|
memcpy(buf+12, &target_nt[1], 4);
|
||||||
memcpy(buf+16, &target_ks[1], 4);
|
memcpy(buf+16, &target_ks[1], 4);
|
||||||
memcpy(buf+20, &authentication_timeout, 4);
|
memcpy(buf+20, &authentication_timeout, 4);
|
||||||
|
memcpy(buf+24, &fixed_nt, 4);
|
||||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
||||||
|
|
||||||
if (MF_DBGLEVEL >= 3) DbpString("NESTED FINISHED");
|
if (MF_DBGLEVEL >= 3) DbpString("NESTED FINISHED");
|
||||||
|
|
||||||
LED_B_ON();
|
|
||||||
cmd_send(CMD_ACK, isOK, 0, targetBlockNo + (targetKeyType * 0x100), buf, sizeof(buf));
|
cmd_send(CMD_ACK, isOK, 0, targetBlockNo + (targetKeyType * 0x100), buf, sizeof(buf));
|
||||||
LED_B_OFF();
|
|
||||||
|
|
||||||
LEDsoff();
|
LED_A_OFF();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -1011,6 +998,7 @@ void MifareChkKeys(uint16_t arg0, uint32_t arg1, uint8_t arg2, uint8_t *datain)
|
||||||
bool multisectorCheck = arg1 & 0x02;
|
bool multisectorCheck = arg1 & 0x02;
|
||||||
bool init = arg1 & 0x04;
|
bool init = arg1 & 0x04;
|
||||||
bool drop_field = arg1 & 0x08;
|
bool drop_field = arg1 & 0x08;
|
||||||
|
bool fixed_nonce = arg1 & 0x10;
|
||||||
uint32_t auth_timeout = arg1 >> 16;
|
uint32_t auth_timeout = arg1 >> 16;
|
||||||
uint8_t keyCount = arg2;
|
uint8_t keyCount = arg2;
|
||||||
|
|
||||||
|
@ -1039,6 +1027,13 @@ void MifareChkKeys(uint16_t arg0, uint32_t arg1, uint8_t arg2, uint8_t *datain)
|
||||||
} else {
|
} else {
|
||||||
cmd_send(CMD_ACK, 0, res, 0, NULL, 0);
|
cmd_send(CMD_ACK, 0, res, 0, NULL, 0);
|
||||||
}
|
}
|
||||||
|
} else if (fixed_nonce) {
|
||||||
|
res = MifareChkBlockKeysFixedNonce(datain, keyCount, blockNo, keyType, &auth_timeout, OLD_MF_DBGLEVEL);
|
||||||
|
if (res > 0) {
|
||||||
|
cmd_send(CMD_ACK, 1, res, 0, NULL, 0); // key found
|
||||||
|
} else {
|
||||||
|
cmd_send(CMD_ACK, 0, res, 0, NULL, 0); // no key found or aborted
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
res = MifareChkBlockKeys(datain, keyCount, blockNo, keyType, &auth_timeout, OLD_MF_DBGLEVEL);
|
res = MifareChkBlockKeys(datain, keyCount, blockNo, keyType, &auth_timeout, OLD_MF_DBGLEVEL);
|
||||||
if (res > 0) {
|
if (res > 0) {
|
||||||
|
|
|
@ -78,8 +78,7 @@ uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data) {
|
||||||
}
|
}
|
||||||
|
|
||||||
// send X byte basic commands
|
// send X byte basic commands
|
||||||
int mifare_sendcmd(uint8_t cmd, uint8_t* data, uint8_t data_size, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing)
|
int mifare_sendcmd(uint8_t cmd, uint8_t* data, uint8_t data_size, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing) {
|
||||||
{
|
|
||||||
uint8_t dcmd[data_size+3];
|
uint8_t dcmd[data_size+3];
|
||||||
dcmd[0] = cmd;
|
dcmd[0] = cmd;
|
||||||
memcpy(dcmd+1,data,data_size);
|
memcpy(dcmd+1,data,data_size);
|
||||||
|
@ -95,8 +94,7 @@ int mifare_sendcmd(uint8_t cmd, uint8_t* data, uint8_t data_size, uint8_t* answe
|
||||||
}
|
}
|
||||||
|
|
||||||
// send 2 byte commands
|
// send 2 byte commands
|
||||||
int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t *answer, uint8_t *answer_parity, uint32_t *timing)
|
int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t *answer, uint8_t *answer_parity, uint32_t *timing) {
|
||||||
{
|
|
||||||
uint8_t dcmd[4], ecmd[4];
|
uint8_t dcmd[4], ecmd[4];
|
||||||
uint16_t pos, res;
|
uint16_t pos, res;
|
||||||
uint8_t par[1]; // 1 Byte parity is enough here
|
uint8_t par[1]; // 1 Byte parity is enough here
|
||||||
|
@ -211,7 +209,7 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
|
||||||
// ar+parity
|
// ar+parity
|
||||||
for (pos = 4; pos < 8; pos++) {
|
for (pos = 4; pos < 8; pos++) {
|
||||||
nt = prng_successor(nt,8);
|
nt = prng_successor(nt,8);
|
||||||
mf_nr_ar[pos] = crypto1_byte(pcs,0x00,0) ^ (nt & 0xff);
|
mf_nr_ar[pos] = crypto1_byte(pcs, 0x00, 0) ^ (nt & 0xff);
|
||||||
par[0] |= (((filter(pcs->odd) ^ oddparity8(nt)) & 0x01) << (7-pos));
|
par[0] |= (((filter(pcs->odd) ^ oddparity8(nt)) & 0x01) << (7-pos));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -814,18 +812,17 @@ int mifare_desfire_des_auth2(uint32_t uid, uint8_t *key, uint8_t *blockData){
|
||||||
//
|
//
|
||||||
//-----------------------------------------------------------------------------
|
//-----------------------------------------------------------------------------
|
||||||
// one key check
|
// one key check
|
||||||
int MifareChkBlockKey(uint8_t *uid, uint32_t *cuid, uint8_t *cascade_levels, uint64_t ui64Key, uint8_t blockNo, uint8_t keyType, uint32_t *auth_timeout, uint8_t debugLevel) {
|
static int MifareChkBlockKey(uint8_t *uid, uint32_t *cuid, uint8_t *cascade_levels, uint8_t *key, uint8_t blockNo, uint8_t keyType, uint32_t *auth_timeout, uint8_t debugLevel, bool fixed_nonce) {
|
||||||
|
|
||||||
struct Crypto1State mpcs = {0, 0};
|
struct Crypto1State mpcs = {0, 0};
|
||||||
struct Crypto1State *pcs;
|
struct Crypto1State *pcs;
|
||||||
pcs = &mpcs;
|
pcs = &mpcs;
|
||||||
|
|
||||||
// Iceman: use piwi's faster nonce collecting part in hardnested.
|
|
||||||
if (*cascade_levels == 0) { // need a full select cycle to get the uid first
|
if (*cascade_levels == 0) { // need a full select cycle to get the uid first
|
||||||
iso14a_card_select_t card_info;
|
iso14a_card_select_t card_info;
|
||||||
if (!iso14443a_select_card(uid, &card_info, cuid, true, 0, true)) {
|
if (!iso14443a_select_card(uid, &card_info, cuid, true, 0, true)) {
|
||||||
if (debugLevel >= 1) Dbprintf("ChkKeys: Can't select card");
|
if (debugLevel >= 1) Dbprintf("ChkKeys: Can't select card");
|
||||||
return 1;
|
return -1;
|
||||||
}
|
}
|
||||||
switch (card_info.uidlen) {
|
switch (card_info.uidlen) {
|
||||||
case 4 : *cascade_levels = 1; break;
|
case 4 : *cascade_levels = 1; break;
|
||||||
|
@ -836,63 +833,85 @@ int MifareChkBlockKey(uint8_t *uid, uint32_t *cuid, uint8_t *cascade_levels, uin
|
||||||
} else { // no need for anticollision. We can directly select the card
|
} else { // no need for anticollision. We can directly select the card
|
||||||
if (!iso14443a_select_card(uid, NULL, NULL, false, *cascade_levels, true)) {
|
if (!iso14443a_select_card(uid, NULL, NULL, false, *cascade_levels, true)) {
|
||||||
if (debugLevel >= 1) Dbprintf("ChkKeys: Can't select card (UID) lvl=%d", *cascade_levels);
|
if (debugLevel >= 1) Dbprintf("ChkKeys: Can't select card (UID) lvl=%d", *cascade_levels);
|
||||||
return 1;
|
return -1;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (!fixed_nonce) {
|
||||||
|
uint64_t ui64Key = bytes_to_num(key, 6);
|
||||||
if (mifare_classic_auth(pcs, *cuid, blockNo, keyType, ui64Key, AUTH_FIRST, auth_timeout)) { // authentication failed
|
if (mifare_classic_auth(pcs, *cuid, blockNo, keyType, ui64Key, AUTH_FIRST, auth_timeout)) { // authentication failed
|
||||||
return 2;
|
return -2;
|
||||||
} else {
|
} else {
|
||||||
mifare_classic_halt(pcs, *cuid);
|
mifare_classic_halt(pcs, *cuid);
|
||||||
}
|
}
|
||||||
|
} else {
|
||||||
|
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
|
||||||
|
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
|
||||||
|
// Transmit MIFARE_CLASSIC_AUTH
|
||||||
|
int len = mifare_sendcmd_short(pcs, false, keyType & 0x01 ? MIFARE_AUTH_KEYB : MIFARE_AUTH_KEYA, blockNo, receivedAnswer, receivedAnswerPar, NULL);
|
||||||
|
if (len != 4) return -2;
|
||||||
|
// Transmit encrypted reader nonce and reader answer
|
||||||
|
uint8_t mf_nr_ar[8] = NESTED_FIXED_NR_ENC;
|
||||||
|
memcpy(mf_nr_ar + 4, key, 4);
|
||||||
|
ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), key + 4, NULL);
|
||||||
|
uint32_t save_timeout = iso14a_get_timeout(); // save standard timeout
|
||||||
|
iso14a_set_timeout(*auth_timeout); // set timeout for authentication response
|
||||||
|
len = ReaderReceive(receivedAnswer, receivedAnswerPar);
|
||||||
|
iso14a_set_timeout(save_timeout); // restore standard timeout
|
||||||
|
if (!len) return -2;
|
||||||
|
}
|
||||||
|
|
||||||
return 0;
|
return 0; // success
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
// multi key check
|
// multi key check
|
||||||
int MifareChkBlockKeys(uint8_t *keys, uint8_t keyCount, uint8_t blockNo, uint8_t keyType, uint32_t *auth_timeout, uint8_t debugLevel) {
|
static int MifareChkBlockKeysEx(uint8_t *keys, uint8_t keyCount, uint8_t blockNo, uint8_t keyType, uint32_t *auth_timeout, uint8_t debugLevel, bool fixed_nonce) {
|
||||||
|
|
||||||
uint8_t uid[10];
|
uint8_t uid[10];
|
||||||
uint32_t cuid = 0;
|
uint32_t cuid = 0;
|
||||||
uint8_t cascade_levels = 0;
|
uint8_t cascade_levels = 0;
|
||||||
uint64_t ui64Key = 0;
|
|
||||||
|
|
||||||
int retryCount = 0;
|
int retryCount = 0;
|
||||||
for (uint8_t i = 0; i < keyCount; i++) {
|
for (uint8_t i = 0; i < keyCount; i++) {
|
||||||
|
uint8_t bytes_per_key = fixed_nonce ? 5 : 6;
|
||||||
ui64Key = bytes_to_num(keys + i * 6, 6);
|
int res = MifareChkBlockKey(uid, &cuid, &cascade_levels, keys + i*bytes_per_key, blockNo, keyType, auth_timeout, debugLevel, fixed_nonce);
|
||||||
int res = MifareChkBlockKey(uid, &cuid, &cascade_levels, ui64Key, blockNo, keyType, auth_timeout, debugLevel);
|
if (res == -1) { // couldn't select
|
||||||
|
|
||||||
// can't select
|
|
||||||
if (res == 1) {
|
|
||||||
retryCount++;
|
retryCount++;
|
||||||
if (retryCount >= 5) {
|
if (retryCount >= 5) {
|
||||||
Dbprintf("ChkKeys: block=%d key=%d. Can't select. Exit...", blockNo, keyType);
|
Dbprintf("ChkKeys: block=%d key=%d. Couldn't select. Exit...", blockNo, keyType);
|
||||||
return -1;
|
return -1;
|
||||||
}
|
} else {
|
||||||
--i; // try the same key once again
|
--i; // try the same key once again
|
||||||
|
|
||||||
SpinDelay(20);
|
SpinDelay(20);
|
||||||
// Dbprintf("ChkKeys: block=%d key=%d. Try the same key once again...", blockNo, keyType);
|
// Dbprintf("ChkKeys: block=%d key=%d. Try the same key once again...", blockNo, keyType);
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (res == -2) { // couldn't authenticate with this key
|
||||||
|
retryCount = 0;
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
// can't authenticate
|
return i + 1; // successful authentication
|
||||||
if (res == 2) {
|
|
||||||
retryCount = 0;
|
|
||||||
continue; // can't auth. wrong key.
|
|
||||||
}
|
|
||||||
|
|
||||||
// successful authentication
|
|
||||||
return i + 1;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if (BUTTON_PRESS()) {
|
if (BUTTON_PRESS()) {
|
||||||
return -2;
|
return -2;
|
||||||
}
|
}
|
||||||
|
|
||||||
return 0;
|
return 0; // couldn't authenticate with any key
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
int MifareChkBlockKeys(uint8_t *keys, uint8_t keyCount, uint8_t blockNo, uint8_t keyType, uint32_t *auth_timeout, uint8_t debugLevel) {
|
||||||
|
return MifareChkBlockKeysEx(keys, keyCount, blockNo, keyType, auth_timeout, debugLevel, false);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
// fixed nonce check
|
||||||
|
int MifareChkBlockKeysFixedNonce(uint8_t *ar_par, uint8_t ar_par_cnt, uint8_t blockNo, uint8_t keyType, uint32_t *auth_timeout, uint8_t debugLevel) {
|
||||||
|
return MifareChkBlockKeysEx(ar_par, ar_par_cnt, blockNo, keyType, auth_timeout, debugLevel, true);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -87,7 +87,7 @@ int emlCheckValBl(int blockNum);
|
||||||
|
|
||||||
// mifare check keys
|
// mifare check keys
|
||||||
typedef uint8_t TKeyIndex[2][40];
|
typedef uint8_t TKeyIndex[2][40];
|
||||||
int MifareChkBlockKey(uint8_t *uid, uint32_t *cuid, uint8_t *cascade_levels, uint64_t ui64Key, uint8_t blockNo, uint8_t keyType, uint32_t *auth_timeout, uint8_t debugLevel);
|
int MifareChkBlockKeysFixedNonce(uint8_t *ar_par, uint8_t ar_par_cnt, uint8_t blockNo, uint8_t keyType, uint32_t *auth_timeout, uint8_t debugLevel);
|
||||||
int MifareChkBlockKeys(uint8_t *keys, uint8_t keyCount, uint8_t blockNo, uint8_t keyType, uint32_t *auth_timeout, uint8_t debugLevel);
|
int MifareChkBlockKeys(uint8_t *keys, uint8_t keyCount, uint8_t blockNo, uint8_t keyType, uint32_t *auth_timeout, uint8_t debugLevel);
|
||||||
int MifareMultisectorChk(uint8_t *keys, uint8_t keyCount, uint8_t SectorCount, uint8_t keyType, uint32_t *auth_timeout, uint8_t debugLevel, TKeyIndex *keyIndex);
|
int MifareMultisectorChk(uint8_t *keys, uint8_t keyCount, uint8_t SectorCount, uint8_t keyType, uint32_t *auth_timeout, uint8_t debugLevel, TKeyIndex *keyIndex);
|
||||||
|
|
||||||
|
|
|
@ -677,7 +677,7 @@ int CmdHF14AMfNested(const char *Cmd) {
|
||||||
// check if we can authenticate to sector
|
// check if we can authenticate to sector
|
||||||
res = mfCheckKeys(blockNo, keyType, timeout14a, true, 1, key, &key64);
|
res = mfCheckKeys(blockNo, keyType, timeout14a, true, 1, key, &key64);
|
||||||
if (res) {
|
if (res) {
|
||||||
PrintAndLog("Can't authenticate to block:%3d key type:%c key:%s", blockNo, keyType?'B':'A', sprint_hex(key, 6));
|
PrintAndLog("Can't authenticate to block %d, key type %c, key %s", blockNo, keyType?'B':'A', sprint_hex(key, 6));
|
||||||
return 3;
|
return 3;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -221,19 +221,20 @@ int mfDarkside(uint64_t *key) {
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint64_t *found_key) {
|
static int mfCheckKeysEx(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint64_t *found_key, bool fixed_nonce) {
|
||||||
|
|
||||||
bool display_progress = false;
|
bool display_progress = false;
|
||||||
uint64_t start_time = msclock();
|
uint64_t start_time = msclock();
|
||||||
uint64_t next_print_time = start_time + 5 * 1000;
|
uint64_t next_print_time = start_time + 5 * 1000;
|
||||||
|
|
||||||
if (keycnt > 1000) {
|
if (keycnt > 1000) {
|
||||||
PrintAndLog("We have %d keys to check. This will take some time!", keycnt);
|
PrintAndLog("We have %d keys to check. This can take some time!", keycnt);
|
||||||
PrintAndLog("Press button to abort.");
|
PrintAndLog("Press button to abort.");
|
||||||
display_progress = true;
|
display_progress = true;
|
||||||
}
|
}
|
||||||
|
|
||||||
uint32_t max_keys = (keycnt > (USB_CMD_DATA_SIZE / 6)) ? (USB_CMD_DATA_SIZE / 6) : keycnt;
|
uint8_t bytes_per_key = fixed_nonce ? 5 : 6;
|
||||||
|
uint32_t max_keys = keycnt > USB_CMD_DATA_SIZE/bytes_per_key ? USB_CMD_DATA_SIZE/bytes_per_key : keycnt;
|
||||||
*found_key = -1;
|
*found_key = -1;
|
||||||
bool multisectorCheck = false;
|
bool multisectorCheck = false;
|
||||||
|
|
||||||
|
@ -245,10 +246,10 @@ int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clea
|
||||||
|
|
||||||
bool init = (i == 0);
|
bool init = (i == 0);
|
||||||
bool drop_field = (max_keys == keycnt);
|
bool drop_field = (max_keys == keycnt);
|
||||||
uint8_t flags = clear_trace | multisectorCheck << 1 | init << 2 | drop_field << 3;
|
uint8_t flags = clear_trace | multisectorCheck << 1 | init << 2 | drop_field << 3 | fixed_nonce << 4;
|
||||||
|
|
||||||
UsbCommand c = {CMD_MIFARE_CHKKEYS, {((blockNo & 0xff) | ((keyType & 0xff) << 8)), flags | timeout14a << 16, max_keys}};
|
UsbCommand c = {CMD_MIFARE_CHKKEYS, {((blockNo & 0xff) | ((keyType & 0xff) << 8)), flags | timeout14a << 16, max_keys}};
|
||||||
memcpy(c.d.asBytes, keys + i * 6, max_keys * 6);
|
memcpy(c.d.asBytes, keys + i * bytes_per_key, max_keys * bytes_per_key);
|
||||||
SendCommand(&c);
|
SendCommand(&c);
|
||||||
|
|
||||||
UsbCommand resp;
|
UsbCommand resp;
|
||||||
|
@ -256,7 +257,7 @@ int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clea
|
||||||
return 1;
|
return 1;
|
||||||
|
|
||||||
if ((resp.arg[0] & 0xff) != 0x01) {
|
if ((resp.arg[0] & 0xff) != 0x01) {
|
||||||
if (((int)resp.arg[1]) < 0) { // error
|
if ((int)resp.arg[1] < 0) { // error or user aborted
|
||||||
return (int)resp.arg[1];
|
return (int)resp.arg[1];
|
||||||
} else { // nothing found yet
|
} else { // nothing found yet
|
||||||
if (display_progress && msclock() >= next_print_time) {
|
if (display_progress && msclock() >= next_print_time) {
|
||||||
|
@ -268,7 +269,11 @@ int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clea
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} else { // success
|
} else { // success
|
||||||
|
if (fixed_nonce) {
|
||||||
|
*found_key = i + resp.arg[1] - 1;
|
||||||
|
} else {
|
||||||
*found_key = bytes_to_num(resp.d.asBytes, 6);
|
*found_key = bytes_to_num(resp.d.asBytes, 6);
|
||||||
|
}
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -277,7 +282,17 @@ int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clea
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
int mfCheckKeysSec(uint8_t sectorCnt, uint8_t keyType, uint16_t timeout14a, bool clear_trace, bool init, bool drop_field, uint8_t keycnt, uint8_t * keyBlock, sector_t * e_sector) {
|
int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint64_t *found_key) {
|
||||||
|
return mfCheckKeysEx(blockNo, keyType, timeout14a, clear_trace, keycnt, keys, found_key, false);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
static int mfCheckKeysFixedNonce(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint32_t *key_index) {
|
||||||
|
return mfCheckKeysEx(blockNo, keyType, timeout14a, clear_trace, keycnt, keys, (uint64_t*)key_index, true);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
int mfCheckKeysSec(uint8_t sectorCnt, uint8_t keyType, uint16_t timeout14a, bool clear_trace, bool init, bool drop_field, uint8_t keycnt, uint8_t *keyBlock, sector_t *e_sector) {
|
||||||
|
|
||||||
uint8_t keyPtr = 0;
|
uint8_t keyPtr = 0;
|
||||||
|
|
||||||
|
@ -330,7 +345,7 @@ typedef
|
||||||
uint32_t uid;
|
uint32_t uid;
|
||||||
uint32_t blockNo;
|
uint32_t blockNo;
|
||||||
uint32_t keyType;
|
uint32_t keyType;
|
||||||
uint32_t nt_enc;
|
uint32_t nt;
|
||||||
uint32_t ks1;
|
uint32_t ks1;
|
||||||
} StateList_t;
|
} StateList_t;
|
||||||
|
|
||||||
|
@ -346,7 +361,7 @@ __attribute__((force_align_arg_pointer))
|
||||||
struct Crypto1State *p1;
|
struct Crypto1State *p1;
|
||||||
StateList_t *statelist = arg;
|
StateList_t *statelist = arg;
|
||||||
|
|
||||||
statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt_enc ^ statelist->uid);
|
statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid);
|
||||||
for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++);
|
for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++);
|
||||||
statelist->len = p1 - statelist->head.slhead;
|
statelist->len = p1 - statelist->head.slhead;
|
||||||
statelist->tail.sltail = --p1;
|
statelist->tail.sltail = --p1;
|
||||||
|
@ -356,94 +371,84 @@ __attribute__((force_align_arg_pointer))
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
int mfnested(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *resultKey, bool calibrate) {
|
static int nested_fixed_nonce(StateList_t statelist, uint32_t fixed_nt, uint32_t authentication_timeout, uint8_t *resultKey) {
|
||||||
uint32_t i;
|
// We have a tag with a fixed nonce (nt) and therefore only one (usually long) list of possible crypto states.
|
||||||
uint32_t uid;
|
// Instead of testing all those keys on the device with a complete authentication cycle, we do all of the crypto operations here.
|
||||||
UsbCommand resp;
|
uint8_t nr_enc[4] = NESTED_FIXED_NR_ENC; // we use a fixed {nr}
|
||||||
|
uint8_t ar[4];
|
||||||
|
num_to_bytes(prng_successor(fixed_nt, 64), 4, ar); // ... and ar is fixed too
|
||||||
|
|
||||||
int num_unique_nonces;
|
// create an array of possible {ar} and parity bits
|
||||||
|
uint32_t num_ar_par = statelist.len;
|
||||||
|
uint8_t *ar_par = calloc(num_ar_par, 5);
|
||||||
|
if (ar_par == NULL) {
|
||||||
|
free(statelist.head.slhead);
|
||||||
|
return -4;
|
||||||
|
}
|
||||||
|
|
||||||
StateList_t statelists[2];
|
for (int i = 0; i < num_ar_par; i++) {
|
||||||
struct Crypto1State *p1, *p2, *p3, *p4;
|
// roll back to initial state using the nt observed with the nested authentication
|
||||||
|
lfsr_rollback_word(statelist.head.slhead + i, statelist.nt ^ statelist.uid, 0);
|
||||||
|
// instead feed in the fixed_nt for the first authentication
|
||||||
|
struct Crypto1State cs = *(statelist.head.slhead + i);
|
||||||
|
crypto1_word(&cs, fixed_nt ^ statelist.uid, 0);
|
||||||
|
// determine nr such that the resulting {nr} is constant and feed it into the cypher. Calculate the encrypted parity bits
|
||||||
|
uint8_t par_enc = 0;
|
||||||
|
for (int j = 0; j < 4; j++) {
|
||||||
|
uint8_t nr_byte = crypto1_byte(&cs, nr_enc[j], 1) ^ nr_enc[j];
|
||||||
|
par_enc |= (((filter(cs.odd) ^ oddparity8(nr_byte)) & 0x01) << (7-j));
|
||||||
|
}
|
||||||
|
// calculate the encrypted reader response {ar} and its parity bits
|
||||||
|
for (int j = 0; j < 4; j++) {
|
||||||
|
ar_par[5*i + j] = crypto1_byte(&cs, 0, 0) ^ ar[j];
|
||||||
|
par_enc |= ((filter(cs.odd) ^ oddparity8(ar[j])) & 0x01) << (3-j);
|
||||||
|
}
|
||||||
|
ar_par[5*i + 4] = par_enc;
|
||||||
|
}
|
||||||
|
|
||||||
uint8_t *keyBlock = NULL;
|
// test each {ar} response
|
||||||
|
uint32_t key_index;
|
||||||
|
|
||||||
|
int isOK = mfCheckKeysFixedNonce(statelist.blockNo, statelist.keyType, authentication_timeout, true, num_ar_par, ar_par, &key_index);
|
||||||
|
|
||||||
|
if (isOK == 0) { // success, key found
|
||||||
|
// key_index contains the index into the cypher state list
|
||||||
|
struct Crypto1State *p1 = statelist.head.slhead + key_index;
|
||||||
uint64_t key64;
|
uint64_t key64;
|
||||||
|
crypto1_get_lfsr(p1, &key64);
|
||||||
int isOK = 1;
|
num_to_bytes(key64, 6, resultKey);
|
||||||
|
|
||||||
// flush queue
|
|
||||||
(void)WaitForResponseTimeout(CMD_ACK,NULL,100);
|
|
||||||
|
|
||||||
UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
|
|
||||||
memcpy(c.d.asBytes, key, 6);
|
|
||||||
SendCommand(&c);
|
|
||||||
|
|
||||||
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) {
|
|
||||||
// some cards can cause it to get stuck in a loop, so break out of it
|
|
||||||
UsbCommand c = {CMD_PING};
|
|
||||||
SendCommand(&c);
|
|
||||||
(void)WaitForResponseTimeout(CMD_ACK,NULL,500);
|
|
||||||
return -1;
|
|
||||||
}
|
}
|
||||||
|
if (isOK == 1) { // timeout
|
||||||
if (resp.arg[0]) {
|
isOK = -1;
|
||||||
return resp.arg[0]; // error during nested
|
|
||||||
}
|
|
||||||
|
|
||||||
memcpy(&uid, resp.d.asBytes, 4);
|
|
||||||
PrintAndLog("uid:%08x trgbl=%d trgkey=%x", uid, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8);
|
|
||||||
|
|
||||||
for (i = 0; i < 2; i++) {
|
|
||||||
statelists[i].blockNo = resp.arg[2] & 0xff;
|
|
||||||
statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
|
|
||||||
statelists[i].uid = uid;
|
|
||||||
memcpy(&statelists[i].nt_enc, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
|
|
||||||
memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
|
|
||||||
}
|
|
||||||
|
|
||||||
uint32_t authentication_timeout;
|
|
||||||
memcpy(&authentication_timeout, resp.d.asBytes + 20, 4);
|
|
||||||
PrintAndLog("Setting authentication timeout to %" PRIu32 "us", authentication_timeout * 1000 / 106);
|
|
||||||
|
|
||||||
if (statelists[0].nt_enc == statelists[1].nt_enc && statelists[0].ks1 == statelists[1].ks1)
|
|
||||||
num_unique_nonces = 1;
|
|
||||||
else
|
|
||||||
num_unique_nonces = 2;
|
|
||||||
|
|
||||||
// calc keys
|
|
||||||
|
|
||||||
pthread_t thread_id[2];
|
|
||||||
|
|
||||||
// create and run worker threads
|
|
||||||
for (i = 0; i < 2; i++) {
|
|
||||||
pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
|
|
||||||
}
|
|
||||||
|
|
||||||
// wait for threads to terminate:
|
|
||||||
for (i = 0; i < 2; i++) {
|
|
||||||
pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
|
|
||||||
}
|
}
|
||||||
|
free(statelist.head.slhead);
|
||||||
|
free(ar_par);
|
||||||
|
return isOK;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
// the first 16 Bits of the cryptostate already contain part of our key.
|
static int nested_standard(StateList_t statelists[2], uint32_t authentication_timeout, uint8_t *resultKey) {
|
||||||
|
|
||||||
|
// the first 16 Bits of the crypto states already contain part of our key.
|
||||||
// Create the intersection of the two lists based on these 16 Bits and
|
// Create the intersection of the two lists based on these 16 Bits and
|
||||||
// roll back the cryptostate
|
// roll back the crypto state for the remaining states
|
||||||
|
struct Crypto1State *p1, *p2, *p3, *p4;
|
||||||
p1 = p3 = statelists[0].head.slhead;
|
p1 = p3 = statelists[0].head.slhead;
|
||||||
p2 = p4 = statelists[1].head.slhead;
|
p2 = p4 = statelists[1].head.slhead;
|
||||||
while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) {
|
while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) {
|
||||||
if (Compare16Bits(p1, p2) == 0) {
|
if (Compare16Bits(p1, p2) == 0) {
|
||||||
struct Crypto1State savestate, *savep = &savestate;
|
struct Crypto1State savestate, *savep = &savestate;
|
||||||
savestate = *p1;
|
savestate = *p1;
|
||||||
while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
|
while (Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
|
||||||
*p3 = *p1;
|
*p3 = *p1;
|
||||||
lfsr_rollback_word(p3, statelists[0].nt_enc ^ statelists[0].uid, 0);
|
lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0);
|
||||||
p3++;
|
p3++;
|
||||||
p1++;
|
p1++;
|
||||||
}
|
}
|
||||||
savestate = *p2;
|
savestate = *p2;
|
||||||
while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
|
while (Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
|
||||||
*p4 = *p2;
|
*p4 = *p2;
|
||||||
lfsr_rollback_word(p4, statelists[1].nt_enc ^ statelists[1].uid, 0);
|
lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0);
|
||||||
p4++;
|
p4++;
|
||||||
p2++;
|
p2++;
|
||||||
}
|
}
|
||||||
|
@ -460,53 +465,106 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, uint8_t *key
|
||||||
statelists[0].tail.sltail=--p3;
|
statelists[0].tail.sltail=--p3;
|
||||||
statelists[1].tail.sltail=--p4;
|
statelists[1].tail.sltail=--p4;
|
||||||
|
|
||||||
for (i = 0; i < 2; i++) {
|
// the statelists now contain possible crypto states initialized with the key. The key we are searching for
|
||||||
PrintAndLog("statelist %d: length:%d block:%02d keytype:%d nt_enc:%08X ks1:%08X", i, statelists[i].len, statelists[i].blockNo, statelists[i].keyType, statelists[i].nt_enc, statelists[i].ks1);
|
// must be in the intersection of both lists. Sort the lists and create the intersection:
|
||||||
}
|
|
||||||
|
|
||||||
// the statelists now contain possible keys. The key we are searching for must be in the
|
|
||||||
// intersection of both lists. Create the intersection:
|
|
||||||
qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compare_uint64);
|
qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compare_uint64);
|
||||||
|
|
||||||
if (num_unique_nonces > 1) {
|
|
||||||
qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compare_uint64);
|
qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compare_uint64);
|
||||||
statelists[0].len = intersection(statelists[0].head.keyhead, statelists[1].head.keyhead);
|
statelists[0].len = intersection(statelists[0].head.keyhead, statelists[1].head.keyhead);
|
||||||
}
|
|
||||||
else {
|
|
||||||
PrintAndLog("Nonce 1 and 2 are the same!");
|
|
||||||
}
|
|
||||||
|
|
||||||
|
// create an array of the possible keys
|
||||||
uint32_t num_keys = statelists[0].len;
|
uint32_t num_keys = statelists[0].len;
|
||||||
keyBlock = calloc(num_keys, 6);
|
uint8_t *keys = calloc(num_keys, 6);
|
||||||
if (keyBlock == NULL) {
|
if (keys == NULL) {
|
||||||
free(statelists[0].head.slhead);
|
free(statelists[0].head.slhead);
|
||||||
free(statelists[1].head.slhead);
|
free(statelists[1].head.slhead);
|
||||||
return -4;
|
return -4;
|
||||||
}
|
}
|
||||||
|
|
||||||
for (i = 0; i < num_keys; i++) {
|
uint64_t key64 = 0;
|
||||||
|
for (int i = 0; i < num_keys; i++) {
|
||||||
crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
|
crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
|
||||||
num_to_bytes(key64, 6, keyBlock + i*6);
|
num_to_bytes(key64, 6, keys + i*6);
|
||||||
}
|
}
|
||||||
|
|
||||||
// The list may still contain several key candidates. Test each of them with mfCheckKeys
|
// and test each key with mfCheckKeys
|
||||||
isOK = mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, authentication_timeout, true, num_keys, keyBlock, &key64);
|
int isOK = mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, authentication_timeout, true, num_keys, keys, &key64);
|
||||||
|
|
||||||
if (isOK == 0) { // success, key found
|
if (isOK == 0) { // success, key found
|
||||||
num_to_bytes(key64, 6, resultKey);
|
num_to_bytes(key64, 6, resultKey);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (isOK == 1) { // timeout
|
if (isOK == 1) { // timeout
|
||||||
isOK = -1;
|
isOK = -1;
|
||||||
}
|
}
|
||||||
|
|
||||||
free(statelists[0].head.slhead);
|
free(statelists[0].head.slhead);
|
||||||
free(statelists[1].head.slhead);
|
free(statelists[1].head.slhead);
|
||||||
free(keyBlock);
|
free(keys);
|
||||||
|
|
||||||
return isOK;
|
return isOK;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
int mfnested(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *resultKey, bool calibrate) {
|
||||||
|
|
||||||
|
// flush queue
|
||||||
|
clearCommandBuffer();
|
||||||
|
|
||||||
|
UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
|
||||||
|
memcpy(c.d.asBytes, key, 6);
|
||||||
|
SendCommand(&c);
|
||||||
|
|
||||||
|
UsbCommand resp;
|
||||||
|
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
if ((int)resp.arg[0]) {
|
||||||
|
return (int)resp.arg[0]; // error during nested
|
||||||
|
}
|
||||||
|
|
||||||
|
uint32_t uid;
|
||||||
|
memcpy(&uid, resp.d.asBytes, 4);
|
||||||
|
PrintAndLog("uid:%08x trgbl=%d trgkey=%x", uid, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8);
|
||||||
|
|
||||||
|
StateList_t statelists[2];
|
||||||
|
for (int i = 0; i < 2; i++) {
|
||||||
|
statelists[i].blockNo = resp.arg[2] & 0xff;
|
||||||
|
statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
|
||||||
|
statelists[i].uid = uid;
|
||||||
|
memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
|
||||||
|
memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
|
||||||
|
}
|
||||||
|
|
||||||
|
uint32_t authentication_timeout;
|
||||||
|
memcpy(&authentication_timeout, resp.d.asBytes + 20, 4);
|
||||||
|
PrintAndLog("Setting authentication timeout to %" PRIu32 "us", authentication_timeout * 1000 / 106);
|
||||||
|
|
||||||
|
uint8_t num_unique_nonces;
|
||||||
|
uint32_t fixed_nt = 0;
|
||||||
|
if (statelists[0].nt == statelists[1].nt && statelists[0].ks1 == statelists[1].ks1) {
|
||||||
|
num_unique_nonces = 1;
|
||||||
|
memcpy(&fixed_nt, resp.d.asBytes + 24, 4);
|
||||||
|
PrintAndLog("Fixed nt detected: %08" PRIx32 " on first authentication, %08" PRIx32 " on nested authentication", fixed_nt, statelists[0].nt);
|
||||||
|
} else {
|
||||||
|
num_unique_nonces = 2;
|
||||||
|
}
|
||||||
|
|
||||||
|
// create and run worker threads to calculate possible crypto states
|
||||||
|
pthread_t thread_id[2];
|
||||||
|
for (int i = 0; i < num_unique_nonces; i++) {
|
||||||
|
pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
|
||||||
|
}
|
||||||
|
// wait for threads to terminate:
|
||||||
|
for (int i = 0; i < num_unique_nonces; i++) {
|
||||||
|
pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (num_unique_nonces == 2) {
|
||||||
|
return nested_standard(statelists, authentication_timeout, resultKey);
|
||||||
|
} else {
|
||||||
|
return nested_fixed_nonce(statelists[0], fixed_nt, authentication_timeout, resultKey);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
// MIFARE
|
// MIFARE
|
||||||
int mfReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *data) {
|
int mfReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *data) {
|
||||||
|
|
||||||
|
|
|
@ -19,6 +19,9 @@
|
||||||
#define MF_MAD1_SECTOR 0x00
|
#define MF_MAD1_SECTOR 0x00
|
||||||
#define MF_MAD2_SECTOR 0x10
|
#define MF_MAD2_SECTOR 0x10
|
||||||
|
|
||||||
|
// Fixed encrypted nonce used for nested attack with fixed nonce tags
|
||||||
|
#define NESTED_FIXED_NR_ENC {0x70, 0x69, 0x77, 0x69}
|
||||||
|
|
||||||
//-----------------------------------------------------------------------------
|
//-----------------------------------------------------------------------------
|
||||||
// ISO 14443A
|
// ISO 14443A
|
||||||
//-----------------------------------------------------------------------------
|
//-----------------------------------------------------------------------------
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue