mirror of
https://github.com/Proxmark/proxmark3.git
synced 2025-08-19 21:03:23 -07:00
add a specific check function for static nonces (used in 'hf mf nested') (#911)
* add a specific check function for static nonces in 'hf mf nested' * uses a fixed nr_enc and does all the crypto operations on client * for all possible keys calculate par_enc and ar_enc and send them to device * CHANGELOG update
This commit is contained in:
parent
bedae7768c
commit
aa8ff592ae
7 changed files with 308 additions and 232 deletions
|
@ -30,14 +30,14 @@
|
|||
#include "mifare4.h"
|
||||
|
||||
// mifare tracer flags used in mfTraceDecode()
|
||||
#define TRACE_IDLE 0x00
|
||||
#define TRACE_AUTH1 0x01
|
||||
#define TRACE_AUTH2 0x02
|
||||
#define TRACE_AUTH_OK 0x03
|
||||
#define TRACE_READ_DATA 0x04
|
||||
#define TRACE_WRITE_OK 0x05
|
||||
#define TRACE_WRITE_DATA 0x06
|
||||
#define TRACE_ERROR 0xFF
|
||||
#define TRACE_IDLE 0x00
|
||||
#define TRACE_AUTH1 0x01
|
||||
#define TRACE_AUTH2 0x02
|
||||
#define TRACE_AUTH_OK 0x03
|
||||
#define TRACE_READ_DATA 0x04
|
||||
#define TRACE_WRITE_OK 0x05
|
||||
#define TRACE_WRITE_DATA 0x06
|
||||
#define TRACE_ERROR 0xFF
|
||||
|
||||
|
||||
static int compare_uint64(const void *a, const void *b) {
|
||||
|
@ -90,7 +90,7 @@ static uint32_t nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint32_t ar, u
|
|||
for (pos=0; pos<8; pos++) {
|
||||
ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
|
||||
bt = (par_info >> (pos*8)) & 0xff;
|
||||
for (i=0; i<8; i++) {
|
||||
for (i=0; i<8; i++) {
|
||||
par[7-pos][i] = (bt >> i) & 0x01;
|
||||
}
|
||||
}
|
||||
|
@ -200,7 +200,7 @@ int mfDarkside(uint64_t *key) {
|
|||
for (int i = 0; i < keycount; i++) {
|
||||
num_to_bytes(keylist[i], 6, keys_to_chk+i);
|
||||
}
|
||||
|
||||
|
||||
*key = -1;
|
||||
mfCheckKeys(0, 0, 0, false, keycount, keys_to_chk, key);
|
||||
|
||||
|
@ -221,19 +221,20 @@ int mfDarkside(uint64_t *key) {
|
|||
}
|
||||
|
||||
|
||||
int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint64_t *found_key) {
|
||||
static int mfCheckKeysEx(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint64_t *found_key, bool fixed_nonce) {
|
||||
|
||||
bool display_progress = false;
|
||||
uint64_t start_time = msclock();
|
||||
uint64_t next_print_time = start_time + 5 * 1000;
|
||||
|
||||
if (keycnt > 1000) {
|
||||
PrintAndLog("We have %d keys to check. This will take some time!", keycnt);
|
||||
PrintAndLog("We have %d keys to check. This can take some time!", keycnt);
|
||||
PrintAndLog("Press button to abort.");
|
||||
display_progress = true;
|
||||
}
|
||||
|
||||
uint32_t max_keys = (keycnt > (USB_CMD_DATA_SIZE / 6)) ? (USB_CMD_DATA_SIZE / 6) : keycnt;
|
||||
uint8_t bytes_per_key = fixed_nonce ? 5 : 6;
|
||||
uint32_t max_keys = keycnt > USB_CMD_DATA_SIZE/bytes_per_key ? USB_CMD_DATA_SIZE/bytes_per_key : keycnt;
|
||||
*found_key = -1;
|
||||
bool multisectorCheck = false;
|
||||
|
||||
|
@ -245,10 +246,10 @@ int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clea
|
|||
|
||||
bool init = (i == 0);
|
||||
bool drop_field = (max_keys == keycnt);
|
||||
uint8_t flags = clear_trace | multisectorCheck << 1 | init << 2 | drop_field << 3;
|
||||
uint8_t flags = clear_trace | multisectorCheck << 1 | init << 2 | drop_field << 3 | fixed_nonce << 4;
|
||||
|
||||
UsbCommand c = {CMD_MIFARE_CHKKEYS, {((blockNo & 0xff) | ((keyType & 0xff) << 8)), flags | timeout14a << 16, max_keys}};
|
||||
memcpy(c.d.asBytes, keys + i * 6, max_keys * 6);
|
||||
UsbCommand c = {CMD_MIFARE_CHKKEYS, {((blockNo & 0xff) | ((keyType & 0xff) << 8)), flags | timeout14a << 16, max_keys}};
|
||||
memcpy(c.d.asBytes, keys + i * bytes_per_key, max_keys * bytes_per_key);
|
||||
SendCommand(&c);
|
||||
|
||||
UsbCommand resp;
|
||||
|
@ -256,7 +257,7 @@ int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clea
|
|||
return 1;
|
||||
|
||||
if ((resp.arg[0] & 0xff) != 0x01) {
|
||||
if (((int)resp.arg[1]) < 0) { // error
|
||||
if ((int)resp.arg[1] < 0) { // error or user aborted
|
||||
return (int)resp.arg[1];
|
||||
} else { // nothing found yet
|
||||
if (display_progress && msclock() >= next_print_time) {
|
||||
|
@ -267,17 +268,31 @@ int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clea
|
|||
PrintAndLog(" %8d keys left | %5.1f keys/sec | worst case %6.1f seconds remaining", keycnt - i, brute_force_per_second, (keycnt-i)/brute_force_per_second);
|
||||
}
|
||||
}
|
||||
} else { // success
|
||||
*found_key = bytes_to_num(resp.d.asBytes, 6);
|
||||
} else { // success
|
||||
if (fixed_nonce) {
|
||||
*found_key = i + resp.arg[1] - 1;
|
||||
} else {
|
||||
*found_key = bytes_to_num(resp.d.asBytes, 6);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return 2; // nothing found
|
||||
return 2; // nothing found
|
||||
}
|
||||
|
||||
|
||||
int mfCheckKeysSec(uint8_t sectorCnt, uint8_t keyType, uint16_t timeout14a, bool clear_trace, bool init, bool drop_field, uint8_t keycnt, uint8_t * keyBlock, sector_t * e_sector) {
|
||||
int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint64_t *found_key) {
|
||||
return mfCheckKeysEx(blockNo, keyType, timeout14a, clear_trace, keycnt, keys, found_key, false);
|
||||
}
|
||||
|
||||
|
||||
static int mfCheckKeysFixedNonce(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint32_t *key_index) {
|
||||
return mfCheckKeysEx(blockNo, keyType, timeout14a, clear_trace, keycnt, keys, (uint64_t*)key_index, true);
|
||||
}
|
||||
|
||||
|
||||
int mfCheckKeysSec(uint8_t sectorCnt, uint8_t keyType, uint16_t timeout14a, bool clear_trace, bool init, bool drop_field, uint8_t keycnt, uint8_t *keyBlock, sector_t *e_sector) {
|
||||
|
||||
uint8_t keyPtr = 0;
|
||||
|
||||
|
@ -287,14 +302,14 @@ int mfCheckKeysSec(uint8_t sectorCnt, uint8_t keyType, uint16_t timeout14a, bool
|
|||
bool multisectorCheck = true;
|
||||
uint8_t flags = clear_trace | multisectorCheck << 1 | init << 2 | drop_field << 3;
|
||||
|
||||
UsbCommand c = {CMD_MIFARE_CHKKEYS, {((sectorCnt & 0xff) | ((keyType & 0xff) << 8)), flags | timeout14a << 16, keycnt}};
|
||||
UsbCommand c = {CMD_MIFARE_CHKKEYS, {((sectorCnt & 0xff) | ((keyType & 0xff) << 8)), flags | timeout14a << 16, keycnt}};
|
||||
memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
|
||||
SendCommand(&c);
|
||||
|
||||
UsbCommand resp;
|
||||
if (!WaitForResponseTimeoutW(CMD_ACK, &resp, MAX(3000, 1000 + 13 * sectorCnt * keycnt * (keyType == 2 ? 2 : 1)), false)) return 1; // timeout: 13 ms / fail auth
|
||||
if ((resp.arg[0] & 0xff) != 0x01) return 2;
|
||||
|
||||
|
||||
bool foundAKey = false;
|
||||
for(int sec = 0; sec < sectorCnt; sec++){
|
||||
for(int keyAB = 0; keyAB < 2; keyAB++){
|
||||
|
@ -330,7 +345,7 @@ typedef
|
|||
uint32_t uid;
|
||||
uint32_t blockNo;
|
||||
uint32_t keyType;
|
||||
uint32_t nt_enc;
|
||||
uint32_t nt;
|
||||
uint32_t ks1;
|
||||
} StateList_t;
|
||||
|
||||
|
@ -339,14 +354,14 @@ typedef
|
|||
void
|
||||
#ifdef __has_attribute
|
||||
#if __has_attribute(force_align_arg_pointer)
|
||||
__attribute__((force_align_arg_pointer))
|
||||
__attribute__((force_align_arg_pointer))
|
||||
#endif
|
||||
#endif
|
||||
*nested_worker_thread(void *arg) {
|
||||
struct Crypto1State *p1;
|
||||
StateList_t *statelist = arg;
|
||||
|
||||
statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt_enc ^ statelist->uid);
|
||||
statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid);
|
||||
for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++);
|
||||
statelist->len = p1 - statelist->head.slhead;
|
||||
statelist->tail.sltail = --p1;
|
||||
|
@ -356,94 +371,84 @@ __attribute__((force_align_arg_pointer))
|
|||
}
|
||||
|
||||
|
||||
int mfnested(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *resultKey, bool calibrate) {
|
||||
uint32_t i;
|
||||
uint32_t uid;
|
||||
UsbCommand resp;
|
||||
static int nested_fixed_nonce(StateList_t statelist, uint32_t fixed_nt, uint32_t authentication_timeout, uint8_t *resultKey) {
|
||||
// We have a tag with a fixed nonce (nt) and therefore only one (usually long) list of possible crypto states.
|
||||
// Instead of testing all those keys on the device with a complete authentication cycle, we do all of the crypto operations here.
|
||||
uint8_t nr_enc[4] = NESTED_FIXED_NR_ENC; // we use a fixed {nr}
|
||||
uint8_t ar[4];
|
||||
num_to_bytes(prng_successor(fixed_nt, 64), 4, ar); // ... and ar is fixed too
|
||||
|
||||
int num_unique_nonces;
|
||||
|
||||
StateList_t statelists[2];
|
||||
struct Crypto1State *p1, *p2, *p3, *p4;
|
||||
|
||||
uint8_t *keyBlock = NULL;
|
||||
uint64_t key64;
|
||||
|
||||
int isOK = 1;
|
||||
|
||||
// flush queue
|
||||
(void)WaitForResponseTimeout(CMD_ACK,NULL,100);
|
||||
|
||||
UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
|
||||
memcpy(c.d.asBytes, key, 6);
|
||||
SendCommand(&c);
|
||||
|
||||
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) {
|
||||
// some cards can cause it to get stuck in a loop, so break out of it
|
||||
UsbCommand c = {CMD_PING};
|
||||
SendCommand(&c);
|
||||
(void)WaitForResponseTimeout(CMD_ACK,NULL,500);
|
||||
return -1;
|
||||
// create an array of possible {ar} and parity bits
|
||||
uint32_t num_ar_par = statelist.len;
|
||||
uint8_t *ar_par = calloc(num_ar_par, 5);
|
||||
if (ar_par == NULL) {
|
||||
free(statelist.head.slhead);
|
||||
return -4;
|
||||
}
|
||||
|
||||
if (resp.arg[0]) {
|
||||
return resp.arg[0]; // error during nested
|
||||
for (int i = 0; i < num_ar_par; i++) {
|
||||
// roll back to initial state using the nt observed with the nested authentication
|
||||
lfsr_rollback_word(statelist.head.slhead + i, statelist.nt ^ statelist.uid, 0);
|
||||
// instead feed in the fixed_nt for the first authentication
|
||||
struct Crypto1State cs = *(statelist.head.slhead + i);
|
||||
crypto1_word(&cs, fixed_nt ^ statelist.uid, 0);
|
||||
// determine nr such that the resulting {nr} is constant and feed it into the cypher. Calculate the encrypted parity bits
|
||||
uint8_t par_enc = 0;
|
||||
for (int j = 0; j < 4; j++) {
|
||||
uint8_t nr_byte = crypto1_byte(&cs, nr_enc[j], 1) ^ nr_enc[j];
|
||||
par_enc |= (((filter(cs.odd) ^ oddparity8(nr_byte)) & 0x01) << (7-j));
|
||||
}
|
||||
// calculate the encrypted reader response {ar} and its parity bits
|
||||
for (int j = 0; j < 4; j++) {
|
||||
ar_par[5*i + j] = crypto1_byte(&cs, 0, 0) ^ ar[j];
|
||||
par_enc |= ((filter(cs.odd) ^ oddparity8(ar[j])) & 0x01) << (3-j);
|
||||
}
|
||||
ar_par[5*i + 4] = par_enc;
|
||||
}
|
||||
|
||||
memcpy(&uid, resp.d.asBytes, 4);
|
||||
PrintAndLog("uid:%08x trgbl=%d trgkey=%x", uid, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8);
|
||||
// test each {ar} response
|
||||
uint32_t key_index;
|
||||
|
||||
for (i = 0; i < 2; i++) {
|
||||
statelists[i].blockNo = resp.arg[2] & 0xff;
|
||||
statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
|
||||
statelists[i].uid = uid;
|
||||
memcpy(&statelists[i].nt_enc, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
|
||||
memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
|
||||
int isOK = mfCheckKeysFixedNonce(statelist.blockNo, statelist.keyType, authentication_timeout, true, num_ar_par, ar_par, &key_index);
|
||||
|
||||
if (isOK == 0) { // success, key found
|
||||
// key_index contains the index into the cypher state list
|
||||
struct Crypto1State *p1 = statelist.head.slhead + key_index;
|
||||
uint64_t key64;
|
||||
crypto1_get_lfsr(p1, &key64);
|
||||
num_to_bytes(key64, 6, resultKey);
|
||||
}
|
||||
|
||||
uint32_t authentication_timeout;
|
||||
memcpy(&authentication_timeout, resp.d.asBytes + 20, 4);
|
||||
PrintAndLog("Setting authentication timeout to %" PRIu32 "us", authentication_timeout * 1000 / 106);
|
||||
|
||||
if (statelists[0].nt_enc == statelists[1].nt_enc && statelists[0].ks1 == statelists[1].ks1)
|
||||
num_unique_nonces = 1;
|
||||
else
|
||||
num_unique_nonces = 2;
|
||||
|
||||
// calc keys
|
||||
|
||||
pthread_t thread_id[2];
|
||||
|
||||
// create and run worker threads
|
||||
for (i = 0; i < 2; i++) {
|
||||
pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
|
||||
}
|
||||
|
||||
// wait for threads to terminate:
|
||||
for (i = 0; i < 2; i++) {
|
||||
pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
|
||||
if (isOK == 1) { // timeout
|
||||
isOK = -1;
|
||||
}
|
||||
free(statelist.head.slhead);
|
||||
free(ar_par);
|
||||
return isOK;
|
||||
}
|
||||
|
||||
|
||||
// the first 16 Bits of the cryptostate already contain part of our key.
|
||||
static int nested_standard(StateList_t statelists[2], uint32_t authentication_timeout, uint8_t *resultKey) {
|
||||
|
||||
// the first 16 Bits of the crypto states already contain part of our key.
|
||||
// Create the intersection of the two lists based on these 16 Bits and
|
||||
// roll back the cryptostate
|
||||
// roll back the crypto state for the remaining states
|
||||
struct Crypto1State *p1, *p2, *p3, *p4;
|
||||
p1 = p3 = statelists[0].head.slhead;
|
||||
p2 = p4 = statelists[1].head.slhead;
|
||||
while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) {
|
||||
if (Compare16Bits(p1, p2) == 0) {
|
||||
struct Crypto1State savestate, *savep = &savestate;
|
||||
savestate = *p1;
|
||||
while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
|
||||
while (Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
|
||||
*p3 = *p1;
|
||||
lfsr_rollback_word(p3, statelists[0].nt_enc ^ statelists[0].uid, 0);
|
||||
lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0);
|
||||
p3++;
|
||||
p1++;
|
||||
}
|
||||
savestate = *p2;
|
||||
while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
|
||||
while (Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
|
||||
*p4 = *p2;
|
||||
lfsr_rollback_word(p4, statelists[1].nt_enc ^ statelists[1].uid, 0);
|
||||
lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0);
|
||||
p4++;
|
||||
p2++;
|
||||
}
|
||||
|
@ -460,84 +465,137 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, uint8_t *key
|
|||
statelists[0].tail.sltail=--p3;
|
||||
statelists[1].tail.sltail=--p4;
|
||||
|
||||
for (i = 0; i < 2; i++) {
|
||||
PrintAndLog("statelist %d: length:%d block:%02d keytype:%d nt_enc:%08X ks1:%08X", i, statelists[i].len, statelists[i].blockNo, statelists[i].keyType, statelists[i].nt_enc, statelists[i].ks1);
|
||||
}
|
||||
|
||||
// the statelists now contain possible keys. The key we are searching for must be in the
|
||||
// intersection of both lists. Create the intersection:
|
||||
// the statelists now contain possible crypto states initialized with the key. The key we are searching for
|
||||
// must be in the intersection of both lists. Sort the lists and create the intersection:
|
||||
qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compare_uint64);
|
||||
qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compare_uint64);
|
||||
statelists[0].len = intersection(statelists[0].head.keyhead, statelists[1].head.keyhead);
|
||||
|
||||
if (num_unique_nonces > 1) {
|
||||
qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compare_uint64);
|
||||
statelists[0].len = intersection(statelists[0].head.keyhead, statelists[1].head.keyhead);
|
||||
}
|
||||
else {
|
||||
PrintAndLog("Nonce 1 and 2 are the same!");
|
||||
}
|
||||
|
||||
// create an array of the possible keys
|
||||
uint32_t num_keys = statelists[0].len;
|
||||
keyBlock = calloc(num_keys, 6);
|
||||
if (keyBlock == NULL) {
|
||||
uint8_t *keys = calloc(num_keys, 6);
|
||||
if (keys == NULL) {
|
||||
free(statelists[0].head.slhead);
|
||||
free(statelists[1].head.slhead);
|
||||
return -4;
|
||||
}
|
||||
|
||||
for (i = 0; i < num_keys; i++) {
|
||||
uint64_t key64 = 0;
|
||||
for (int i = 0; i < num_keys; i++) {
|
||||
crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
|
||||
num_to_bytes(key64, 6, keyBlock + i*6);
|
||||
num_to_bytes(key64, 6, keys + i*6);
|
||||
}
|
||||
|
||||
// The list may still contain several key candidates. Test each of them with mfCheckKeys
|
||||
isOK = mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, authentication_timeout, true, num_keys, keyBlock, &key64);
|
||||
// and test each key with mfCheckKeys
|
||||
int isOK = mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, authentication_timeout, true, num_keys, keys, &key64);
|
||||
|
||||
if (isOK == 0) { // success, key found
|
||||
num_to_bytes(key64, 6, resultKey);
|
||||
}
|
||||
|
||||
if (isOK == 1) { // timeout
|
||||
isOK = -1;
|
||||
}
|
||||
|
||||
free(statelists[0].head.slhead);
|
||||
free(statelists[1].head.slhead);
|
||||
free(keyBlock);
|
||||
|
||||
free(keys);
|
||||
return isOK;
|
||||
}
|
||||
|
||||
|
||||
int mfnested(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *resultKey, bool calibrate) {
|
||||
|
||||
// flush queue
|
||||
clearCommandBuffer();
|
||||
|
||||
UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
|
||||
memcpy(c.d.asBytes, key, 6);
|
||||
SendCommand(&c);
|
||||
|
||||
UsbCommand resp;
|
||||
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
if ((int)resp.arg[0]) {
|
||||
return (int)resp.arg[0]; // error during nested
|
||||
}
|
||||
|
||||
uint32_t uid;
|
||||
memcpy(&uid, resp.d.asBytes, 4);
|
||||
PrintAndLog("uid:%08x trgbl=%d trgkey=%x", uid, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8);
|
||||
|
||||
StateList_t statelists[2];
|
||||
for (int i = 0; i < 2; i++) {
|
||||
statelists[i].blockNo = resp.arg[2] & 0xff;
|
||||
statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
|
||||
statelists[i].uid = uid;
|
||||
memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
|
||||
memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
|
||||
}
|
||||
|
||||
uint32_t authentication_timeout;
|
||||
memcpy(&authentication_timeout, resp.d.asBytes + 20, 4);
|
||||
PrintAndLog("Setting authentication timeout to %" PRIu32 "us", authentication_timeout * 1000 / 106);
|
||||
|
||||
uint8_t num_unique_nonces;
|
||||
uint32_t fixed_nt = 0;
|
||||
if (statelists[0].nt == statelists[1].nt && statelists[0].ks1 == statelists[1].ks1) {
|
||||
num_unique_nonces = 1;
|
||||
memcpy(&fixed_nt, resp.d.asBytes + 24, 4);
|
||||
PrintAndLog("Fixed nt detected: %08" PRIx32 " on first authentication, %08" PRIx32 " on nested authentication", fixed_nt, statelists[0].nt);
|
||||
} else {
|
||||
num_unique_nonces = 2;
|
||||
}
|
||||
|
||||
// create and run worker threads to calculate possible crypto states
|
||||
pthread_t thread_id[2];
|
||||
for (int i = 0; i < num_unique_nonces; i++) {
|
||||
pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
|
||||
}
|
||||
// wait for threads to terminate:
|
||||
for (int i = 0; i < num_unique_nonces; i++) {
|
||||
pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
|
||||
}
|
||||
|
||||
if (num_unique_nonces == 2) {
|
||||
return nested_standard(statelists, authentication_timeout, resultKey);
|
||||
} else {
|
||||
return nested_fixed_nonce(statelists[0], fixed_nt, authentication_timeout, resultKey);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// MIFARE
|
||||
int mfReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *data) {
|
||||
|
||||
UsbCommand c = {CMD_MIFARE_READSC, {sectorNo, keyType, 0}};
|
||||
memcpy(c.d.asBytes, key, 6);
|
||||
clearCommandBuffer();
|
||||
SendCommand(&c);
|
||||
UsbCommand c = {CMD_MIFARE_READSC, {sectorNo, keyType, 0}};
|
||||
memcpy(c.d.asBytes, key, 6);
|
||||
clearCommandBuffer();
|
||||
SendCommand(&c);
|
||||
|
||||
UsbCommand resp;
|
||||
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
|
||||
uint8_t isOK = resp.arg[0] & 0xff;
|
||||
UsbCommand resp;
|
||||
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
|
||||
uint8_t isOK = resp.arg[0] & 0xff;
|
||||
|
||||
if (isOK) {
|
||||
memcpy(data, resp.d.asBytes, mfNumBlocksPerSector(sectorNo) * 16);
|
||||
return 0;
|
||||
} else {
|
||||
return 1;
|
||||
}
|
||||
} else {
|
||||
PrintAndLogEx(ERR, "Command execute timeout");
|
||||
return 2;
|
||||
}
|
||||
if (isOK) {
|
||||
memcpy(data, resp.d.asBytes, mfNumBlocksPerSector(sectorNo) * 16);
|
||||
return 0;
|
||||
} else {
|
||||
return 1;
|
||||
}
|
||||
} else {
|
||||
PrintAndLogEx(ERR, "Command execute timeout");
|
||||
return 2;
|
||||
}
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// EMULATOR
|
||||
|
||||
int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
|
||||
UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}};
|
||||
SendCommand(&c);
|
||||
SendCommand(&c);
|
||||
|
||||
UsbCommand resp;
|
||||
if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1;
|
||||
|
@ -603,7 +661,7 @@ int mfCWipe(uint32_t numSectors, bool gen1b, bool wantWipe, bool wantFill) {
|
|||
UsbCommand resp;
|
||||
WaitForResponse(CMD_ACK,&resp);
|
||||
isOK = resp.arg[0] & 0xff;
|
||||
|
||||
|
||||
return isOK;
|
||||
}
|
||||
|
||||
|
@ -620,7 +678,7 @@ int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID) {
|
|||
/* generation 1b magic card */
|
||||
cmdParams = CSETBLOCK_SINGLE_OPER | CSETBLOCK_MAGIC_1B;
|
||||
}
|
||||
|
||||
|
||||
res = mfCGetBlock(0, oldblock0, cmdParams);
|
||||
|
||||
if (res == 0) {
|
||||
|
@ -649,7 +707,7 @@ int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID) {
|
|||
PrintAndLog("Can't set block 0. Error: %d", res);
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -760,7 +818,7 @@ int loadTraceCard(uint8_t *tuid) {
|
|||
PrintAndLog("File reading error.");
|
||||
fclose(f);
|
||||
return 2;
|
||||
}
|
||||
}
|
||||
|
||||
if (strlen(buf) < 32){
|
||||
if (feof(f)) break;
|
||||
|
@ -802,7 +860,7 @@ int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFil
|
|||
}
|
||||
|
||||
void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){
|
||||
uint8_t bt = 0;
|
||||
uint8_t bt = 0;
|
||||
int i;
|
||||
|
||||
if (len != 1) {
|
||||
|
@ -825,7 +883,7 @@ bool NTParityCheck(uint32_t ntx) {
|
|||
(oddparity8(ntx >> 24 & 0xff) ^ (ntx >> 16 & 0x01) ^ ((nt_enc_par >> 7) & 0x01) ^ (nt_enc >> 16 & 0x01))
|
||||
)
|
||||
return false;
|
||||
|
||||
|
||||
uint32_t ar = prng_successor(ntx, 64);
|
||||
if (
|
||||
(oddparity8(ar >> 8 & 0xff) ^ (ar & 0x01) ^ ((ar_enc_par >> 5) & 0x01) ^ (ar_enc & 0x01)) ||
|
||||
|
@ -842,7 +900,7 @@ bool NTParityCheck(uint32_t ntx) {
|
|||
(oddparity8(at >> 24 & 0xff) ^ (at >> 16 & 0x01) ^ ((at_enc_par >> 7) & 0x01) ^ (at_enc >> 16 & 0x01))
|
||||
)
|
||||
return false;
|
||||
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -997,8 +1055,8 @@ int mfTraceDecode(uint8_t *data_src, int len, uint8_t parity, bool wantSaveToEml
|
|||
crypto1_get_lfsr(revstate, &lfsr);
|
||||
crypto1_destroy(revstate);
|
||||
ui64Key = lfsr;
|
||||
printf("key> probable key:%x%x Prng:%s ks2:%08x ks3:%08x\n",
|
||||
(unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF),
|
||||
printf("key> probable key:%x%x Prng:%s ks2:%08x ks3:%08x\n",
|
||||
(unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF),
|
||||
validate_prng_nonce(nt) ? "WEAK": "HARDEND",
|
||||
ks2,
|
||||
ks3);
|
||||
|
@ -1021,7 +1079,7 @@ int mfTraceDecode(uint8_t *data_src, int len, uint8_t parity, bool wantSaveToEml
|
|||
printf("key> the same key test OK. key=%x%x\n", (unsigned int)((ui64Key & 0xFFFFFFFF00000000) >> 32), (unsigned int)(ui64Key & 0xFFFFFFFF));
|
||||
else
|
||||
printf("key> the same key test. check nt parity error.\n");
|
||||
|
||||
|
||||
uint32_t ntc = prng_successor(nt, 90);
|
||||
uint32_t ntx = 0;
|
||||
int ntcnt = 0;
|
||||
|
@ -1031,7 +1089,7 @@ int mfTraceDecode(uint8_t *data_src, int len, uint8_t parity, bool wantSaveToEml
|
|||
if (!ntcnt)
|
||||
ntx = ntc;
|
||||
ntcnt++;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (ntcnt)
|
||||
printf("key> nt candidate=%08x nonce distance=%d candidates count=%d\n", ntx, nonce_distance(nt, ntx), ntcnt);
|
||||
|
@ -1052,14 +1110,14 @@ int mfTraceDecode(uint8_t *data_src, int len, uint8_t parity, bool wantSaveToEml
|
|||
crypto1_get_lfsr(revstate, &lfsr);
|
||||
crypto1_destroy(revstate);
|
||||
ui64Key = lfsr;
|
||||
printf("key> probable key:%x%x ks2:%08x ks3:%08x\n",
|
||||
printf("key> probable key:%x%x ks2:%08x ks3:%08x\n",
|
||||
(unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF),
|
||||
ks2,
|
||||
ks3);
|
||||
AddLogUint64(logHexFileName, "key> ", lfsr);
|
||||
} else {
|
||||
} else {
|
||||
printf("key> hardnested not implemented!\n");
|
||||
|
||||
|
||||
crypto1_destroy(traceCrypto1);
|
||||
|
||||
// not implemented
|
||||
|
@ -1139,44 +1197,44 @@ bool validate_prng_nonce(uint32_t nonce) {
|
|||
dist[(x & 0xff) << 8 | x >> 8] = i;
|
||||
x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
|
||||
}
|
||||
|
||||
|
||||
uint32_t res = (65535 - dist[nonce >> 16] + dist[nonce & 0xffff]) % 65535;
|
||||
|
||||
free(dist);
|
||||
|
||||
free(dist);
|
||||
return (res == 16);
|
||||
}
|
||||
|
||||
/* Detect Tag Prng,
|
||||
/* Detect Tag Prng,
|
||||
* function performs a partial AUTH, where it tries to authenticate against block0, key A, but only collects tag nonce.
|
||||
* the tag nonce is check to see if it has a predictable PRNG.
|
||||
* @returns
|
||||
* TRUE if tag uses WEAK prng (ie Now the NACK bug also needs to be present for Darkside attack)
|
||||
* @returns
|
||||
* TRUE if tag uses WEAK prng (ie Now the NACK bug also needs to be present for Darkside attack)
|
||||
* FALSE is tag uses HARDEND prng (ie hardnested attack possible, with known key)
|
||||
*/
|
||||
int DetectClassicPrng(void){
|
||||
|
||||
UsbCommand resp, respA;
|
||||
UsbCommand resp, respA;
|
||||
uint8_t cmd[] = {0x60, 0x00}; // MIFARE_AUTH_KEYA
|
||||
uint32_t flags = ISO14A_CONNECT | ISO14A_RAW | ISO14A_APPEND_CRC | ISO14A_NO_RATS;
|
||||
|
||||
|
||||
UsbCommand c = {CMD_READER_ISO_14443a, {flags, sizeof(cmd), 0}};
|
||||
memcpy(c.d.asBytes, cmd, sizeof(cmd));
|
||||
|
||||
clearCommandBuffer();
|
||||
SendCommand(&c);
|
||||
if (!WaitForResponseTimeout(CMD_NACK, &resp, 2000)) {
|
||||
PrintAndLog("PRNG UID: Reply timeout.");
|
||||
PrintAndLog("PRNG UID: Reply timeout.");
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
||||
// if select tag failed.
|
||||
if (resp.arg[0] == 0) {
|
||||
PrintAndLog("PRNG error: selecting tag failed, can't detect prng.");
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
||||
if (!WaitForResponseTimeout(CMD_ACK, &respA, 5000)) {
|
||||
PrintAndLog("PRNG data: Reply timeout.");
|
||||
PrintAndLog("PRNG data: Reply timeout.");
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue