fix hf mf sim (#812)

* fix parity encryption (thanks to Eloff, http://www.proxmark.org/forum/viewtopic.php?id=6347)
* add support to simulate Mifare Mini, Mifare 2K and Mifare 4K
* change to standard LED handling (A: PM is working, B: reader is sending, C: tag is responding, D: HF field is on)
* NAK on unknown commands
* allow unencrypted HALT
* don't display messages during simulation (or we will miss next reader command)
* use DMA to receive reader command
* switch earlier from send to listen mode
* move ADC initializer to iso14443_setup
* remove remainders of incomplete Mifare 10Byte UID simulation
* show 'short' bytes (7Bits or 8Bits without parity) in 'hf list mf' and 'hf list 14a'
* whitespace
This commit is contained in:
pwpiwi 2019-04-19 10:22:10 +02:00 committed by GitHub
parent bad582468f
commit a8561e356b
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
14 changed files with 944 additions and 804 deletions

View file

@ -30,6 +30,7 @@ This project uses the changelog in accordance with [keepchangelog](http://keepac
- Added `hf plot` (piwi) - Added `hf plot` (piwi)
- Added `hf mfp mad` `hf mf mad` parsing MAD1 and MAD2 (Merlok) - Added `hf mfp mad` `hf mf mad` parsing MAD1 and MAD2 (Merlok)
- Added `hf mfp ndef` `hf mf ndef` parsing NDEF records (Merlok) - Added `hf mfp ndef` `hf mf ndef` parsing NDEF records (Merlok)
- Added Mifare Mini, Mifare 2K and 4K support to `hf mf sim` (piwi)
- Added Legic detection to `hf search` (dnet) - Added Legic detection to `hf search` (dnet)
## [v3.1.0][2018-10-10] ## [v3.1.0][2018-10-10]

View file

@ -21,8 +21,8 @@
/* BigBuf memory layout: /* BigBuf memory layout:
Pointer to highest available memory: BigBuf_hi Pointer to highest available memory: BigBuf_hi
high BIGBUF_SIZE high BIGBUF_SIZE
reserved = BigBuf_malloc() subtracts amount from BigBuf_hi, reserved = BigBuf_malloc() subtracts amount from BigBuf_hi,
low 0x00 low 0x00
*/ */
@ -39,6 +39,7 @@ static uint8_t *emulator_memory = NULL;
static uint32_t traceLen = 0; static uint32_t traceLen = 0;
static bool tracing = true; static bool tracing = true;
// get the address of BigBuf // get the address of BigBuf
uint8_t *BigBuf_get_addr(void) uint8_t *BigBuf_get_addr(void)
{ {
@ -53,7 +54,7 @@ uint8_t *BigBuf_get_EM_addr(void)
if (emulator_memory == NULL) { if (emulator_memory == NULL) {
emulator_memory = BigBuf_malloc(CARD_MEMORY_SIZE); emulator_memory = BigBuf_malloc(CARD_MEMORY_SIZE);
} }
return emulator_memory; return emulator_memory;
} }
@ -63,17 +64,22 @@ void BigBuf_Clear(void)
{ {
BigBuf_Clear_ext(true); BigBuf_Clear_ext(true);
} }
// clear ALL of BigBuf // clear ALL of BigBuf
void BigBuf_Clear_ext(bool verbose) void BigBuf_Clear_ext(bool verbose)
{ {
memset(BigBuf, 0, BIGBUF_SIZE); memset(BigBuf, 0, BIGBUF_SIZE);
if (verbose) if (verbose)
Dbprintf("Buffer cleared (%i bytes)",BIGBUF_SIZE); Dbprintf("Buffer cleared (%i bytes)", BIGBUF_SIZE);
} }
void BigBuf_Clear_EM(void){ void BigBuf_Clear_EM(void){
memset(BigBuf_get_EM_addr(), 0, CARD_MEMORY_SIZE); memset(BigBuf_get_EM_addr(), 0, CARD_MEMORY_SIZE);
} }
void BigBuf_Clear_keep_EM(void) void BigBuf_Clear_keep_EM(void)
{ {
memset(BigBuf, 0, BigBuf_hi); memset(BigBuf, 0, BigBuf_hi);
@ -83,11 +89,11 @@ void BigBuf_Clear_keep_EM(void)
// at the beginning of BigBuf is always for traces/samples // at the beginning of BigBuf is always for traces/samples
uint8_t *BigBuf_malloc(uint16_t chunksize) uint8_t *BigBuf_malloc(uint16_t chunksize)
{ {
if (BigBuf_hi - chunksize < 0) { if (BigBuf_hi - chunksize < 0) {
return NULL; // no memory left return NULL; // no memory left
} else { } else {
chunksize = (chunksize + 3) & 0xfffc; // round to next multiple of 4 chunksize = (chunksize + 3) & 0xfffc; // round to next multiple of 4
BigBuf_hi -= chunksize; // aligned to 4 Byte boundary BigBuf_hi -= chunksize; // aligned to 4 Byte boundary
return (uint8_t *)BigBuf + BigBuf_hi; return (uint8_t *)BigBuf + BigBuf_hi;
} }
} }
@ -128,18 +134,22 @@ uint16_t BigBuf_max_traceLen(void)
return BigBuf_hi; return BigBuf_hi;
} }
void clear_trace() { void clear_trace() {
traceLen = 0; traceLen = 0;
} }
void set_tracing(bool enable) { void set_tracing(bool enable) {
tracing = enable; tracing = enable;
} }
bool get_tracing(void) { bool get_tracing(void) {
return tracing; return tracing;
} }
/** /**
* Get the number of bytes traced * Get the number of bytes traced
* @return * @return
@ -149,6 +159,7 @@ uint16_t BigBuf_get_traceLen(void)
return traceLen; return traceLen;
} }
/** /**
This is a function to store traces. All protocols can use this generic tracer-function. This is a function to store traces. All protocols can use this generic tracer-function.
The traces produced by calling this function can be fetched on the client-side The traces produced by calling this function can be fetched on the client-side
@ -162,14 +173,14 @@ bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_
uint8_t *trace = BigBuf_get_addr(); uint8_t *trace = BigBuf_get_addr();
uint32_t num_paritybytes = (iLen-1)/8 + 1; // number of valid paritybytes in *parity uint32_t num_paritybytes = (iLen-1)/8 + 1; // number of valid paritybytes in *parity
uint32_t duration = timestamp_end - timestamp_start; uint32_t duration = timestamp_end - timestamp_start;
// Return when trace is full // Return when trace is full
uint16_t max_traceLen = BigBuf_max_traceLen(); uint16_t max_traceLen = BigBuf_max_traceLen();
if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= max_traceLen) { if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= max_traceLen) {
tracing = false; // don't trace any more tracing = false; // don't trace any more
return false; return false;
} }
// Traceformat: // Traceformat:
@ -237,7 +248,7 @@ int LogTraceHitag(const uint8_t * btBytes, int iBits, int iSamples, uint32_t dwP
// Return when trace is full // Return when trace is full
if (traceLen + sizeof(rsamples) + sizeof(dwParity) + sizeof(iBits) + iLen > BigBuf_max_traceLen()) { if (traceLen + sizeof(rsamples) + sizeof(dwParity) + sizeof(iBits) + iLen > BigBuf_max_traceLen()) {
return false; return false;
} }
//Hitag traces appear to use this traceformat: //Hitag traces appear to use this traceformat:
// 32 bits timestamp (little endian,Highest Bit used as readerToTag flag) // 32 bits timestamp (little endian,Highest Bit used as readerToTag flag)

View file

@ -20,7 +20,7 @@
#define MAX_PARITY_SIZE ((MAX_FRAME_SIZE + 7) / 8) #define MAX_PARITY_SIZE ((MAX_FRAME_SIZE + 7) / 8)
#define MAX_MIFARE_FRAME_SIZE 18 // biggest Mifare frame is answer to a read (one block = 16 Bytes) + 2 Bytes CRC #define MAX_MIFARE_FRAME_SIZE 18 // biggest Mifare frame is answer to a read (one block = 16 Bytes) + 2 Bytes CRC
#define MAX_MIFARE_PARITY_SIZE 3 // need 18 parity bits for the 18 Byte above. 3 Bytes are enough to store these #define MAX_MIFARE_PARITY_SIZE 3 // need 18 parity bits for the 18 Byte above. 3 Bytes are enough to store these
#define CARD_MEMORY_SIZE 4096 #define CARD_MEMORY_SIZE 4096
#define DMA_BUFFER_SIZE 128 #define DMA_BUFFER_SIZE 128
extern uint8_t *BigBuf_get_addr(void); extern uint8_t *BigBuf_get_addr(void);

View file

@ -29,6 +29,7 @@
#include "lfsampling.h" #include "lfsampling.h"
#include "BigBuf.h" #include "BigBuf.h"
#include "mifareutil.h" #include "mifareutil.h"
#include "mifaresim.h"
#include "pcf7931.h" #include "pcf7931.h"
#include "i2c.h" #include "i2c.h"
#include "hfsnoop.h" #include "hfsnoop.h"
@ -1249,7 +1250,7 @@ void UsbPacketReceived(uint8_t *packet, int len)
MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break; break;
case CMD_SIMULATE_MIFARE_CARD: case CMD_SIMULATE_MIFARE_CARD:
Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); MifareSim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break; break;
// emulator // emulator

View file

@ -119,7 +119,6 @@ void MifareUWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain);
void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain); void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain);
void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags, uint8_t *datain); void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags, uint8_t *datain);
void MifareChkKeys(uint16_t arg0, uint16_t arg1, uint8_t arg2, uint8_t *datain); void MifareChkKeys(uint16_t arg0, uint16_t arg1, uint8_t arg2, uint8_t *datain);
void Mifare1ksim(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain);
void MifareSetDbgLvl(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain); void MifareSetDbgLvl(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain);
void MifareEMemClr(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain); void MifareEMemClr(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain);
void MifareEMemSet(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain); void MifareEMemSet(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain);

File diff suppressed because it is too large Load diff

View file

@ -41,7 +41,6 @@ extern void ReaderMifare(bool first_try);
extern int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity); extern int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity);
extern int EmSendCmd(uint8_t *resp, uint16_t respLen); extern int EmSendCmd(uint8_t *resp, uint16_t respLen);
extern int EmSendCmdEx(uint8_t *resp, uint16_t respLen);
extern int EmSend4bit(uint8_t resp); extern int EmSend4bit(uint8_t resp);
extern int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par); extern int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
extern int EmSendPrecompiledCmd(tag_response_info_t *response_info); extern int EmSendPrecompiledCmd(tag_response_info_t *response_info);

View file

@ -25,26 +25,24 @@
#include "apps.h" #include "apps.h"
//mifare emulator states //mifare emulator states
#define MFEMUL_NOFIELD 0 #define MFEMUL_NOFIELD 0
#define MFEMUL_IDLE 1 #define MFEMUL_IDLE 1
#define MFEMUL_SELECT1 2 #define MFEMUL_SELECT1 2
#define MFEMUL_SELECT2 3 #define MFEMUL_SELECT2 3
#define MFEMUL_SELECT3 4 #define MFEMUL_SELECT3 4
#define MFEMUL_AUTH1 5 #define MFEMUL_AUTH1 5
#define MFEMUL_AUTH2 6 #define MFEMUL_AUTH2 6
#define MFEMUL_WORK 7 #define MFEMUL_WORK 7
#define MFEMUL_WRITEBL2 8 #define MFEMUL_WRITEBL2 8
#define MFEMUL_INTREG_INC 9 #define MFEMUL_INTREG_INC 9
#define MFEMUL_INTREG_DEC 10 #define MFEMUL_INTREG_DEC 10
#define MFEMUL_INTREG_REST 11 #define MFEMUL_INTREG_REST 11
#define MFEMUL_HALTED 12 #define MFEMUL_HALTED 12
#define cardSTATE_TO_IDLE() { cardSTATE = MFEMUL_IDLE; LED_B_OFF(); LED_C_OFF(); }
#define AC_DATA_READ 0 #define AC_DATA_READ 0
#define AC_DATA_WRITE 1 #define AC_DATA_WRITE 1
#define AC_DATA_INC 2 #define AC_DATA_INC 2
#define AC_DATA_DEC_TRANS_REST 3 #define AC_DATA_DEC_TRANS_REST 3
#define AC_KEYA_READ 0 #define AC_KEYA_READ 0
#define AC_KEYA_WRITE 1 #define AC_KEYA_WRITE 1
#define AC_KEYB_READ 2 #define AC_KEYB_READ 2
@ -57,11 +55,30 @@
#define AUTHKEYNONE 0xff #define AUTHKEYNONE 0xff
static int ParamCardSizeBlocks(const char c) {
int numBlocks = 16 * 4;
switch (c) {
case '0' : numBlocks = 5 * 4; break;
case '2' : numBlocks = 32 * 4; break;
case '4' : numBlocks = 32 * 4 + 8 * 16; break;
default: numBlocks = 16 * 4;
}
return numBlocks;
}
static uint8_t BlockToSector(int block_num) {
if (block_num < 32 * 4) { // 4 blocks per sector
return (block_num / 4);
} else { // 16 blocks per sector
return 32 + (block_num - 32 * 4) / 16;
}
}
static bool IsTrailerAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) { static bool IsTrailerAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) {
uint8_t sector_trailer[16]; uint8_t sector_trailer[16];
emlGetMem(sector_trailer, blockNo, 1); emlGetMem(sector_trailer, blockNo, 1);
uint8_t AC = ((sector_trailer[7] >> 5) & 0x04) uint8_t AC = ((sector_trailer[7] >> 5) & 0x04)
| ((sector_trailer[8] >> 2) & 0x02) | ((sector_trailer[8] >> 2) & 0x02)
| ((sector_trailer[8] >> 7) & 0x01); | ((sector_trailer[8] >> 7) & 0x01);
switch (action) { switch (action) {
case AC_KEYA_READ: { case AC_KEYA_READ: {
@ -69,8 +86,8 @@ static bool IsTrailerAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t act
break; break;
} }
case AC_KEYA_WRITE: { case AC_KEYA_WRITE: {
return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x01)) return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x01))
|| (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03))); || (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03)));
break; break;
} }
case AC_KEYB_READ: { case AC_KEYB_READ: {
@ -79,17 +96,17 @@ static bool IsTrailerAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t act
} }
case AC_KEYB_WRITE: { case AC_KEYB_WRITE: {
return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x04)) return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x04))
|| (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03))); || (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03)));
break; break;
} }
case AC_AC_READ: { case AC_AC_READ: {
return ((keytype == AUTHKEYA) return ((keytype == AUTHKEYA)
|| (keytype == AUTHKEYB && !(AC == 0x00 || AC == 0x02 || AC == 0x01))); || (keytype == AUTHKEYB && !(AC == 0x00 || AC == 0x02 || AC == 0x01)));
break; break;
} }
case AC_AC_WRITE: { case AC_AC_WRITE: {
return ((keytype == AUTHKEYA && (AC == 0x01)) return ((keytype == AUTHKEYA && (AC == 0x01))
|| (keytype == AUTHKEYB && (AC == 0x03 || AC == 0x05))); || (keytype == AUTHKEYB && (AC == 0x03 || AC == 0x05)));
break; break;
} }
default: return false; default: return false;
@ -129,33 +146,33 @@ static bool IsDataAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action
| ((sector_trailer[8] >> 6) & 0x01); | ((sector_trailer[8] >> 6) & 0x01);
break; break;
} }
default: default:
return false; return false;
} }
switch (action) { switch (action) {
case AC_DATA_READ: { case AC_DATA_READ: {
return ((keytype == AUTHKEYA && !(AC == 0x03 || AC == 0x05 || AC == 0x07)) return ((keytype == AUTHKEYA && !(AC == 0x03 || AC == 0x05 || AC == 0x07))
|| (keytype == AUTHKEYB && !(AC == 0x07))); || (keytype == AUTHKEYB && !(AC == 0x07)));
break; break;
} }
case AC_DATA_WRITE: { case AC_DATA_WRITE: {
return ((keytype == AUTHKEYA && (AC == 0x00)) return ((keytype == AUTHKEYA && (AC == 0x00))
|| (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x04 || AC == 0x06 || AC == 0x03))); || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x04 || AC == 0x06 || AC == 0x03)));
break; break;
} }
case AC_DATA_INC: { case AC_DATA_INC: {
return ((keytype == AUTHKEYA && (AC == 0x00)) return ((keytype == AUTHKEYA && (AC == 0x00))
|| (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06))); || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06)));
break; break;
} }
case AC_DATA_DEC_TRANS_REST: { case AC_DATA_DEC_TRANS_REST: {
return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x06 || AC == 0x01)) return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x06 || AC == 0x01))
|| (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06 || AC == 0x01))); || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06 || AC == 0x01)));
break; break;
} }
} }
return false; return false;
} }
@ -169,18 +186,18 @@ static bool IsAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) {
} }
static void MifareSimInit(uint8_t flags, uint8_t *datain, tag_response_info_t **responses, uint32_t *cuid, uint8_t *uid_len) { static void MifareSimInit(uint8_t flags, uint8_t *datain, tag_response_info_t **responses, uint32_t *cuid, uint8_t *uid_len, uint8_t cardsize) {
#define TAG_RESPONSE_COUNT 5 // number of precompiled responses #define TAG_RESPONSE_COUNT 5 // number of precompiled responses
static uint8_t rATQA[] = {0x04, 0x00}; // indicate Mifare classic 1k 4Byte UID static uint8_t rATQA[] = {0x00, 0x00};
static uint8_t rUIDBCC1[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level static uint8_t rUIDBCC1[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level
static uint8_t rUIDBCC2[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 2nd cascade level static uint8_t rUIDBCC2[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 2nd cascade level
static uint8_t rSAKfinal[]= {0x08, 0xb6, 0xdd}; // mifare 1k indicated static uint8_t rSAKfinal[]= {0x00, 0x00, 0x00}; // SAK after UID complete
static uint8_t rSAK1[] = {0x04, 0xda, 0x17}; // indicate UID not finished static uint8_t rSAK1[] = {0x00, 0x00, 0x00}; // indicate UID not finished
*uid_len = 4; *uid_len = 4;
// UID can be set from emulator memory or incoming data and can be 4 or 7 bytes long // UID can be set from emulator memory or incoming data and can be 4 or 7 bytes long
if (flags & FLAG_4B_UID_IN_DATA) { // get UID from datain if (flags & FLAG_4B_UID_IN_DATA) { // get UID from datain
memcpy(rUIDBCC1, datain, 4); memcpy(rUIDBCC1, datain, 4);
} else if (flags & FLAG_7B_UID_IN_DATA) { } else if (flags & FLAG_7B_UID_IN_DATA) {
rUIDBCC1[0] = 0x88; rUIDBCC1[0] = 0x88;
@ -189,10 +206,10 @@ static void MifareSimInit(uint8_t flags, uint8_t *datain, tag_response_info_t **
*uid_len = 7; *uid_len = 7;
} else { } else {
uint8_t probable_atqa; uint8_t probable_atqa;
emlGetMemBt(&probable_atqa, 7, 1); // get UID from emul memory - weak guess at length emlGetMemBt(&probable_atqa, 7, 1); // get UID from emul memory - weak guess at length
if (probable_atqa == 0x00) { // ---------- 4BUID if (probable_atqa == 0x00) { // ---------- 4BUID
emlGetMemBt(rUIDBCC1, 0, 4); emlGetMemBt(rUIDBCC1, 0, 4);
} else { // ---------- 7BUID } else { // ---------- 7BUID
rUIDBCC1[0] = 0x88; rUIDBCC1[0] = 0x88;
emlGetMemBt(rUIDBCC1+1, 0, 3); emlGetMemBt(rUIDBCC1+1, 0, 3);
emlGetMemBt(rUIDBCC2, 3, 4); emlGetMemBt(rUIDBCC2, 3, 4);
@ -204,37 +221,65 @@ static void MifareSimInit(uint8_t flags, uint8_t *datain, tag_response_info_t **
case 4: case 4:
*cuid = bytes_to_num(rUIDBCC1, 4); *cuid = bytes_to_num(rUIDBCC1, 4);
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
if (MF_DBGLEVEL >= 2) { if (MF_DBGLEVEL >= MF_DBG_INFO) {
Dbprintf("4B UID: %02x%02x%02x%02x", Dbprintf("4B UID: %02x%02x%02x%02x",
rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3] ); rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3] );
} }
break; break;
case 7: case 7:
rATQA[0] |= 0x40;
*cuid = bytes_to_num(rUIDBCC2, 4); *cuid = bytes_to_num(rUIDBCC2, 4);
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
if (MF_DBGLEVEL >= 2) { if (MF_DBGLEVEL >= MF_DBG_INFO) {
Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x", Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], rUIDBCC2[0], rUIDBCC2[1], rUIDBCC2[2], rUIDBCC2[3] ); rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], rUIDBCC2[0], rUIDBCC2[1], rUIDBCC2[2], rUIDBCC2[3] );
} }
break; break;
default: default:
break; break;
} }
// set SAK based on cardsize
switch (cardsize) {
case '0': rSAKfinal[0] = 0x09; break; // Mifare Mini
case '2': rSAKfinal[0] = 0x10; break; // Mifare 2K
case '4': rSAKfinal[0] = 0x18; break; // Mifare 4K
default: rSAKfinal[0] = 0x08; // Mifare 1K
}
ComputeCrc14443(CRC_14443_A, rSAKfinal, 1, rSAKfinal + 1, rSAKfinal + 2);
if (MF_DBGLEVEL >= MF_DBG_INFO) {
Dbprintf("SAK: %02x", rSAKfinal[0]);
}
// set SAK for incomplete UID
rSAK1[0] = 0x04; // Bit 3 indicates incomplete UID
ComputeCrc14443(CRC_14443_A, rSAK1, 1, rSAK1 + 1, rSAK1 + 2);
// set ATQA based on cardsize and UIDlen
if (cardsize == '4') {
rATQA[0] = 0x02;
} else {
rATQA[0] = 0x04;
}
if (*uid_len == 7) {
rATQA[0] |= 0x40;
}
if (MF_DBGLEVEL >= MF_DBG_INFO) {
Dbprintf("ATQA: %02x %02x", rATQA[1], rATQA[0]);
}
static tag_response_info_t responses_init[TAG_RESPONSE_COUNT] = { static tag_response_info_t responses_init[TAG_RESPONSE_COUNT] = {
{ .response = rATQA, .response_n = sizeof(rATQA) }, // Answer to request - respond with card type { .response = rATQA, .response_n = sizeof(rATQA) }, // Answer to request - respond with card type
{ .response = rUIDBCC1, .response_n = sizeof(rUIDBCC1) }, // Anticollision cascade1 - respond with first part of uid { .response = rUIDBCC1, .response_n = sizeof(rUIDBCC1) }, // Anticollision cascade1 - respond with first part of uid
{ .response = rUIDBCC2, .response_n = sizeof(rUIDBCC2) }, // Anticollision cascade2 - respond with 2nd part of uid { .response = rUIDBCC2, .response_n = sizeof(rUIDBCC2) }, // Anticollision cascade2 - respond with 2nd part of uid
{ .response = rSAKfinal, .response_n = sizeof(rSAKfinal) }, // Acknowledge select - last cascade { .response = rSAKfinal, .response_n = sizeof(rSAKfinal) }, // Acknowledge select - last cascade
{ .response = rSAK1, .response_n = sizeof(rSAK1) } // Acknowledge select - previous cascades { .response = rSAK1, .response_n = sizeof(rSAK1) } // Acknowledge select - previous cascades
}; };
// Prepare ("precompile") the responses of the anticollision phase. There will be not enough time to do this at the moment the reader sends its REQA or SELECT // Prepare ("precompile") the responses of the anticollision phase. There will be not enough time to do this at the moment the reader sends its REQA or SELECT
// There are 7 predefined responses with a total of 18 bytes data to transmit. Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) // There are 5 predefined responses with a total of 18 bytes data to transmit. Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
// 18 * 8 data bits, 18 * 1 parity bits, 5 start bits, 5 stop bits, 5 correction bits -> need 177 bytes buffer // 18 * 8 data bits, 18 * 1 parity bits, 5 start bits, 5 stop bits, 5 correction bits -> need 177 bytes buffer
#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 177 // number of bytes required for precompiled responses #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 177 // number of bytes required for precompiled responses
uint8_t *free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE); uint8_t *free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE; size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
@ -262,22 +307,23 @@ static bool HasValidCRC(uint8_t *receivedCmd, uint16_t receivedCmd_len) {
/** /**
*MIFARE 1K simulate. *MIFARE simulate.
* *
*@param flags : *@param flags :
* FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
* FLAG_4B_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that * FLAG_4B_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
* FLAG_7B_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that * FLAG_7B_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
* FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section not finished * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
* FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
* FLAG_RANDOM_NONCE - means we should generate some pseudo-random nonce data (only allows moebius attack) * FLAG_RANDOM_NONCE - means we should generate some pseudo-random nonce data (only allows moebius attack)
*@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ... *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ...
* (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attmpted) * (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attmpted)
*/ */
void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain) void MifareSim(uint8_t flags, uint8_t exitAfterNReads, uint8_t cardsize, uint8_t *datain)
{ {
LED_A_ON();
tag_response_info_t *responses; tag_response_info_t *responses;
uint8_t uid_len = 4; uint8_t uid_len = 4;
uint32_t cuid = 0; uint32_t cuid = 0;
uint8_t cardWRBL = 0; uint8_t cardWRBL = 0;
uint8_t cardAUTHSC = 0; uint8_t cardAUTHSC = 0;
@ -288,48 +334,47 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
uint32_t cardINTREG = 0; uint32_t cardINTREG = 0;
uint8_t cardINTBLOCK = 0; uint8_t cardINTBLOCK = 0;
struct Crypto1State mpcs = {0, 0}; struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs; struct Crypto1State *pcs = &mpcs;
pcs = &mpcs; uint32_t numReads = 0; //Counts numer of times reader reads a block
uint32_t numReads = 0;//Counts numer of times reader reads a block
uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedCmd_dec[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedCmd_dec[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE]; uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
uint16_t receivedCmd_len; uint16_t receivedCmd_len;
uint8_t response[MAX_MIFARE_FRAME_SIZE]; uint8_t response[MAX_MIFARE_FRAME_SIZE];
uint8_t response_par[MAX_MIFARE_PARITY_SIZE]; uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
uint8_t fixed_nonce[] = {0x01, 0x02, 0x03, 0x04};
uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00}; int num_blocks = ParamCardSizeBlocks(cardsize);
//Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2 // Here we collect UID, sector, keytype, NT, AR, NR, NT2, AR2, NR2
// This will be used in the reader-only attack. // This will be used in the reader-only attack.
//allow collecting up to 7 sets of nonces to allow recovery of up to 7 keys // allow collecting up to 7 sets of nonces to allow recovery of up to 7 keys
#define ATTACK_KEY_COUNT 7 // keep same as define in cmdhfmf.c -> readerAttack() (Cannot be more than 7) #define ATTACK_KEY_COUNT 7 // keep same as define in cmdhfmf.c -> readerAttack() (Cannot be more than 7)
nonces_t ar_nr_resp[ATTACK_KEY_COUNT*2]; //*2 for 2 separate attack types (nml, moebius) 36 * 7 * 2 bytes = 504 bytes nonces_t ar_nr_resp[ATTACK_KEY_COUNT*2]; // *2 for 2 separate attack types (nml, moebius) 36 * 7 * 2 bytes = 504 bytes
memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp)); memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp));
uint8_t ar_nr_collected[ATTACK_KEY_COUNT*2]; //*2 for 2nd attack type (moebius) uint8_t ar_nr_collected[ATTACK_KEY_COUNT*2]; // *2 for 2nd attack type (moebius)
memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected)); memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected));
uint8_t nonce1_count = 0; uint8_t nonce1_count = 0;
uint8_t nonce2_count = 0; uint8_t nonce2_count = 0;
uint8_t moebius_n_count = 0; uint8_t moebius_n_count = 0;
bool gettingMoebius = false; bool gettingMoebius = false;
uint8_t mM = 0; //moebius_modifier for collection storage uint8_t mM = 0; // moebius_modifier for collection storage
// Authenticate response - nonce // Authenticate response - nonce
uint32_t nonce; uint32_t nonce;
if (flags & FLAG_RANDOM_NONCE) { if (flags & FLAG_RANDOM_NONCE) {
nonce = prand(); nonce = prand();
} else { } else {
nonce = bytes_to_num(rAUTH_NT, 4); nonce = bytes_to_num(fixed_nonce, 4);
} }
// free eventually allocated BigBuf memory but keep Emulator Memory // free eventually allocated BigBuf memory but keep Emulator Memory
BigBuf_free_keep_EM(); BigBuf_free_keep_EM();
MifareSimInit(flags, datain, &responses, &cuid, &uid_len); MifareSimInit(flags, datain, &responses, &cuid, &uid_len, cardsize);
// We need to listen to the high-frequency, peak-detected path. // We need to listen to the high-frequency, peak-detected path.
iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
@ -337,7 +382,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
clear_trace(); clear_trace();
set_tracing(true); set_tracing(true);
ResetSspClk(); ResetSspClk();
bool finished = false; bool finished = false;
bool button_pushed = BUTTON_PRESS(); bool button_pushed = BUTTON_PRESS();
int cardSTATE = MFEMUL_NOFIELD; int cardSTATE = MFEMUL_NOFIELD;
@ -345,25 +390,28 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
while (!button_pushed && !finished && !usb_poll_validate_length()) { while (!button_pushed && !finished && !usb_poll_validate_length()) {
WDT_HIT(); WDT_HIT();
// find reader field
if (cardSTATE == MFEMUL_NOFIELD) { if (cardSTATE == MFEMUL_NOFIELD) {
// wait for reader HF field
int vHf = (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10; int vHf = (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10;
if (vHf > MF_MINFIELDV) { if (vHf > MF_MINFIELDV) {
LED_A_ON(); LED_D_ON();
cardSTATE_TO_IDLE(); cardSTATE = MFEMUL_IDLE;
} }
button_pushed = BUTTON_PRESS(); button_pushed = BUTTON_PRESS();
continue; continue;
} }
//Now, get data //Now, get data
FpgaEnableTracing();
int res = EmGetCmd(receivedCmd, &receivedCmd_len, receivedCmd_par); int res = EmGetCmd(receivedCmd, &receivedCmd_len, receivedCmd_par);
if (res == 2) { //Field is off! if (res == 2) { // Reader has dropped the HF field. Power off.
LEDsoff(); FpgaDisableTracing();
LED_D_OFF();
cardSTATE = MFEMUL_NOFIELD; cardSTATE = MFEMUL_NOFIELD;
continue; continue;
} else if (res == 1) { // button pressed } else if (res == 1) { // button pressed
FpgaDisableTracing();
button_pushed = true; button_pushed = true;
break; break;
} }
@ -371,6 +419,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
// WUPA in HALTED state or REQA or WUPA in any other state // WUPA in HALTED state or REQA or WUPA in any other state
if (receivedCmd_len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) { if (receivedCmd_len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) {
EmSendPrecompiledCmd(&responses[ATQA]); EmSendPrecompiledCmd(&responses[ATQA]);
FpgaDisableTracing();
// init crypto block // init crypto block
crypto1_destroy(pcs); crypto1_destroy(pcs);
@ -378,66 +427,68 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
if (flags & FLAG_RANDOM_NONCE) { if (flags & FLAG_RANDOM_NONCE) {
nonce = prand(); nonce = prand();
} }
LED_B_OFF();
LED_C_OFF();
cardSTATE = MFEMUL_SELECT1; cardSTATE = MFEMUL_SELECT1;
continue; continue;
} }
switch (cardSTATE) { switch (cardSTATE) {
case MFEMUL_NOFIELD: case MFEMUL_NOFIELD:
case MFEMUL_HALTED: case MFEMUL_HALTED:
case MFEMUL_IDLE:{ case MFEMUL_IDLE:{
break; break;
} }
case MFEMUL_SELECT1:{ case MFEMUL_SELECT1:{
// select all - 0x93 0x20 // select all - 0x93 0x20
if (receivedCmd_len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x20)) { if (receivedCmd_len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x20)) {
if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL CL1 received");
EmSendPrecompiledCmd(&responses[UIDBCC1]); EmSendPrecompiledCmd(&responses[UIDBCC1]);
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("SELECT ALL CL1 received");
break; break;
} }
// select card - 0x93 0x70 ... // select card - 0x93 0x70 ...
if (receivedCmd_len == 9 && if (receivedCmd_len == 9 &&
(receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], responses[UIDBCC1].response, 4) == 0)) { (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], responses[UIDBCC1].response, 4) == 0)) {
if (MF_DBGLEVEL >= 4) Dbprintf("SELECT CL1 %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
if (uid_len == 4) { if (uid_len == 4) {
EmSendPrecompiledCmd(&responses[SAKfinal]); EmSendPrecompiledCmd(&responses[SAKfinal]);
LED_B_ON();
cardSTATE = MFEMUL_WORK; cardSTATE = MFEMUL_WORK;
break;
} else if (uid_len == 7) { } else if (uid_len == 7) {
EmSendPrecompiledCmd(&responses[SAK1]); EmSendPrecompiledCmd(&responses[SAK1]);
cardSTATE = MFEMUL_SELECT2; cardSTATE = MFEMUL_SELECT2;
break;
} }
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("SELECT CL1 %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
break;
} }
cardSTATE_TO_IDLE(); cardSTATE = MFEMUL_IDLE;
break; break;
} }
case MFEMUL_SELECT2:{ case MFEMUL_SELECT2:{
// select all cl2 - 0x95 0x20 // select all cl2 - 0x95 0x20
if (receivedCmd_len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x20)) { if (receivedCmd_len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x20)) {
if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL CL2 received");
EmSendPrecompiledCmd(&responses[UIDBCC2]); EmSendPrecompiledCmd(&responses[UIDBCC2]);
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("SELECT ALL CL2 received");
break; break;
} }
// select cl2 card - 0x95 0x70 xxxxxxxxxxxx // select cl2 card - 0x95 0x70 xxxxxxxxxxxx
if (receivedCmd_len == 9 && if (receivedCmd_len == 9 &&
(receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], responses[UIDBCC2].response, 4) == 0)) { (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], responses[UIDBCC2].response, 4) == 0)) {
if (uid_len == 7) { if (uid_len == 7) {
if (MF_DBGLEVEL >= 4) Dbprintf("SELECT CL2 %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
EmSendPrecompiledCmd(&responses[SAKfinal]); EmSendPrecompiledCmd(&responses[SAKfinal]);
LED_B_ON(); FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("SELECT CL2 %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
cardSTATE = MFEMUL_WORK; cardSTATE = MFEMUL_WORK;
break; break;
} }
} }
cardSTATE_TO_IDLE(); cardSTATE = MFEMUL_IDLE;
break; break;
} }
case MFEMUL_WORK:{ case MFEMUL_WORK:{
if (receivedCmd_len != 4) { // all commands must have exactly 4 bytes if (receivedCmd_len != 4) { // all commands must have exactly 4 bytes
break; break;
} }
bool encrypted_data = (cardAUTHKEY != AUTHKEYNONE) ; bool encrypted_data = (cardAUTHKEY != AUTHKEYNONE) ;
@ -448,76 +499,92 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
memcpy(receivedCmd_dec, receivedCmd, receivedCmd_len); memcpy(receivedCmd_dec, receivedCmd, receivedCmd_len);
} }
if (!HasValidCRC(receivedCmd_dec, receivedCmd_len)) { // all commands must have a valid CRC if (!HasValidCRC(receivedCmd_dec, receivedCmd_len)) { // all commands must have a valid CRC
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_TR));
break; break;
} }
if (receivedCmd_dec[0] == MIFARE_AUTH_KEYA || receivedCmd_dec[0] == MIFARE_AUTH_KEYB) { if (receivedCmd_dec[0] == MIFARE_AUTH_KEYA || receivedCmd_dec[0] == MIFARE_AUTH_KEYB) {
// if authenticating to a block that shouldn't exist - as long as we are not doing the reader attack // if authenticating to a block that shouldn't exist - as long as we are not doing the reader attack
if (receivedCmd_dec[1] >= 16 * 4 && !(flags & FLAG_NR_AR_ATTACK)) { if (receivedCmd_dec[1] >= num_blocks && !(flags & FLAG_NR_AR_ATTACK)) {
//is this the correct response to an auth on a out of range block? marshmellow //is this the correct response to an auth on a out of range block? marshmellow
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],receivedCmd_dec[1]); FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking", receivedCmd_dec[0], receivedCmd_dec[1], receivedCmd_dec[1]);
break; break;
} }
cardAUTHSC = receivedCmd_dec[1] / 4; // received block num cardAUTHSC = BlockToSector(receivedCmd_dec[1]); // received block num
cardAUTHKEY = receivedCmd_dec[0] & 0x01; cardAUTHKEY = receivedCmd_dec[0] & 0x01;
crypto1_destroy(pcs);//Added by martin crypto1_destroy(pcs);//Added by martin
crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
if (!encrypted_data) { // first authentication if (!encrypted_data) { // first authentication
if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY); crypto1_word(pcs, cuid ^ nonce, 0); // Update crypto state
crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state num_to_bytes(nonce, 4, response); // Send unencrypted nonce
num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce EmSendCmd(response, sizeof(nonce));
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d", receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY);
} else { // nested authentication } else { // nested authentication
if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d", receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY); num_to_bytes(nonce, sizeof(nonce), response);
ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); uint8_t pcs_in[4] = {0};
num_to_bytes(ans, 4, rAUTH_AT); num_to_bytes(cuid ^ nonce, sizeof(nonce), pcs_in);
mf_crypto1_encryptEx(pcs, response, pcs_in, sizeof(nonce), response_par);
EmSendCmdPar(response, sizeof(nonce), response_par); // send encrypted nonce
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d", receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY);
} }
EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
cardSTATE = MFEMUL_AUTH1; cardSTATE = MFEMUL_AUTH1;
break; break;
} }
if (!encrypted_data) { // all other commands must be encrypted (authenticated)
// halt can be sent encrypted or in clear
if (receivedCmd_dec[0] == ISO14443A_CMD_HALT && receivedCmd_dec[1] == 0x00) {
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("--> HALTED.");
cardSTATE = MFEMUL_HALTED;
break; break;
} }
if(receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK if(receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK
|| receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK || receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK
|| receivedCmd_dec[0] == MIFARE_CMD_INC || receivedCmd_dec[0] == MIFARE_CMD_INC
|| receivedCmd_dec[0] == MIFARE_CMD_DEC || receivedCmd_dec[0] == MIFARE_CMD_DEC
|| receivedCmd_dec[0] == MIFARE_CMD_RESTORE || receivedCmd_dec[0] == MIFARE_CMD_RESTORE
|| receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) { || receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) {
if (receivedCmd_dec[1] >= 16 * 4) { if (receivedCmd_dec[1] >= num_blocks) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],receivedCmd_dec[1]); FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],receivedCmd_dec[1]);
break; break;
} }
if (receivedCmd_dec[1] / 4 != cardAUTHSC) { if (BlockToSector(receivedCmd_dec[1]) != cardAUTHSC) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],cardAUTHSC); FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],cardAUTHSC);
break; break;
} }
} }
if (receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK) { if (receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK) {
uint8_t blockNo = receivedCmd_dec[1]; uint8_t blockNo = receivedCmd_dec[1];
if (MF_DBGLEVEL >= 4) {
Dbprintf("Reader reading block %d (0x%02x)", blockNo, blockNo);
}
emlGetMem(response, blockNo, 1); emlGetMem(response, blockNo, 1);
if (IsSectorTrailer(blockNo)) { if (IsSectorTrailer(blockNo)) {
memset(response, 0x00, 6); // keyA can never be read memset(response, 0x00, 6); // keyA can never be read
if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_KEYB_READ)) { if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_KEYB_READ)) {
memset(response+10, 0x00, 6); // keyB cannot be read memset(response+10, 0x00, 6); // keyB cannot be read
} }
if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_AC_READ)) { if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_AC_READ)) {
memset(response+6, 0x00, 4); // AC bits cannot be read memset(response+6, 0x00, 4); // AC bits cannot be read
} }
} else { } else {
if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_DATA_READ)) { if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_DATA_READ)) {
memset(response, 0x00, 16); // datablock cannot be read memset(response, 0x00, 16); // datablock cannot be read
} }
} }
AppendCrc14443a(response, 16); AppendCrc14443a(response, 16);
mf_crypto1_encrypt(pcs, response, 18, response_par); mf_crypto1_encrypt(pcs, response, 18, response_par);
EmSendCmdPar(response, 18, response_par); EmSendCmdPar(response, 18, response_par);
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {
Dbprintf("Reader reading block %d (0x%02x)", blockNo, blockNo);
}
numReads++; numReads++;
if(exitAfterNReads > 0 && numReads == exitAfterNReads) { if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
Dbprintf("%d reads done, exiting", numReads); Dbprintf("%d reads done, exiting", numReads);
@ -525,23 +592,33 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
} }
break; break;
} }
if (receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK) { if (receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK) {
uint8_t blockNo = receivedCmd_dec[1]; uint8_t blockNo = receivedCmd_dec[1];
if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)", blockNo, blockNo);
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("RECV 0xA0 write block %d (%02x)", blockNo, blockNo);
cardWRBL = blockNo; cardWRBL = blockNo;
cardSTATE = MFEMUL_WRITEBL2; cardSTATE = MFEMUL_WRITEBL2;
break; break;
} }
if (receivedCmd_dec[0] == MIFARE_CMD_INC || receivedCmd_dec[0] == MIFARE_CMD_DEC || receivedCmd_dec[0] == MIFARE_CMD_RESTORE) { if (receivedCmd_dec[0] == MIFARE_CMD_INC || receivedCmd_dec[0] == MIFARE_CMD_DEC || receivedCmd_dec[0] == MIFARE_CMD_RESTORE) {
uint8_t blockNo = receivedCmd_dec[1]; uint8_t blockNo = receivedCmd_dec[1];
if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo);
if (emlCheckValBl(blockNo)) { if (emlCheckValBl(blockNo)) {
if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {
Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo);
}
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
break; break;
} }
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {
Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo);
}
cardWRBL = blockNo; cardWRBL = blockNo;
if (receivedCmd_dec[0] == MIFARE_CMD_INC) if (receivedCmd_dec[0] == MIFARE_CMD_INC)
cardSTATE = MFEMUL_INTREG_INC; cardSTATE = MFEMUL_INTREG_INC;
@ -551,31 +628,29 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
cardSTATE = MFEMUL_INTREG_REST; cardSTATE = MFEMUL_INTREG_REST;
break; break;
} }
if (receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) { if (receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) {
uint8_t blockNo = receivedCmd_dec[1]; uint8_t blockNo = receivedCmd_dec[1];
if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo);
if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd_dec[1])) if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd_dec[1]))
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
else else
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo);
break; break;
} }
// halt
if (receivedCmd_dec[0] == ISO14443A_CMD_HALT && receivedCmd_dec[1] == 0x00) {
if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED.");
LED_B_OFF();
LED_C_OFF();
cardSTATE = MFEMUL_HALTED;
break;
}
// command not allowed // command not allowed
if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Received command not allowed, nacking");
cardSTATE = MFEMUL_IDLE;
break; break;
} }
case MFEMUL_AUTH1:{ case MFEMUL_AUTH1:{
if (receivedCmd_len != 8) { if (receivedCmd_len != 8) {
cardSTATE_TO_IDLE(); cardSTATE = MFEMUL_IDLE;
break; break;
} }
@ -590,7 +665,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
if (ar_nr_collected[i+mM] < 2) { if (ar_nr_collected[i+mM] < 2) {
// if we haven't already collected 2 nonces for this sector // if we haven't already collected 2 nonces for this sector
if (ar_nr_resp[ar_nr_collected[i+mM]].ar != ar) { if (ar_nr_resp[ar_nr_collected[i+mM]].ar != ar) {
// Avoid duplicates... probably not necessary, ar should vary. // Avoid duplicates... probably not necessary, ar should vary.
if (ar_nr_collected[i+mM]==0) { if (ar_nr_collected[i+mM]==0) {
// first nonce collect // first nonce collect
ar_nr_resp[i+mM].cuid = cuid; ar_nr_resp[i+mM].cuid = cuid;
@ -618,7 +693,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
if ( nonce2_count == nonce1_count ) { if ( nonce2_count == nonce1_count ) {
// done collecting std test switch to moebius // done collecting std test switch to moebius
// first finish incrementing last sample // first finish incrementing last sample
ar_nr_collected[i+mM]++; ar_nr_collected[i+mM]++;
// switch to moebius collection // switch to moebius collection
gettingMoebius = true; gettingMoebius = true;
mM = ATTACK_KEY_COUNT; mM = ATTACK_KEY_COUNT;
@ -650,25 +725,28 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
// test if auth OK // test if auth OK
if (cardRr != prng_successor(nonce, 64)){ if (cardRr != prng_successor(nonce, 64)){
if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x", FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
cardAUTHSC, cardAUTHKEY == AUTHKEYA ? 'A' : 'B', cardAUTHSC, cardAUTHKEY == AUTHKEYA ? 'A' : 'B',
cardRr, prng_successor(nonce, 64)); cardRr, prng_successor(nonce, 64));
// Shouldn't we respond anything here? // Shouldn't we respond anything here?
// Right now, we don't nack or anything, which causes the // Right now, we don't nack or anything, which causes the
// reader to do a WUPA after a while. /Martin // reader to do a WUPA after a while. /Martin
// -- which is the correct response. /piwi // -- which is the correct response. /piwi
cardAUTHKEY = AUTHKEYNONE; // not authenticated cardAUTHKEY = AUTHKEYNONE; // not authenticated
cardSTATE_TO_IDLE(); cardSTATE = MFEMUL_IDLE;
break; break;
} }
ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0); ans = prng_successor(nonce, 96);
num_to_bytes(ans, 4, rAUTH_AT); num_to_bytes(ans, 4, response);
EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); mf_crypto1_encrypt(pcs, response, 4, response_par);
if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c.", cardAUTHSC, cardAUTHKEY == AUTHKEYA ? 'A' : 'B'); EmSendCmdPar(response, 4, response_par);
LED_C_ON(); FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("AUTH COMPLETED for sector %d with key %c.", cardAUTHSC, cardAUTHKEY == AUTHKEYA ? 'A' : 'B');
cardSTATE = MFEMUL_WORK; cardSTATE = MFEMUL_WORK;
break; break;
} }
case MFEMUL_WRITEBL2:{ case MFEMUL_WRITEBL2:{
if (receivedCmd_len == 18) { if (receivedCmd_len == 18) {
mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, receivedCmd_dec); mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, receivedCmd_dec);
@ -676,73 +754,80 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
if (IsSectorTrailer(cardWRBL)) { if (IsSectorTrailer(cardWRBL)) {
emlGetMem(response, cardWRBL, 1); emlGetMem(response, cardWRBL, 1);
if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYA_WRITE)) { if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYA_WRITE)) {
memcpy(receivedCmd_dec, response, 6); // don't change KeyA memcpy(receivedCmd_dec, response, 6); // don't change KeyA
} }
if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYB_WRITE)) { if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYB_WRITE)) {
memcpy(receivedCmd_dec+10, response+10, 6); // don't change KeyA memcpy(receivedCmd_dec+10, response+10, 6); // don't change KeyA
} }
if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_AC_WRITE)) { if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_AC_WRITE)) {
memcpy(receivedCmd_dec+6, response+6, 4); // don't change AC bits memcpy(receivedCmd_dec+6, response+6, 4); // don't change AC bits
} }
} else { } else {
if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_DATA_WRITE)) { if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_DATA_WRITE)) {
memcpy(receivedCmd_dec, response, 16); // don't change anything memcpy(receivedCmd_dec, response, 16); // don't change anything
} }
} }
emlSetMem(receivedCmd_dec, cardWRBL, 1); emlSetMem(receivedCmd_dec, cardWRBL, 1);
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); // always ACK? EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); // always ACK?
cardSTATE = MFEMUL_WORK; cardSTATE = MFEMUL_WORK;
break; break;
} }
} }
cardSTATE_TO_IDLE(); cardSTATE = MFEMUL_IDLE;
break; break;
} }
case MFEMUL_INTREG_INC:{ case MFEMUL_INTREG_INC:{
if (receivedCmd_len == 6) { if (receivedCmd_len == 6) {
mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans); mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans);
if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
cardSTATE_TO_IDLE(); cardSTATE = MFEMUL_IDLE;
break; break;
} }
cardINTREG = cardINTREG + ans; cardINTREG = cardINTREG + ans;
cardSTATE = MFEMUL_WORK;
} }
cardSTATE = MFEMUL_WORK;
break; break;
} }
case MFEMUL_INTREG_DEC:{ case MFEMUL_INTREG_DEC:{
if (receivedCmd_len == 6) { if (receivedCmd_len == 6) {
mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans); mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans);
if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
cardSTATE_TO_IDLE(); cardSTATE = MFEMUL_IDLE;
break; break;
} }
cardINTREG = cardINTREG - ans;
cardSTATE = MFEMUL_WORK;
} }
cardINTREG = cardINTREG - ans;
cardSTATE = MFEMUL_WORK;
break; break;
} }
case MFEMUL_INTREG_REST:{ case MFEMUL_INTREG_REST:{
mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans); mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans);
if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
cardSTATE_TO_IDLE(); cardSTATE = MFEMUL_IDLE;
break; break;
} }
cardSTATE = MFEMUL_WORK; cardSTATE = MFEMUL_WORK;
break; break;
} }
}
} // end of switch
FpgaDisableTracing();
button_pushed = BUTTON_PRESS(); button_pushed = BUTTON_PRESS();
}
} // end of while
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff(); LEDsoff();
if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1) { if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= MF_DBG_INFO) {
for ( uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) { for ( uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
if (ar_nr_collected[i] == 2) { if (ar_nr_collected[i] == 2) {
Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector); Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x", Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
@ -754,11 +839,11 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
ar_nr_resp[i].ar2 //AR2 ar_nr_resp[i].ar2 //AR2
); );
} }
} }
for ( uint8_t i = ATTACK_KEY_COUNT; i < ATTACK_KEY_COUNT*2; i++) { for ( uint8_t i = ATTACK_KEY_COUNT; i < ATTACK_KEY_COUNT*2; i++) {
if (ar_nr_collected[i] == 2) { if (ar_nr_collected[i] == 2) {
Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector); Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
Dbprintf("../tools/mfkey/mfkey32v2 %08x %08x %08x %08x %08x %08x %08x", Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x %08x",
ar_nr_resp[i].cuid, //UID ar_nr_resp[i].cuid, //UID
ar_nr_resp[i].nonce, //NT ar_nr_resp[i].nonce, //NT
ar_nr_resp[i].nr, //NR1 ar_nr_resp[i].nr, //NR1
@ -770,10 +855,12 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
} }
} }
} }
if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", get_tracing(), BigBuf_get_traceLen()); if (MF_DBGLEVEL >= MF_DBG_INFO) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", get_tracing(), BigBuf_get_traceLen());
if(flags & FLAG_INTERACTIVE) { // Interactive mode flag, means we need to send ACK if(flags & FLAG_INTERACTIVE) { // Interactive mode flag, means we need to send ACK
//Send the collected ar_nr in the response //Send the collected ar_nr in the response
cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,button_pushed,0,&ar_nr_resp,sizeof(ar_nr_resp)); cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, button_pushed, 0, &ar_nr_resp, sizeof(ar_nr_resp));
} }
LED_A_OFF();
} }

View file

@ -15,6 +15,6 @@
#include <stdint.h> #include <stdint.h>
extern void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain); extern void MifareSim(uint8_t flags, uint8_t exitAfterNReads, uint8_t cardsize, uint8_t *datain);
#endif #endif

View file

@ -23,13 +23,13 @@
#include "crapto1/crapto1.h" #include "crapto1/crapto1.h"
#include "mbedtls/des.h" #include "mbedtls/des.h"
int MF_DBGLEVEL = MF_DBG_ALL; int MF_DBGLEVEL = MF_DBG_INFO;
// crypto1 helpers // crypto1 helpers
void mf_crypto1_decryptEx(struct Crypto1State *pcs, uint8_t *data_in, int len, uint8_t *data_out){ void mf_crypto1_decryptEx(struct Crypto1State *pcs, uint8_t *data_in, int len, uint8_t *data_out){
uint8_t bt = 0; uint8_t bt = 0;
int i; int i;
if (len != 1) { if (len != 1) {
for (i = 0; i < len; i++) for (i = 0; i < len; i++)
data_out[i] = crypto1_byte(pcs, 0x00, 0) ^ data_in[i]; data_out[i] = crypto1_byte(pcs, 0x00, 0) ^ data_in[i];
@ -37,7 +37,7 @@ void mf_crypto1_decryptEx(struct Crypto1State *pcs, uint8_t *data_in, int len, u
bt = 0; bt = 0;
for (i = 0; i < 4; i++) for (i = 0; i < 4; i++)
bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data_in[0], i)) << i; bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data_in[0], i)) << i;
data_out[0] = bt; data_out[0] = bt;
} }
return; return;
@ -47,28 +47,32 @@ void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len){
mf_crypto1_decryptEx(pcs, data, len, data); mf_crypto1_decryptEx(pcs, data, len, data);
} }
void mf_crypto1_encrypt(struct Crypto1State *pcs, uint8_t *data, uint16_t len, uint8_t *par) { void mf_crypto1_encryptEx(struct Crypto1State *pcs, uint8_t *data, uint8_t *in, uint16_t len, uint8_t *par) {
uint8_t bt = 0; uint8_t bt = 0;
int i; int i;
par[0] = 0; par[0] = 0;
for (i = 0; i < len; i++) { for (i = 0; i < len; i++) {
bt = data[i]; bt = data[i];
data[i] = crypto1_byte(pcs, 0x00, 0) ^ data[i]; data[i] = crypto1_byte(pcs, in==NULL?0x00:in[i], 0) ^ data[i];
if((i&0x0007) == 0) if((i&0x0007) == 0)
par[i>>3] = 0; par[i>>3] = 0;
par[i>>3] |= (((filter(pcs->odd) ^ oddparity8(bt)) & 0x01)<<(7-(i&0x0007))); par[i>>3] |= (((filter(pcs->odd) ^ oddparity8(bt)) & 0x01)<<(7-(i&0x0007)));
} }
return; return;
} }
void mf_crypto1_encrypt(struct Crypto1State *pcs, uint8_t *data, uint16_t len, uint8_t *par) {
mf_crypto1_encryptEx(pcs, data, NULL, len, par);
}
uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data) { uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data) {
uint8_t bt = 0; uint8_t bt = 0;
int i; int i;
for (i = 0; i < 4; i++) for (i = 0; i < 4; i++)
bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data, i)) << i; bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data, i)) << i;
return bt; return bt;
} }
@ -94,20 +98,20 @@ int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd,
{ {
uint8_t dcmd[4], ecmd[4]; uint8_t dcmd[4], ecmd[4];
uint16_t pos, res; uint16_t pos, res;
uint8_t par[1]; // 1 Byte parity is enough here uint8_t par[1]; // 1 Byte parity is enough here
dcmd[0] = cmd; dcmd[0] = cmd;
dcmd[1] = data; dcmd[1] = data;
AppendCrc14443a(dcmd, 2); AppendCrc14443a(dcmd, 2);
memcpy(ecmd, dcmd, sizeof(dcmd)); memcpy(ecmd, dcmd, sizeof(dcmd));
if (crypted) { if (crypted) {
par[0] = 0; par[0] = 0;
for (pos = 0; pos < 4; pos++) for (pos = 0; pos < 4; pos++)
{ {
ecmd[pos] = crypto1_byte(pcs, 0x00, 0) ^ dcmd[pos]; ecmd[pos] = crypto1_byte(pcs, 0x00, 0) ^ dcmd[pos];
par[0] |= (((filter(pcs->odd) ^ oddparity8(dcmd[pos])) & 0x01) << (7-pos)); par[0] |= (((filter(pcs->odd) ^ oddparity8(dcmd[pos])) & 0x01) << (7-pos));
} }
ReaderTransmitPar(ecmd, sizeof(ecmd), par, timing); ReaderTransmitPar(ecmd, sizeof(ecmd), par, timing);
@ -116,17 +120,17 @@ int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd,
} }
int len = ReaderReceive(answer, par); int len = ReaderReceive(answer, par);
if (answer_parity) *answer_parity = par[0]; if (answer_parity) *answer_parity = par[0];
if (crypted == CRYPT_ALL) { if (crypted == CRYPT_ALL) {
if (len == 1) { if (len == 1) {
res = 0; res = 0;
for (pos = 0; pos < 4; pos++) for (pos = 0; pos < 4; pos++)
res |= (crypto1_bit(pcs, 0, 0) ^ BIT(answer[0], pos)) << pos; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(answer[0], pos)) << pos;
answer[0] = res; answer[0] = res;
} else { } else {
for (pos = 0; pos < len; pos++) for (pos = 0; pos < len; pos++)
{ {
@ -134,41 +138,41 @@ int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd,
} }
} }
} }
return len; return len;
} }
// mifare classic commands // mifare classic commands
int mifare_classic_auth(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested) int mifare_classic_auth(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested)
{ {
return mifare_classic_authex(pcs, uid, blockNo, keyType, ui64Key, isNested, NULL, NULL); return mifare_classic_authex(pcs, uid, blockNo, keyType, ui64Key, isNested, NULL, NULL);
} }
int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested, uint32_t *ntptr, uint32_t *timing) int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested, uint32_t *ntptr, uint32_t *timing)
{ {
// variables // variables
int len; int len;
uint32_t pos; uint32_t pos;
uint8_t tmp4[4]; uint8_t tmp4[4];
uint8_t par[1] = {0x00}; uint8_t par[1] = {0x00};
byte_t nr[4]; byte_t nr[4];
uint32_t nt, ntpp; // Supplied tag nonce uint32_t nt, ntpp; // Supplied tag nonce
uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
// Transmit MIFARE_CLASSIC_AUTH // Transmit MIFARE_CLASSIC_AUTH
len = mifare_sendcmd_short(pcs, isNested, 0x60 + (keyType & 0x01), blockNo, receivedAnswer, receivedAnswerPar, timing); len = mifare_sendcmd_short(pcs, isNested, 0x60 + (keyType & 0x01), blockNo, receivedAnswer, receivedAnswerPar, timing);
if (MF_DBGLEVEL >= 4) Dbprintf("rand tag nonce len: %x", len); if (MF_DBGLEVEL >= 4) Dbprintf("rand tag nonce len: %x", len);
if (len != 4) return 1; if (len != 4) return 1;
// "random" reader nonce: // "random" reader nonce:
nr[0] = 0x55; nr[0] = 0x55;
nr[1] = 0x41; nr[1] = 0x41;
nr[2] = 0x49; nr[2] = 0x49;
nr[3] = 0x92; nr[3] = 0x92;
// Save the tag nonce (nt) // Save the tag nonce (nt)
nt = bytes_to_num(receivedAnswer, 4); nt = bytes_to_num(receivedAnswer, 4);
@ -180,7 +184,7 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
crypto1_create(pcs, ui64Key); crypto1_create(pcs, ui64Key);
if (isNested == AUTH_NESTED) { if (isNested == AUTH_NESTED) {
// decrypt nt with help of new key // decrypt nt with help of new key
nt = crypto1_word(pcs, nt ^ uid, 1) ^ nt; nt = crypto1_word(pcs, nt ^ uid, 1) ^ nt;
} else { } else {
// Load (plain) uid^nt into the cipher // Load (plain) uid^nt into the cipher
@ -189,8 +193,8 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
// some statistic // some statistic
if (!ntptr && (MF_DBGLEVEL >= 3)) if (!ntptr && (MF_DBGLEVEL >= 3))
Dbprintf("auth uid: %08x nt: %08x", uid, nt); Dbprintf("auth uid: %08x nt: %08x", uid, nt);
// save Nt // save Nt
if (ntptr) if (ntptr)
*ntptr = nt; *ntptr = nt;
@ -201,8 +205,8 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
{ {
mf_nr_ar[pos] = crypto1_byte(pcs, nr[pos], 0) ^ nr[pos]; mf_nr_ar[pos] = crypto1_byte(pcs, nr[pos], 0) ^ nr[pos];
par[0] |= (((filter(pcs->odd) ^ oddparity8(nr[pos])) & 0x01) << (7-pos)); par[0] |= (((filter(pcs->odd) ^ oddparity8(nr[pos])) & 0x01) << (7-pos));
} }
// Skip 32 bits in pseudo random generator // Skip 32 bits in pseudo random generator
nt = prng_successor(nt,32); nt = prng_successor(nt,32);
@ -212,8 +216,8 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
nt = prng_successor(nt,8); nt = prng_successor(nt,8);
mf_nr_ar[pos] = crypto1_byte(pcs,0x00,0) ^ (nt & 0xff); mf_nr_ar[pos] = crypto1_byte(pcs,0x00,0) ^ (nt & 0xff);
par[0] |= (((filter(pcs->odd) ^ oddparity8(nt)) & 0x01) << (7-pos)); par[0] |= (((filter(pcs->odd) ^ oddparity8(nt)) & 0x01) << (7-pos));
} }
// Transmit reader nonce and reader answer // Transmit reader nonce and reader answer
ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL); ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
@ -221,48 +225,48 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
len = ReaderReceive(receivedAnswer, receivedAnswerPar); len = ReaderReceive(receivedAnswer, receivedAnswerPar);
if (!len) if (!len)
{ {
if (MF_DBGLEVEL >= 1) Dbprintf("Authentication failed. Card timeout."); if (MF_DBGLEVEL >= 1) Dbprintf("Authentication failed. Card timeout.");
return 2; return 2;
} }
memcpy(tmp4, receivedAnswer, 4); memcpy(tmp4, receivedAnswer, 4);
ntpp = prng_successor(nt, 32) ^ crypto1_word(pcs, 0,0); ntpp = prng_successor(nt, 32) ^ crypto1_word(pcs, 0,0);
if (ntpp != bytes_to_num(tmp4, 4)) { if (ntpp != bytes_to_num(tmp4, 4)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Authentication failed. Error card response."); if (MF_DBGLEVEL >= 1) Dbprintf("Authentication failed. Error card response.");
return 3; return 3;
} }
return 0; return 0;
} }
int mifare_classic_readblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData) int mifare_classic_readblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData)
{ {
// variables // variables
int len; int len;
uint8_t bt[2]; uint8_t bt[2];
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
// command MIFARE_CLASSIC_READBLOCK // command MIFARE_CLASSIC_READBLOCK
len = mifare_sendcmd_short(pcs, 1, 0x30, blockNo, receivedAnswer, receivedAnswerPar, NULL); len = mifare_sendcmd_short(pcs, 1, 0x30, blockNo, receivedAnswer, receivedAnswerPar, NULL);
if (len == 1) { if (len == 1) {
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: %02x", receivedAnswer[0]); if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: %02x", receivedAnswer[0]);
return 1; return 1;
} }
if (len != 18) { if (len != 18) {
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: card timeout. len: %x", len); if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: card timeout. len: %x", len);
return 2; return 2;
} }
memcpy(bt, receivedAnswer + 16, 2); memcpy(bt, receivedAnswer + 16, 2);
AppendCrc14443a(receivedAnswer, 16); AppendCrc14443a(receivedAnswer, 16);
if (bt[0] != receivedAnswer[16] || bt[1] != receivedAnswer[17]) { if (bt[0] != receivedAnswer[16] || bt[1] != receivedAnswer[17]) {
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd CRC response error."); if (MF_DBGLEVEL >= 1) Dbprintf("Cmd CRC response error.");
return 3; return 3;
} }
memcpy(blockData, receivedAnswer, 16); memcpy(blockData, receivedAnswer, 16);
return 0; return 0;
} }
@ -277,7 +281,7 @@ int mifare_ul_ev1_auth(uint8_t *keybytes, uint8_t *pack){
memcpy(key, keybytes, 4); memcpy(key, keybytes, 4);
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) if (MF_DBGLEVEL >= MF_DBG_EXTENDED)
Dbprintf("EV1 Auth : %02x%02x%02x%02x", key[0], key[1], key[2], key[3]); Dbprintf("EV1 Auth : %02x%02x%02x%02x", key[0], key[1], key[2], key[3]);
len = mifare_sendcmd(0x1B, key, sizeof(key), resp, respPar, NULL); len = mifare_sendcmd(0x1B, key, sizeof(key), resp, respPar, NULL);
//len = mifare_sendcmd_short_mfuev1auth(NULL, 0, 0x1B, key, resp, respPar, NULL); //len = mifare_sendcmd_short_mfuev1auth(NULL, 0, 0x1B, key, resp, respPar, NULL);
if (len != 4) { if (len != 4) {
@ -322,12 +326,12 @@ int mifare_ultra_auth(uint8_t *keybytes){
// decrypt nonce. // decrypt nonce.
// tdes_2key_dec(random_b, enc_random_b, sizeof(random_b), key, IV ); // tdes_2key_dec(random_b, enc_random_b, sizeof(random_b), key, IV );
mbedtls_des3_set2key_dec(&ctx, key); mbedtls_des3_set2key_dec(&ctx, key);
mbedtls_des3_crypt_cbc(&ctx // des3_context mbedtls_des3_crypt_cbc(&ctx // des3_context
, MBEDTLS_DES_DECRYPT // int mode , MBEDTLS_DES_DECRYPT // int mode
, sizeof(random_b) // length , sizeof(random_b) // length
, IV // iv[8] , IV // iv[8]
, enc_random_b // input , enc_random_b // input
, random_b // output , random_b // output
); );
rol(random_b,8); rol(random_b,8);
@ -351,12 +355,12 @@ int mifare_ultra_auth(uint8_t *keybytes){
// encrypt out, in, length, key, iv // encrypt out, in, length, key, iv
//tdes_2key_enc(rnd_ab, rnd_ab, sizeof(rnd_ab), key, enc_random_b); //tdes_2key_enc(rnd_ab, rnd_ab, sizeof(rnd_ab), key, enc_random_b);
mbedtls_des3_set2key_enc(&ctx, key); mbedtls_des3_set2key_enc(&ctx, key);
mbedtls_des3_crypt_cbc(&ctx // des3_context mbedtls_des3_crypt_cbc(&ctx // des3_context
, MBEDTLS_DES_ENCRYPT // int mode , MBEDTLS_DES_ENCRYPT // int mode
, sizeof(rnd_ab) // length , sizeof(rnd_ab) // length
, enc_random_b // iv[8] , enc_random_b // iv[8]
, rnd_ab // input , rnd_ab // input
, rnd_ab // output , rnd_ab // output
); );
//len = mifare_sendcmd_short_mfucauth(NULL, 1, 0xAF, rnd_ab, resp, respPar, NULL); //len = mifare_sendcmd_short_mfucauth(NULL, 1, 0xAF, rnd_ab, resp, respPar, NULL);
@ -370,15 +374,15 @@ int mifare_ultra_auth(uint8_t *keybytes){
uint8_t resp_random_a[8] = { 0,0,0,0,0,0,0,0 }; uint8_t resp_random_a[8] = { 0,0,0,0,0,0,0,0 };
memcpy(enc_resp, resp+1, 8); memcpy(enc_resp, resp+1, 8);
// decrypt out, in, length, key, iv // decrypt out, in, length, key, iv
// tdes_2key_dec(resp_random_a, enc_resp, 8, key, enc_random_b); // tdes_2key_dec(resp_random_a, enc_resp, 8, key, enc_random_b);
mbedtls_des3_set2key_dec(&ctx, key); mbedtls_des3_set2key_dec(&ctx, key);
mbedtls_des3_crypt_cbc(&ctx // des3_context mbedtls_des3_crypt_cbc(&ctx // des3_context
, MBEDTLS_DES_DECRYPT // int mode , MBEDTLS_DES_DECRYPT // int mode
, 8 // length , 8 // length
, enc_random_b // iv[8] , enc_random_b // iv[8]
, enc_resp // input , enc_resp // input
, resp_random_a // output , resp_random_a // output
); );
if ( memcmp(resp_random_a, random_a, 8) != 0 ) { if ( memcmp(resp_random_a, random_a, 8) != 0 ) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("failed authentication"); if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("failed authentication");
@ -386,7 +390,7 @@ int mifare_ultra_auth(uint8_t *keybytes){
} }
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {
Dbprintf("e_AB: %02x %02x %02x %02x %02x %02x %02x %02x", Dbprintf("e_AB: %02x %02x %02x %02x %02x %02x %02x %02x",
rnd_ab[0],rnd_ab[1],rnd_ab[2],rnd_ab[3], rnd_ab[0],rnd_ab[1],rnd_ab[2],rnd_ab[3],
rnd_ab[4],rnd_ab[5],rnd_ab[6],rnd_ab[7]); rnd_ab[4],rnd_ab[5],rnd_ab[6],rnd_ab[7]);
@ -410,7 +414,7 @@ int mifare_ultra_auth(uint8_t *keybytes){
int mifare_ultra_readblock(uint8_t blockNo, uint8_t *blockData) int mifare_ultra_readblock(uint8_t blockNo, uint8_t *blockData)
{ {
uint16_t len; uint16_t len;
uint8_t bt[2]; uint8_t bt[2];
uint8_t receivedAnswer[MAX_FRAME_SIZE]; uint8_t receivedAnswer[MAX_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_PARITY_SIZE];
uint8_t retries; uint8_t retries;
@ -451,55 +455,55 @@ int mifare_ultra_readblock(uint8_t blockNo, uint8_t *blockData)
return 0; return 0;
} }
int mifare_classic_writeblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData) int mifare_classic_writeblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData)
{ {
// variables // variables
uint16_t len, i; uint16_t len, i;
uint32_t pos; uint32_t pos;
uint8_t par[3] = {0}; // enough for 18 Bytes to send uint8_t par[3] = {0}; // enough for 18 Bytes to send
byte_t res; byte_t res;
uint8_t d_block[18], d_block_enc[18]; uint8_t d_block[18], d_block_enc[18];
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
// command MIFARE_CLASSIC_WRITEBLOCK // command MIFARE_CLASSIC_WRITEBLOCK
len = mifare_sendcmd_short(pcs, 1, 0xA0, blockNo, receivedAnswer, receivedAnswerPar, NULL); len = mifare_sendcmd_short(pcs, 1, 0xA0, blockNo, receivedAnswer, receivedAnswerPar, NULL);
if ((len != 1) || (receivedAnswer[0] != 0x0A)) { // 0x0a - ACK if ((len != 1) || (receivedAnswer[0] != 0x0A)) { // 0x0a - ACK
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: %02x", receivedAnswer[0]); if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: %02x", receivedAnswer[0]);
return 1; return 1;
} }
memcpy(d_block, blockData, 16); memcpy(d_block, blockData, 16);
AppendCrc14443a(d_block, 16); AppendCrc14443a(d_block, 16);
// crypto // crypto
for (pos = 0; pos < 18; pos++) for (pos = 0; pos < 18; pos++)
{ {
d_block_enc[pos] = crypto1_byte(pcs, 0x00, 0) ^ d_block[pos]; d_block_enc[pos] = crypto1_byte(pcs, 0x00, 0) ^ d_block[pos];
par[pos>>3] |= (((filter(pcs->odd) ^ oddparity8(d_block[pos])) & 0x01) << (7 - (pos&0x0007))); par[pos>>3] |= (((filter(pcs->odd) ^ oddparity8(d_block[pos])) & 0x01) << (7 - (pos&0x0007)));
} }
ReaderTransmitPar(d_block_enc, sizeof(d_block_enc), par, NULL); ReaderTransmitPar(d_block_enc, sizeof(d_block_enc), par, NULL);
// Receive the response // Receive the response
len = ReaderReceive(receivedAnswer, receivedAnswerPar); len = ReaderReceive(receivedAnswer, receivedAnswerPar);
res = 0; res = 0;
for (i = 0; i < 4; i++) for (i = 0; i < 4; i++)
res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], i)) << i; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], i)) << i;
if ((len != 1) || (res != 0x0A)) { if ((len != 1) || (res != 0x0A)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd send data2 Error: %02x", res); if (MF_DBGLEVEL >= 1) Dbprintf("Cmd send data2 Error: %02x", res);
return 2; return 2;
} }
return 0; return 0;
} }
/* // command not needed, but left for future testing /* // command not needed, but left for future testing
int mifare_ultra_writeblock_compat(uint8_t blockNo, uint8_t *blockData) int mifare_ultra_writeblock_compat(uint8_t blockNo, uint8_t *blockData)
{ {
uint16_t len; uint16_t len;
uint8_t par[3] = {0}; // enough for 18 parity bits uint8_t par[3] = {0}; // enough for 18 parity bits
@ -553,16 +557,16 @@ int mifare_ultra_writeblock(uint8_t blockNo, uint8_t *blockData)
return 0; return 0;
} }
int mifare_classic_halt(struct Crypto1State *pcs, uint32_t uid) int mifare_classic_halt(struct Crypto1State *pcs, uint32_t uid)
{ {
uint16_t len; uint16_t len;
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
len = mifare_sendcmd_short(pcs, pcs == NULL ? false:true, 0x50, 0x00, receivedAnswer, receivedAnswerPar, NULL); len = mifare_sendcmd_short(pcs, pcs == NULL ? false:true, 0x50, 0x00, receivedAnswer, receivedAnswerPar, NULL);
if (len != 0) { if (len != 0) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) if (MF_DBGLEVEL >= MF_DBG_ERROR)
Dbprintf("halt error. response len: %x", len); Dbprintf("halt error. response len: %x", len);
return 1; return 1;
} }
@ -574,7 +578,7 @@ int mifare_ultra_halt()
uint16_t len; uint16_t len;
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
len = mifare_sendcmd_short(NULL, true, 0x50, 0x00, receivedAnswer, receivedAnswerPar, NULL); len = mifare_sendcmd_short(NULL, true, 0x50, 0x00, receivedAnswer, receivedAnswerPar, NULL);
if (len != 0) { if (len != 0) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) if (MF_DBGLEVEL >= MF_DBG_ERROR)
@ -587,21 +591,21 @@ int mifare_ultra_halt()
// Mifare Memory Structure: up to 32 Sectors with 4 blocks each (1k and 2k cards), // Mifare Memory Structure: up to 32 Sectors with 4 blocks each (1k and 2k cards),
// plus evtl. 8 sectors with 16 blocks each (4k cards) // plus evtl. 8 sectors with 16 blocks each (4k cards)
uint8_t NumBlocksPerSector(uint8_t sectorNo) uint8_t NumBlocksPerSector(uint8_t sectorNo)
{ {
if (sectorNo < 32) if (sectorNo < 32)
return 4; return 4;
else else
return 16; return 16;
} }
uint8_t FirstBlockOfSector(uint8_t sectorNo) uint8_t FirstBlockOfSector(uint8_t sectorNo)
{ {
if (sectorNo < 32) if (sectorNo < 32)
return sectorNo * 4; return sectorNo * 4;
else else
return 32*4 + (sectorNo - 32) * 16; return 32*4 + (sectorNo - 32) * 16;
} }
uint8_t SectorTrailer(uint8_t blockNo) uint8_t SectorTrailer(uint8_t blockNo)
@ -644,7 +648,7 @@ int emlCheckValBl(int blockNum) {
(data[3] != (data[7] ^ 0xff)) || (data[3] != data[11]) || (data[3] != (data[7] ^ 0xff)) || (data[3] != data[11]) ||
(data[12] != (data[13] ^ 0xff)) || (data[12] != data[14]) || (data[12] != (data[13] ^ 0xff)) || (data[12] != data[14]) ||
(data[12] != (data[15] ^ 0xff)) (data[12] != (data[15] ^ 0xff))
) )
return 1; return 1;
return 0; return 0;
} }
@ -652,11 +656,11 @@ int emlCheckValBl(int blockNum) {
int emlGetValBl(uint32_t *blReg, uint8_t *blBlock, int blockNum) { int emlGetValBl(uint32_t *blReg, uint8_t *blBlock, int blockNum) {
uint8_t* emCARD = BigBuf_get_EM_addr(); uint8_t* emCARD = BigBuf_get_EM_addr();
uint8_t* data = emCARD + blockNum * 16; uint8_t* data = emCARD + blockNum * 16;
if (emlCheckValBl(blockNum)) { if (emlCheckValBl(blockNum)) {
return 1; return 1;
} }
memcpy(blReg, data, 4); memcpy(blReg, data, 4);
*blBlock = data[12]; *blBlock = data[12];
return 0; return 0;
@ -665,41 +669,41 @@ int emlGetValBl(uint32_t *blReg, uint8_t *blBlock, int blockNum) {
int emlSetValBl(uint32_t blReg, uint8_t blBlock, int blockNum) { int emlSetValBl(uint32_t blReg, uint8_t blBlock, int blockNum) {
uint8_t* emCARD = BigBuf_get_EM_addr(); uint8_t* emCARD = BigBuf_get_EM_addr();
uint8_t* data = emCARD + blockNum * 16; uint8_t* data = emCARD + blockNum * 16;
memcpy(data + 0, &blReg, 4); memcpy(data + 0, &blReg, 4);
memcpy(data + 8, &blReg, 4); memcpy(data + 8, &blReg, 4);
blReg = blReg ^ 0xffffffff; blReg = blReg ^ 0xffffffff;
memcpy(data + 4, &blReg, 4); memcpy(data + 4, &blReg, 4);
data[12] = blBlock; data[12] = blBlock;
data[13] = blBlock ^ 0xff; data[13] = blBlock ^ 0xff;
data[14] = blBlock; data[14] = blBlock;
data[15] = blBlock ^ 0xff; data[15] = blBlock ^ 0xff;
return 0; return 0;
} }
uint64_t emlGetKey(int sectorNum, int keyType) { uint64_t emlGetKey(int sectorNum, int keyType) {
uint8_t key[6]; uint8_t key[6];
uint8_t* emCARD = BigBuf_get_EM_addr(); uint8_t* emCARD = BigBuf_get_EM_addr();
memcpy(key, emCARD + 16 * (FirstBlockOfSector(sectorNum) + NumBlocksPerSector(sectorNum) - 1) + keyType * 10, 6); memcpy(key, emCARD + 16 * (FirstBlockOfSector(sectorNum) + NumBlocksPerSector(sectorNum) - 1) + keyType * 10, 6);
return bytes_to_num(key, 6); return bytes_to_num(key, 6);
} }
void emlClearMem(void) { void emlClearMem(void) {
int b; int b;
const uint8_t trailer[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07, 0x80, 0x69, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; const uint8_t trailer[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07, 0x80, 0x69, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
const uint8_t uid[] = {0xe6, 0x84, 0x87, 0xf3, 0x16, 0x88, 0x04, 0x00, 0x46, 0x8e, 0x45, 0x55, 0x4d, 0x70, 0x41, 0x04}; const uint8_t uid[] = {0xe6, 0x84, 0x87, 0xf3, 0x16, 0x88, 0x04, 0x00, 0x46, 0x8e, 0x45, 0x55, 0x4d, 0x70, 0x41, 0x04};
uint8_t* emCARD = BigBuf_get_EM_addr(); uint8_t* emCARD = BigBuf_get_EM_addr();
memset(emCARD, 0, CARD_MEMORY_SIZE); memset(emCARD, 0, CARD_MEMORY_SIZE);
// fill sectors trailer data // fill sectors trailer data
for(b = 3; b < 256; b<127?(b+=4):(b+=16)) { for(b = 3; b < 256; b<127?(b+=4):(b+=16)) {
emlSetMem((uint8_t *)trailer, b , 1); emlSetMem((uint8_t *)trailer, b , 1);
} }
// uid // uid
emlSetMem((uint8_t *)uid, 0, 1); emlSetMem((uint8_t *)uid, 0, 1);
@ -710,35 +714,35 @@ void emlClearMem(void) {
// Mifare desfire commands // Mifare desfire commands
int mifare_sendcmd_special(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t* data, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing) int mifare_sendcmd_special(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t* data, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing)
{ {
uint8_t dcmd[5] = {0x00}; uint8_t dcmd[5] = {0x00};
dcmd[0] = cmd; dcmd[0] = cmd;
memcpy(dcmd+1,data,2); memcpy(dcmd+1,data,2);
AppendCrc14443a(dcmd, 3); AppendCrc14443a(dcmd, 3);
ReaderTransmit(dcmd, sizeof(dcmd), NULL); ReaderTransmit(dcmd, sizeof(dcmd), NULL);
int len = ReaderReceive(answer, answer_parity); int len = ReaderReceive(answer, answer_parity);
if(!len) { if(!len) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) if (MF_DBGLEVEL >= MF_DBG_ERROR)
Dbprintf("Authentication failed. Card timeout."); Dbprintf("Authentication failed. Card timeout.");
return 1; return 1;
} }
return len; return len;
} }
int mifare_sendcmd_special2(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t* data, uint8_t* answer,uint8_t *answer_parity, uint32_t *timing) int mifare_sendcmd_special2(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t* data, uint8_t* answer,uint8_t *answer_parity, uint32_t *timing)
{ {
uint8_t dcmd[20] = {0x00}; uint8_t dcmd[20] = {0x00};
dcmd[0] = cmd; dcmd[0] = cmd;
memcpy(dcmd+1,data,17); memcpy(dcmd+1,data,17);
AppendCrc14443a(dcmd, 18); AppendCrc14443a(dcmd, 18);
ReaderTransmit(dcmd, sizeof(dcmd), NULL); ReaderTransmit(dcmd, sizeof(dcmd), NULL);
int len = ReaderReceive(answer, answer_parity); int len = ReaderReceive(answer, answer_parity);
if(!len){ if(!len){
if (MF_DBGLEVEL >= MF_DBG_ERROR) if (MF_DBGLEVEL >= MF_DBG_ERROR)
Dbprintf("Authentication failed. Card timeout."); Dbprintf("Authentication failed. Card timeout.");
return 1; return 1;
} }
return len; return len;
} }
@ -749,23 +753,23 @@ int mifare_desfire_des_auth1(uint32_t uid, uint8_t *blockData){
uint8_t data[2]={0x0a, 0x00}; uint8_t data[2]={0x0a, 0x00};
uint8_t receivedAnswer[MAX_FRAME_SIZE]; uint8_t receivedAnswer[MAX_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_PARITY_SIZE];
len = mifare_sendcmd_special(NULL, 1, 0x02, data, receivedAnswer,receivedAnswerPar,NULL); len = mifare_sendcmd_special(NULL, 1, 0x02, data, receivedAnswer,receivedAnswerPar,NULL);
if (len == 1) { if (len == 1) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) if (MF_DBGLEVEL >= MF_DBG_ERROR)
Dbprintf("Cmd Error: %02x", receivedAnswer[0]); Dbprintf("Cmd Error: %02x", receivedAnswer[0]);
return 1; return 1;
} }
if (len == 12) { if (len == 12) {
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {
Dbprintf("Auth1 Resp: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", Dbprintf("Auth1 Resp: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x",
receivedAnswer[0],receivedAnswer[1],receivedAnswer[2],receivedAnswer[3],receivedAnswer[4], receivedAnswer[0],receivedAnswer[1],receivedAnswer[2],receivedAnswer[3],receivedAnswer[4],
receivedAnswer[5],receivedAnswer[6],receivedAnswer[7],receivedAnswer[8],receivedAnswer[9], receivedAnswer[5],receivedAnswer[6],receivedAnswer[7],receivedAnswer[8],receivedAnswer[9],
receivedAnswer[10],receivedAnswer[11]); receivedAnswer[10],receivedAnswer[11]);
} }
memcpy(blockData, receivedAnswer, 12); memcpy(blockData, receivedAnswer, 12);
return 0; return 0;
} }
return 1; return 1;
} }
@ -776,18 +780,18 @@ int mifare_desfire_des_auth2(uint32_t uid, uint8_t *key, uint8_t *blockData){
uint8_t data[17] = {0x00}; uint8_t data[17] = {0x00};
data[0] = 0xAF; data[0] = 0xAF;
memcpy(data+1,key,16); memcpy(data+1,key,16);
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
len = mifare_sendcmd_special2(NULL, 1, 0x03, data, receivedAnswer, receivedAnswerPar ,NULL); len = mifare_sendcmd_special2(NULL, 1, 0x03, data, receivedAnswer, receivedAnswerPar ,NULL);
if ((receivedAnswer[0] == 0x03) && (receivedAnswer[1] == 0xae)) { if ((receivedAnswer[0] == 0x03) && (receivedAnswer[1] == 0xae)) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) if (MF_DBGLEVEL >= MF_DBG_ERROR)
Dbprintf("Auth Error: %02x %02x", receivedAnswer[0], receivedAnswer[1]); Dbprintf("Auth Error: %02x %02x", receivedAnswer[0], receivedAnswer[1]);
return 1; return 1;
} }
if (len == 12){ if (len == 12){
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {
Dbprintf("Auth2 Resp: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", Dbprintf("Auth2 Resp: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x",
@ -816,7 +820,7 @@ int MifareChkBlockKey(uint8_t *uid, uint32_t *cuid, uint8_t *cascade_levels, uin
if (*cascade_levels == 0) { // need a full select cycle to get the uid first if (*cascade_levels == 0) { // need a full select cycle to get the uid first
iso14a_card_select_t card_info; iso14a_card_select_t card_info;
if(!iso14443a_select_card(uid, &card_info, cuid, true, 0, true)) { if(!iso14443a_select_card(uid, &card_info, cuid, true, 0, true)) {
if (debugLevel >= 1) Dbprintf("ChkKeys: Can't select card"); if (debugLevel >= 1) Dbprintf("ChkKeys: Can't select card");
return 1; return 1;
} }
switch (card_info.uidlen) { switch (card_info.uidlen) {
@ -827,26 +831,26 @@ int MifareChkBlockKey(uint8_t *uid, uint32_t *cuid, uint8_t *cascade_levels, uin
} }
} else { // no need for anticollision. We can directly select the card } else { // no need for anticollision. We can directly select the card
if(!iso14443a_select_card(uid, NULL, NULL, false, *cascade_levels, true)) { if(!iso14443a_select_card(uid, NULL, NULL, false, *cascade_levels, true)) {
if (debugLevel >= 1) Dbprintf("ChkKeys: Can't select card (UID) lvl=%d", *cascade_levels); if (debugLevel >= 1) Dbprintf("ChkKeys: Can't select card (UID) lvl=%d", *cascade_levels);
return 1; return 1;
} }
} }
if(mifare_classic_auth(pcs, *cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) { if(mifare_classic_auth(pcs, *cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) {
// SpinDelayUs(AUTHENTICATION_TIMEOUT); // it not needs because mifare_classic_auth have timeout from iso14a_set_timeout() // SpinDelayUs(AUTHENTICATION_TIMEOUT); // it not needs because mifare_classic_auth have timeout from iso14a_set_timeout()
return 2; return 2;
} else { } else {
/* // let it be here. it like halt command, but maybe it will work in some strange cases /* // let it be here. it like halt command, but maybe it will work in some strange cases
uint8_t dummy_answer = 0; uint8_t dummy_answer = 0;
ReaderTransmit(&dummy_answer, 1, NULL); ReaderTransmit(&dummy_answer, 1, NULL);
int timeout = GetCountSspClk() + AUTHENTICATION_TIMEOUT; int timeout = GetCountSspClk() + AUTHENTICATION_TIMEOUT;
// wait for the card to become ready again // wait for the card to become ready again
while(GetCountSspClk() < timeout) {}; while(GetCountSspClk() < timeout) {};
*/ */
// it needs after success authentication // it needs after success authentication
mifare_classic_halt(pcs, *cuid); mifare_classic_halt(pcs, *cuid);
} }
return 0; return 0;
} }
@ -861,14 +865,14 @@ int MifareChkBlockKeys(uint8_t *keys, uint8_t keyCount, uint8_t blockNo, uint8_t
for (uint8_t i = 0; i < keyCount; i++) { for (uint8_t i = 0; i < keyCount; i++) {
// Allow button press / usb cmd to interrupt device // Allow button press / usb cmd to interrupt device
if (BUTTON_PRESS() && !usb_poll_validate_length()) { if (BUTTON_PRESS() && !usb_poll_validate_length()) {
Dbprintf("ChkKeys: Cancel operation. Exit..."); Dbprintf("ChkKeys: Cancel operation. Exit...");
return -2; return -2;
} }
ui64Key = bytes_to_num(keys + i * 6, 6); ui64Key = bytes_to_num(keys + i * 6, 6);
int res = MifareChkBlockKey(uid, &cuid, &cascade_levels, ui64Key, blockNo, keyType, debugLevel); int res = MifareChkBlockKey(uid, &cuid, &cascade_levels, ui64Key, blockNo, keyType, debugLevel);
// can't select // can't select
if (res == 1) { if (res == 1) {
retryCount++; retryCount++;
@ -879,10 +883,10 @@ int MifareChkBlockKeys(uint8_t *keys, uint8_t keyCount, uint8_t blockNo, uint8_t
--i; // try the same key once again --i; // try the same key once again
SpinDelay(20); SpinDelay(20);
// Dbprintf("ChkKeys: block=%d key=%d. Try the same key once again...", blockNo, keyType); // Dbprintf("ChkKeys: block=%d key=%d. Try the same key once again...", blockNo, keyType);
continue; continue;
} }
// can't authenticate // can't authenticate
if (res == 2) { if (res == 2) {
retryCount = 0; retryCount = 0;
@ -891,15 +895,15 @@ int MifareChkBlockKeys(uint8_t *keys, uint8_t keyCount, uint8_t blockNo, uint8_t
return i + 1; return i + 1;
} }
return 0; return 0;
} }
// multisector multikey check // multisector multikey check
int MifareMultisectorChk(uint8_t *keys, uint8_t keyCount, uint8_t SectorCount, uint8_t keyType, uint8_t debugLevel, TKeyIndex *keyIndex) { int MifareMultisectorChk(uint8_t *keys, uint8_t keyCount, uint8_t SectorCount, uint8_t keyType, uint8_t debugLevel, TKeyIndex *keyIndex) {
int res = 0; int res = 0;
// int clk = GetCountSspClk(); // int clk = GetCountSspClk();
for(int sc = 0; sc < SectorCount; sc++){ for(int sc = 0; sc < SectorCount; sc++){
WDT_HIT(); WDT_HIT();
@ -915,9 +919,9 @@ int MifareMultisectorChk(uint8_t *keys, uint8_t keyCount, uint8_t SectorCount, u
} }
} while(--keyAB > 0); } while(--keyAB > 0);
} }
// Dbprintf("%d %d", GetCountSspClk() - clk, (GetCountSspClk() - clk)/(SectorCount*keyCount*(keyType==2?2:1))); // Dbprintf("%d %d", GetCountSspClk() - clk, (GetCountSspClk() - clk)/(SectorCount*keyCount*(keyType==2?2:1)));
return 0; return 0;
} }

View file

@ -34,11 +34,11 @@
#define MF_MINFIELDV 4000 #define MF_MINFIELDV 4000
// debug // debug
// 0 - no debug messages 1 - error messages 2 - all messages 4 - extended debug mode #define MF_DBG_NONE 0 // no messages
#define MF_DBG_NONE 0 #define MF_DBG_ERROR 1 // errors only
#define MF_DBG_ERROR 1 #define MF_DBG_INFO 2 // errors + info messages
#define MF_DBG_ALL 2 #define MF_DBG_DEBUG 3 // errors + info + debug messages
#define MF_DBG_EXTENDED 4 #define MF_DBG_EXTENDED 4 // errors + info + debug + breaking debug messages
extern int MF_DBGLEVEL; extern int MF_DBGLEVEL;
@ -71,6 +71,7 @@ int mifare_desfire_des_auth2(uint32_t uid, uint8_t *key, uint8_t *blockData);
void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *receivedCmd, int len); void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *receivedCmd, int len);
void mf_crypto1_decryptEx(struct Crypto1State *pcs, uint8_t *data_in, int len, uint8_t *data_out); void mf_crypto1_decryptEx(struct Crypto1State *pcs, uint8_t *data_in, int len, uint8_t *data_out);
void mf_crypto1_encrypt(struct Crypto1State *pcs, uint8_t *data, uint16_t len, uint8_t *par); void mf_crypto1_encrypt(struct Crypto1State *pcs, uint8_t *data, uint16_t len, uint8_t *par);
void mf_crypto1_encryptEx(struct Crypto1State *pcs, uint8_t *data, uint8_t *in, uint16_t len, uint8_t *par);
uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data); uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data);
// Mifare memory structure // Mifare memory structure

View file

@ -937,7 +937,6 @@ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, ui
char line[16][110]; char line[16][110];
for (int j = 0; j < data_len && j/16 < 16; j++) { for (int j = 0; j < data_len && j/16 < 16; j++) {
uint8_t parityBits = parityBytes[j>>3]; uint8_t parityBits = parityBytes[j>>3];
if (protocol != ISO_14443B if (protocol != ISO_14443B
&& protocol != ISO_15693 && protocol != ISO_15693
@ -948,7 +947,6 @@ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, ui
} else { } else {
snprintf(line[j/16]+(( j % 16) * 4), 110, " %02x ", frame[j]); snprintf(line[j/16]+(( j % 16) * 4), 110, " %02x ", frame[j]);
} }
} }
if (markCRCBytes) { if (markCRCBytes) {
@ -961,6 +959,13 @@ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, ui
} }
} }
// mark short bytes (less than 8 Bit + Parity)
if (protocol == ISO_14443A || protocol == PROTO_MIFARE) {
if (duration < 128 * (9 * data_len)) {
line[(data_len-1)/16][((data_len-1)%16) * 4 + 3] = '\'';
}
}
if (data_len == 0) { if (data_len == 0) {
sprintf(line[0]," <empty trace - possible error>"); sprintf(line[0]," <empty trace - possible error>");
} }
@ -990,7 +995,7 @@ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, ui
int num_lines = MIN((data_len - 1)/16 + 1, 16); int num_lines = MIN((data_len - 1)/16 + 1, 16);
for (int j = 0; j < num_lines ; j++) { for (int j = 0; j < num_lines ; j++) {
if (j == 0) { if (j == 0) {
PrintAndLog(" %10d | %10d | %s |%-64s | %s| %s", PrintAndLog(" %10" PRIu32 " | %10" PRIu32 " | %s |%-64s | %s| %s",
(timestamp - first_timestamp), (timestamp - first_timestamp),
(EndOfTransmissionTimestamp - first_timestamp), (EndOfTransmissionTimestamp - first_timestamp),
(isResponse ? "Tag" : "Rdr"), (isResponse ? "Tag" : "Rdr"),
@ -1004,7 +1009,7 @@ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, ui
(j == num_lines-1) ? explanation : ""); (j == num_lines-1) ? explanation : "");
} }
} }
if (DecodeMifareData(frame, data_len, parityBytes, isResponse, mfData, &mfDataLen)) { if (DecodeMifareData(frame, data_len, parityBytes, isResponse, mfData, &mfDataLen)) {
memset(explanation, 0x00, sizeof(explanation)); memset(explanation, 0x00, sizeof(explanation));
if (!isResponse) { if (!isResponse) {
@ -1222,7 +1227,7 @@ int CmdHFList(const char *Cmd)
PrintAndLog("iso14443a - All times are in carrier periods (1/13.56Mhz)"); PrintAndLog("iso14443a - All times are in carrier periods (1/13.56Mhz)");
PrintAndLog("iClass - Timings are not as accurate"); PrintAndLog("iClass - Timings are not as accurate");
PrintAndLog(""); PrintAndLog("");
PrintAndLog(" Start | End | Src | Data (! denotes parity error) | CRC | Annotation |"); PrintAndLog(" Start | End | Src | Data (! denotes parity error, ' denotes short bytes) | CRC | Annotation |");
PrintAndLog("------------|------------|-----|-----------------------------------------------------------------|-----|--------------------|"); PrintAndLog("------------|------------|-----|-----------------------------------------------------------------|-----|--------------------|");
ClearAuthData(); ClearAuthData();

View file

@ -254,14 +254,14 @@ uint8_t NumBlocksPerSector(uint8_t sectorNo)
} }
static int ParamCardSizeSectors(const char c) { static int ParamCardSizeSectors(const char c) {
int numBlocks = 16; int numSectors = 16;
switch (c) { switch (c) {
case '0' : numBlocks = 5; break; case '0' : numSectors = 5; break;
case '2' : numBlocks = 32; break; case '2' : numSectors = 32; break;
case '4' : numBlocks = 40; break; case '4' : numSectors = 40; break;
default: numBlocks = 16; default: numSectors = 16;
} }
return numBlocks; return numSectors;
} }
static int ParamCardSizeBlocks(const char c) { static int ParamCardSizeBlocks(const char c) {
@ -1421,11 +1421,12 @@ void readerAttack(nonces_t ar_resp[], bool setEmulatorMem, bool doStandardAttack
}*/ }*/
} }
int usage_hf14_mf1ksim(void) { int usage_hf14_mfsim(void) {
PrintAndLog("Usage: hf mf sim h u <uid (8, 14, or 20 hex symbols)> n <numreads> i x"); PrintAndLog("Usage: hf mf sim [h] [*<card memory>] [u <uid (8, 14, or 20 hex symbols)>] [n <numreads>] [i] [x]");
PrintAndLog("options:"); PrintAndLog("options:");
PrintAndLog(" h this help"); PrintAndLog(" h (Optional) this help");
PrintAndLog(" u (Optional) UID 4,7 or 10 bytes. If not specified, the UID 4B from emulator memory will be used"); PrintAndLog(" card memory: 0 - MINI(320 bytes), 1 - 1K, 2 - 2K, 4 - 4K, <other, default> - 1K");
PrintAndLog(" u (Optional) UID 4 or 7 bytes. If not specified, the UID 4B from emulator memory will be used");
PrintAndLog(" n (Optional) Automatically exit simulation after <numreads> blocks have been read by reader. 0 = infinite"); PrintAndLog(" n (Optional) Automatically exit simulation after <numreads> blocks have been read by reader. 0 = infinite");
PrintAndLog(" i (Optional) Interactive, means that console will not be returned until simulation finishes or is aborted"); PrintAndLog(" i (Optional) Interactive, means that console will not be returned until simulation finishes or is aborted");
PrintAndLog(" x (Optional) Crack, performs the 'reader attack', nr/ar attack against a legitimate reader, fishes out the key(s)"); PrintAndLog(" x (Optional) Crack, performs the 'reader attack', nr/ar attack against a legitimate reader, fishes out the key(s)");
@ -1434,21 +1435,20 @@ int usage_hf14_mf1ksim(void) {
PrintAndLog(" r (Optional) Generate random nonces instead of sequential nonces. Standard reader attack won't work with this option, only moebius attack works."); PrintAndLog(" r (Optional) Generate random nonces instead of sequential nonces. Standard reader attack won't work with this option, only moebius attack works.");
PrintAndLog("samples:"); PrintAndLog("samples:");
PrintAndLog(" hf mf sim u 0a0a0a0a"); PrintAndLog(" hf mf sim u 0a0a0a0a");
PrintAndLog(" hf mf sim *4");
PrintAndLog(" hf mf sim u 11223344556677"); PrintAndLog(" hf mf sim u 11223344556677");
PrintAndLog(" hf mf sim u 112233445566778899AA");
PrintAndLog(" hf mf sim f uids.txt"); PrintAndLog(" hf mf sim f uids.txt");
PrintAndLog(" hf mf sim u 0a0a0a0a e"); PrintAndLog(" hf mf sim u 0a0a0a0a e");
return 0; return 0;
} }
int CmdHF14AMf1kSim(const char *Cmd) { int CmdHF14AMfSim(const char *Cmd) {
UsbCommand resp; UsbCommand resp;
uint8_t uid[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; uint8_t uid[7] = {0};
uint8_t exitAfterNReads = 0; uint8_t exitAfterNReads = 0;
uint8_t flags = 0; uint8_t flags = 0;
int uidlen = 0; int uidlen = 0;
uint8_t pnr = 0;
bool setEmulatorMem = false; bool setEmulatorMem = false;
bool attackFromFile = false; bool attackFromFile = false;
FILE *f; FILE *f;
@ -1459,9 +1459,21 @@ int CmdHF14AMf1kSim(const char *Cmd) {
uint8_t cmdp = 0; uint8_t cmdp = 0;
bool errors = false; bool errors = false;
uint8_t cardsize = '1';
while(param_getchar(Cmd, cmdp) != 0x00) { while(param_getchar(Cmd, cmdp) != 0x00) {
switch(param_getchar(Cmd, cmdp)) { switch(param_getchar(Cmd, cmdp)) {
case '*':
cardsize = param_getchar(Cmd + 1, cmdp);
switch(cardsize) {
case '0':
case '1':
case '2':
case '4': break;
default: cardsize = '1';
}
cmdp++;
break;
case 'e': case 'e':
case 'E': case 'E':
setEmulatorMem = true; setEmulatorMem = true;
@ -1485,7 +1497,7 @@ int CmdHF14AMf1kSim(const char *Cmd) {
break; break;
case 'h': case 'h':
case 'H': case 'H':
return usage_hf14_mf1ksim(); return usage_hf14_mfsim();
case 'i': case 'i':
case 'I': case 'I':
flags |= FLAG_INTERACTIVE; flags |= FLAG_INTERACTIVE;
@ -1493,7 +1505,7 @@ int CmdHF14AMf1kSim(const char *Cmd) {
break; break;
case 'n': case 'n':
case 'N': case 'N':
exitAfterNReads = param_get8(Cmd, pnr+1); exitAfterNReads = param_get8(Cmd, cmdp+1);
cmdp += 2; cmdp += 2;
break; break;
case 'r': case 'r':
@ -1505,10 +1517,9 @@ int CmdHF14AMf1kSim(const char *Cmd) {
case 'U': case 'U':
param_gethex_ex(Cmd, cmdp+1, uid, &uidlen); param_gethex_ex(Cmd, cmdp+1, uid, &uidlen);
switch(uidlen) { switch(uidlen) {
case 20: flags = FLAG_10B_UID_IN_DATA; break; //not complete
case 14: flags = FLAG_7B_UID_IN_DATA; break; case 14: flags = FLAG_7B_UID_IN_DATA; break;
case 8: flags = FLAG_4B_UID_IN_DATA; break; case 8: flags = FLAG_4B_UID_IN_DATA; break;
default: return usage_hf14_mf1ksim(); default: return usage_hf14_mfsim();
} }
cmdp += 2; cmdp += 2;
break; break;
@ -1525,7 +1536,7 @@ int CmdHF14AMf1kSim(const char *Cmd) {
if(errors) break; if(errors) break;
} }
//Validations //Validations
if(errors) return usage_hf14_mf1ksim(); if(errors) return usage_hf14_mfsim();
//get uid from file //get uid from file
if (attackFromFile) { if (attackFromFile) {
@ -1552,7 +1563,6 @@ int CmdHF14AMf1kSim(const char *Cmd) {
uidlen = strlen(buf)-1; uidlen = strlen(buf)-1;
switch(uidlen) { switch(uidlen) {
case 20: flags |= FLAG_10B_UID_IN_DATA; break; //not complete
case 14: flags |= FLAG_7B_UID_IN_DATA; break; case 14: flags |= FLAG_7B_UID_IN_DATA; break;
case 8: flags |= FLAG_4B_UID_IN_DATA; break; case 8: flags |= FLAG_4B_UID_IN_DATA; break;
default: default:
@ -1565,18 +1575,22 @@ int CmdHF14AMf1kSim(const char *Cmd) {
sscanf(&buf[i], "%02x", (unsigned int *)&uid[i / 2]); sscanf(&buf[i], "%02x", (unsigned int *)&uid[i / 2]);
} }
PrintAndLog("mf 1k sim uid: %s, numreads:%d, flags:%d (0x%02x) - press button to abort", PrintAndLog("mf sim cardsize: %s, uid: %s, numreads:%d, flags:%d (0x%02x) - press button to abort",
flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4): cardsize == '0' ? "Mini" :
flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): cardsize == '2' ? "2K" :
flags & FLAG_10B_UID_IN_DATA ? sprint_hex(uid,10): "N/A" cardsize == '4' ? "4K" : "1K",
, exitAfterNReads, flags, flags); flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4):
flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): "N/A",
exitAfterNReads,
flags,
flags);
UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads,0}}; UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads, cardsize}};
memcpy(c.d.asBytes, uid, sizeof(uid)); memcpy(c.d.asBytes, uid, sizeof(uid));
clearCommandBuffer(); clearCommandBuffer();
SendCommand(&c); SendCommand(&c);
while(! WaitForResponseTimeout(CMD_ACK,&resp,1500)) { while (! WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
//We're waiting only 1.5 s at a time, otherwise we get the //We're waiting only 1.5 s at a time, otherwise we get the
// annoying message about "Waiting for a response... " // annoying message about "Waiting for a response... "
} }
@ -1593,22 +1607,27 @@ int CmdHF14AMf1kSim(const char *Cmd) {
count++; count++;
} }
fclose(f); fclose(f);
} else { //not from file } else { //not from file
PrintAndLog("mf 1k sim uid: %s, numreads:%d, flags:%d (0x%02x) ", PrintAndLog("mf sim cardsize: %s, uid: %s, numreads:%d, flags:%d (0x%02x) ",
flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4): cardsize == '0' ? "Mini" :
flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): cardsize == '2' ? "2K" :
flags & FLAG_10B_UID_IN_DATA ? sprint_hex(uid,10): "N/A" cardsize == '4' ? "4K" : "1K",
, exitAfterNReads, flags, flags); flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4):
flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): "N/A",
exitAfterNReads,
flags,
flags);
UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads,0}}; UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads, cardsize}};
memcpy(c.d.asBytes, uid, sizeof(uid)); memcpy(c.d.asBytes, uid, sizeof(uid));
clearCommandBuffer(); clearCommandBuffer();
SendCommand(&c); SendCommand(&c);
if(flags & FLAG_INTERACTIVE) { if(flags & FLAG_INTERACTIVE) {
PrintAndLog("Press pm3-button to abort simulation"); PrintAndLog("Press pm3-button to abort simulation");
while(! WaitForResponseTimeout(CMD_ACK,&resp,1500)) { while(! WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
//We're waiting only 1.5 s at a time, otherwise we get the //We're waiting only 1.5 s at a time, otherwise we get the
// annoying message about "Waiting for a response... " // annoying message about "Waiting for a response... "
} }
@ -1745,7 +1764,7 @@ int CmdHF14AMfELoad(const char *Cmd)
} }
} }
len = param_getstr(Cmd,nameParamNo,filename,sizeof(filename)); len = param_getstr(Cmd, nameParamNo, filename, sizeof(filename));
if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5; if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5;
@ -2925,8 +2944,8 @@ static command_t CommandTable[] =
{"hardnested", CmdHF14AMfNestedHard, 0, "Nested attack for hardened Mifare cards"}, {"hardnested", CmdHF14AMfNestedHard, 0, "Nested attack for hardened Mifare cards"},
{"nested", CmdHF14AMfNested, 0, "Test nested authentication"}, {"nested", CmdHF14AMfNested, 0, "Test nested authentication"},
{"sniff", CmdHF14AMfSniff, 0, "Sniff card-reader communication"}, {"sniff", CmdHF14AMfSniff, 0, "Sniff card-reader communication"},
{"sim", CmdHF14AMf1kSim, 0, "Simulate MIFARE card"}, {"sim", CmdHF14AMfSim, 0, "Simulate MIFARE card"},
{"eclr", CmdHF14AMfEClear, 0, "Clear simulator memory block"}, {"eclr", CmdHF14AMfEClear, 0, "Clear simulator memory"},
{"eget", CmdHF14AMfEGet, 0, "Get simulator memory block"}, {"eget", CmdHF14AMfEGet, 0, "Get simulator memory block"},
{"eset", CmdHF14AMfESet, 0, "Set simulator memory block"}, {"eset", CmdHF14AMfESet, 0, "Set simulator memory block"},
{"eload", CmdHF14AMfELoad, 0, "Load from file emul dump"}, {"eload", CmdHF14AMfELoad, 0, "Load from file emul dump"},

View file

@ -226,12 +226,11 @@ typedef struct{
//Mifare simulation flags //Mifare simulation flags
#define FLAG_INTERACTIVE 0x01 #define FLAG_INTERACTIVE (1<<0)
#define FLAG_4B_UID_IN_DATA 0x02 #define FLAG_4B_UID_IN_DATA (1<<1)
#define FLAG_7B_UID_IN_DATA 0x04 #define FLAG_7B_UID_IN_DATA (1<<2)
#define FLAG_10B_UID_IN_DATA 0x08 #define FLAG_NR_AR_ATTACK (1<<4)
#define FLAG_NR_AR_ATTACK 0x10 #define FLAG_RANDOM_NONCE (1<<5)
#define FLAG_RANDOM_NONCE 0x20
//Iclass reader flags //Iclass reader flags