fix hf mf sim (#812)

* fix parity encryption (thanks to Eloff, http://www.proxmark.org/forum/viewtopic.php?id=6347)
* add support to simulate Mifare Mini, Mifare 2K and Mifare 4K
* change to standard LED handling (A: PM is working, B: reader is sending, C: tag is responding, D: HF field is on)
* NAK on unknown commands
* allow unencrypted HALT
* don't display messages during simulation (or we will miss next reader command)
* use DMA to receive reader command
* switch earlier from send to listen mode
* move ADC initializer to iso14443_setup
* remove remainders of incomplete Mifare 10Byte UID simulation
* show 'short' bytes (7Bits or 8Bits without parity) in 'hf list mf' and 'hf list 14a'
* whitespace
This commit is contained in:
pwpiwi 2019-04-19 10:22:10 +02:00 committed by GitHub
parent bad582468f
commit a8561e356b
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
14 changed files with 944 additions and 804 deletions

View file

@ -30,6 +30,7 @@ This project uses the changelog in accordance with [keepchangelog](http://keepac
- Added `hf plot` (piwi) - Added `hf plot` (piwi)
- Added `hf mfp mad` `hf mf mad` parsing MAD1 and MAD2 (Merlok) - Added `hf mfp mad` `hf mf mad` parsing MAD1 and MAD2 (Merlok)
- Added `hf mfp ndef` `hf mf ndef` parsing NDEF records (Merlok) - Added `hf mfp ndef` `hf mf ndef` parsing NDEF records (Merlok)
- Added Mifare Mini, Mifare 2K and 4K support to `hf mf sim` (piwi)
- Added Legic detection to `hf search` (dnet) - Added Legic detection to `hf search` (dnet)
## [v3.1.0][2018-10-10] ## [v3.1.0][2018-10-10]

View file

@ -39,6 +39,7 @@ static uint8_t *emulator_memory = NULL;
static uint32_t traceLen = 0; static uint32_t traceLen = 0;
static bool tracing = true; static bool tracing = true;
// get the address of BigBuf // get the address of BigBuf
uint8_t *BigBuf_get_addr(void) uint8_t *BigBuf_get_addr(void)
{ {
@ -63,6 +64,8 @@ void BigBuf_Clear(void)
{ {
BigBuf_Clear_ext(true); BigBuf_Clear_ext(true);
} }
// clear ALL of BigBuf // clear ALL of BigBuf
void BigBuf_Clear_ext(bool verbose) void BigBuf_Clear_ext(bool verbose)
{ {
@ -70,10 +73,13 @@ void BigBuf_Clear_ext(bool verbose)
if (verbose) if (verbose)
Dbprintf("Buffer cleared (%i bytes)", BIGBUF_SIZE); Dbprintf("Buffer cleared (%i bytes)", BIGBUF_SIZE);
} }
void BigBuf_Clear_EM(void){ void BigBuf_Clear_EM(void){
memset(BigBuf_get_EM_addr(), 0, CARD_MEMORY_SIZE); memset(BigBuf_get_EM_addr(), 0, CARD_MEMORY_SIZE);
} }
void BigBuf_Clear_keep_EM(void) void BigBuf_Clear_keep_EM(void)
{ {
memset(BigBuf, 0, BigBuf_hi); memset(BigBuf, 0, BigBuf_hi);
@ -128,18 +134,22 @@ uint16_t BigBuf_max_traceLen(void)
return BigBuf_hi; return BigBuf_hi;
} }
void clear_trace() { void clear_trace() {
traceLen = 0; traceLen = 0;
} }
void set_tracing(bool enable) { void set_tracing(bool enable) {
tracing = enable; tracing = enable;
} }
bool get_tracing(void) { bool get_tracing(void) {
return tracing; return tracing;
} }
/** /**
* Get the number of bytes traced * Get the number of bytes traced
* @return * @return
@ -149,6 +159,7 @@ uint16_t BigBuf_get_traceLen(void)
return traceLen; return traceLen;
} }
/** /**
This is a function to store traces. All protocols can use this generic tracer-function. This is a function to store traces. All protocols can use this generic tracer-function.
The traces produced by calling this function can be fetched on the client-side The traces produced by calling this function can be fetched on the client-side

View file

@ -29,6 +29,7 @@
#include "lfsampling.h" #include "lfsampling.h"
#include "BigBuf.h" #include "BigBuf.h"
#include "mifareutil.h" #include "mifareutil.h"
#include "mifaresim.h"
#include "pcf7931.h" #include "pcf7931.h"
#include "i2c.h" #include "i2c.h"
#include "hfsnoop.h" #include "hfsnoop.h"
@ -1249,7 +1250,7 @@ void UsbPacketReceived(uint8_t *packet, int len)
MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break; break;
case CMD_SIMULATE_MIFARE_CARD: case CMD_SIMULATE_MIFARE_CARD:
Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); MifareSim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break; break;
// emulator // emulator

View file

@ -119,7 +119,6 @@ void MifareUWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain);
void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain); void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain);
void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags, uint8_t *datain); void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags, uint8_t *datain);
void MifareChkKeys(uint16_t arg0, uint16_t arg1, uint8_t arg2, uint8_t *datain); void MifareChkKeys(uint16_t arg0, uint16_t arg1, uint8_t arg2, uint8_t *datain);
void Mifare1ksim(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain);
void MifareSetDbgLvl(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain); void MifareSetDbgLvl(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain);
void MifareEMemClr(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain); void MifareEMemClr(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain);
void MifareEMemSet(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain); void MifareEMemSet(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain);

View file

@ -278,8 +278,6 @@ static void UartReset()
Uart.parityLen = 0; // number of decoded parity bytes Uart.parityLen = 0; // number of decoded parity bytes
Uart.shiftReg = 0; // shiftreg to hold decoded data bits Uart.shiftReg = 0; // shiftreg to hold decoded data bits
Uart.parityBits = 0; // holds 8 parity bits Uart.parityBits = 0; // holds 8 parity bits
Uart.startTime = 0;
Uart.endTime = 0;
} }
static void UartInit(uint8_t *data, uint8_t *parity) static void UartInit(uint8_t *data, uint8_t *parity)
@ -287,6 +285,8 @@ static void UartInit(uint8_t *data, uint8_t *parity)
Uart.output = data; Uart.output = data;
Uart.parity = parity; Uart.parity = parity;
Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
Uart.startTime = 0;
Uart.endTime = 0;
UartReset(); UartReset();
} }
@ -884,10 +884,9 @@ static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int
} }
static int EmSend4bitEx(uint8_t resp);
int EmSend4bit(uint8_t resp); int EmSend4bit(uint8_t resp);
static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par); static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
int EmSendCmdEx(uint8_t *resp, uint16_t respLen); int EmSendCmd(uint8_t *resp, uint16_t respLen);
int EmSendPrecompiledCmd(tag_response_info_t *response_info); int EmSendPrecompiledCmd(tag_response_info_t *response_info);
@ -1122,7 +1121,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2) } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
p_response = &responses[4]; order = 30; p_response = &responses[4]; order = 30;
} else if(receivedCmd[0] == 0x30) { // Received a (plain) READ } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
EmSendCmdEx(data+(4*receivedCmd[1]),16); EmSendCmd(data+(4*receivedCmd[1]),16);
// Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]); // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
p_response = NULL; p_response = NULL;
@ -1264,6 +1263,7 @@ static void PrepareDelayedTransfer(uint16_t delay)
//------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------
static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
{ {
LED_B_ON();
LED_D_ON(); LED_D_ON();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
@ -1299,6 +1299,7 @@ static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing
} }
NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME); NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
LED_B_OFF();
} }
@ -1391,84 +1392,98 @@ static void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, cons
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
{ {
uint32_t field_off_time = -1;
uint32_t samples = 0;
int ret = 0;
uint8_t b = 0;;
uint8_t dmaBuf[DMA_BUFFER_SIZE];
uint8_t *upTo = dmaBuf;
*len = 0; *len = 0;
uint32_t timer = 0, vtime = 0;
int analogCnt = 0;
int analogAVG = 0;
// Set ADC to read field strength
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
AT91C_BASE_ADC->ADC_MR =
ADC_MODE_PRESCALE(63) |
ADC_MODE_STARTUP_TIME(1) |
ADC_MODE_SAMPLE_HOLD_TIME(15);
AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF_LOW);
// start ADC
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
// Run a 'software UART' on the stream of incoming samples. // Run a 'software UART' on the stream of incoming samples.
UartInit(received, parity); UartInit(received, parity);
// start ADC
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
// Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN
do { while (GetCountSspClk() < LastTimeProxToAirStart + LastProxToAirDuration + (FpgaSendQueueDelay>>3) - 8 - 3) /* wait */ ;
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = SEC_F;
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; (void) b;
}
} while (GetCountSspClk() < LastTimeProxToAirStart + LastProxToAirDuration + (FpgaSendQueueDelay>>3));
// Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
// only, since we are receiving, not transmitting). // only, since we are receiving, not transmitting).
// Signal field is off with the appropriate LED
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
// clear receive register, measure time of next transfer
uint32_t temp = AT91C_BASE_SSC->SSC_RHR; (void) temp;
while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) ;
uint32_t start_time = GetCountSspClk() & 0xfffffff8;
// Setup and start DMA.
FpgaSetupSscDma(dmaBuf, DMA_BUFFER_SIZE);
for(;;) { for(;;) {
WDT_HIT(); uint16_t behindBy = ((uint8_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (DMA_BUFFER_SIZE-1);
if (BUTTON_PRESS()) return 1; if (behindBy == 0) continue;
// test if the field exists b = *upTo++;
if(upTo >= dmaBuf + DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
upTo = dmaBuf; // start reading the circular buffer from the beginning
if(behindBy > (9*DMA_BUFFER_SIZE/10)) {
Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
ret = 1;
break;
}
}
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; // DMA Next Counter registers
}
if (BUTTON_PRESS()) {
ret = 1;
break;
}
// check reader's HF field
if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF_LOW)) { if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF_LOW)) {
analogCnt++; if ((MAX_ADC_HF_VOLTAGE_LOW * AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF_LOW]) >> 10 < MF_MINFIELDV) {
analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF_LOW]; if (GetTickCount() - field_off_time > 50) {
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; ret = 2; // reader has switched off HF field for more than 50ms. Timeout
if (analogCnt >= 32) { break;
if ((MAX_ADC_HF_VOLTAGE_LOW * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
vtime = GetTickCount();
if (!timer) timer = vtime;
// 50ms no field --> card to idle state
if (vtime - timer > 50) return 2;
} else
if (timer) timer = 0;
analogCnt = 0;
analogAVG = 0;
} }
} else {
field_off_time = GetTickCount(); // HF field is still there. Reset timer
}
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; // restart ADC
} }
// receive and test the miller decoding if (MillerDecoding(b, start_time + samples*8)) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
if(MillerDecoding(b, 0)) {
*len = Uart.len; *len = Uart.len;
EmLogTraceReader(); EmLogTraceReader();
return 0; ret = 0;
} break;
} }
samples++;
} }
FpgaDisableSscDma();
return ret;
} }
static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen) static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen)
{ {
LED_C_ON();
uint8_t b; uint8_t b;
uint16_t i = 0; uint16_t i = 0;
bool correctionNeeded; bool correctionNeeded;
// Modulate Manchester // Modulate Manchester
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
// include correction bit if necessary // include correction bit if necessary
@ -1491,7 +1506,6 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen)
} }
// clear receiving shift register and holding register // clear receiving shift register and holding register
while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
b = AT91C_BASE_SSC->SSC_RHR; (void) b; b = AT91C_BASE_SSC->SSC_RHR; (void) b;
while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
b = AT91C_BASE_SSC->SSC_RHR; (void) b; b = AT91C_BASE_SSC->SSC_RHR; (void) b;
@ -1516,40 +1530,29 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen)
} }
} }
LED_C_OFF();
return 0; return 0;
} }
static int EmSend4bitEx(uint8_t resp){ int EmSend4bit(uint8_t resp){
Code4bitAnswerAsTag(resp); Code4bitAnswerAsTag(resp);
int res = EmSendCmd14443aRaw(ToSend, ToSendMax); int res = EmSendCmd14443aRaw(ToSend, ToSendMax);
// do the tracing for the previous reader request and this tag answer: // Log this tag answer and fix timing of previous reader command:
EmLogTraceTag(&resp, 1, NULL, LastProxToAirDuration); EmLogTraceTag(&resp, 1, NULL, LastProxToAirDuration);
return res; return res;
} }
int EmSend4bit(uint8_t resp){
return EmSend4bitEx(resp);
}
static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par){ static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
CodeIso14443aAsTagPar(resp, respLen, par); CodeIso14443aAsTagPar(resp, respLen, par);
int res = EmSendCmd14443aRaw(ToSend, ToSendMax); int res = EmSendCmd14443aRaw(ToSend, ToSendMax);
// do the tracing for the previous reader request and this tag answer: // Log this tag answer and fix timing of previous reader command:
EmLogTraceTag(resp, respLen, par, LastProxToAirDuration); EmLogTraceTag(resp, respLen, par, LastProxToAirDuration);
return res; return res;
} }
int EmSendCmdEx(uint8_t *resp, uint16_t respLen){
uint8_t par[MAX_PARITY_SIZE];
GetParity(resp, respLen, par);
return EmSendCmdExPar(resp, respLen, par);
}
int EmSendCmd(uint8_t *resp, uint16_t respLen){ int EmSendCmd(uint8_t *resp, uint16_t respLen){
uint8_t par[MAX_PARITY_SIZE]; uint8_t par[MAX_PARITY_SIZE];
GetParity(resp, respLen, par); GetParity(resp, respLen, par);
@ -1564,7 +1567,7 @@ int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
int EmSendPrecompiledCmd(tag_response_info_t *response_info) { int EmSendPrecompiledCmd(tag_response_info_t *response_info) {
int ret = EmSendCmd14443aRaw(response_info->modulation, response_info->modulation_n); int ret = EmSendCmd14443aRaw(response_info->modulation, response_info->modulation_n);
// do the tracing for the previous reader request and this tag answer: // Log this tag answer and fix timing of previous reader command:
EmLogTraceTag(response_info->response, response_info->response_n, &(response_info->par), response_info->ProxToAirDuration); EmLogTraceTag(response_info->response, response_info->response_n, &(response_info->par), response_info->ProxToAirDuration);
return ret; return ret;
} }
@ -1762,7 +1765,7 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
// OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
// which case we need to make a cascade 2 request and select - this is a long UID // which case we need to make a cascade 2 request and select - this is a long UID
// While the UID is not complete, the 3nd bit (from the right) is set in the SAK. // While the UID is not complete, the 3rd bit (from the right) is set in the SAK.
for (; sak & 0x04; cascade_level++) { for (; sak & 0x04; cascade_level++) {
// SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97) // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2; sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
@ -1903,11 +1906,22 @@ void iso14443a_setup(uint8_t fpga_minor_mode) {
} }
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
// Set ADC to read field strength
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
AT91C_BASE_ADC->ADC_MR =
ADC_MODE_PRESCALE(63) |
ADC_MODE_STARTUP_TIME(1) |
ADC_MODE_SAMPLE_HOLD_TIME(15);
AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF_LOW);
// Start the timer // Start the timer
StartCountSspClk(); StartCountSspClk();
DemodReset(); DemodReset();
UartReset(); UartReset();
LastTimeProxToAirStart = 0;
FpgaSendQueueDelay = 0;
LastProxToAirDuration = 20; // arbitrary small value. Avoid lock in EmGetCmd()
NextTransferTime = 2*DELAY_ARM2AIR_AS_READER; NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
iso14a_set_timeout(1060); // 10ms default iso14a_set_timeout(1060); // 10ms default
} }

View file

@ -41,7 +41,6 @@ extern void ReaderMifare(bool first_try);
extern int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity); extern int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity);
extern int EmSendCmd(uint8_t *resp, uint16_t respLen); extern int EmSendCmd(uint8_t *resp, uint16_t respLen);
extern int EmSendCmdEx(uint8_t *resp, uint16_t respLen);
extern int EmSend4bit(uint8_t resp); extern int EmSend4bit(uint8_t resp);
extern int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par); extern int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
extern int EmSendPrecompiledCmd(tag_response_info_t *response_info); extern int EmSendPrecompiledCmd(tag_response_info_t *response_info);

View file

@ -39,8 +39,6 @@
#define MFEMUL_INTREG_REST 11 #define MFEMUL_INTREG_REST 11
#define MFEMUL_HALTED 12 #define MFEMUL_HALTED 12
#define cardSTATE_TO_IDLE() { cardSTATE = MFEMUL_IDLE; LED_B_OFF(); LED_C_OFF(); }
#define AC_DATA_READ 0 #define AC_DATA_READ 0
#define AC_DATA_WRITE 1 #define AC_DATA_WRITE 1
#define AC_DATA_INC 2 #define AC_DATA_INC 2
@ -57,6 +55,25 @@
#define AUTHKEYNONE 0xff #define AUTHKEYNONE 0xff
static int ParamCardSizeBlocks(const char c) {
int numBlocks = 16 * 4;
switch (c) {
case '0' : numBlocks = 5 * 4; break;
case '2' : numBlocks = 32 * 4; break;
case '4' : numBlocks = 32 * 4 + 8 * 16; break;
default: numBlocks = 16 * 4;
}
return numBlocks;
}
static uint8_t BlockToSector(int block_num) {
if (block_num < 32 * 4) { // 4 blocks per sector
return (block_num / 4);
} else { // 16 blocks per sector
return 32 + (block_num - 32 * 4) / 16;
}
}
static bool IsTrailerAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) { static bool IsTrailerAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) {
uint8_t sector_trailer[16]; uint8_t sector_trailer[16];
emlGetMem(sector_trailer, blockNo, 1); emlGetMem(sector_trailer, blockNo, 1);
@ -169,14 +186,14 @@ static bool IsAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) {
} }
static void MifareSimInit(uint8_t flags, uint8_t *datain, tag_response_info_t **responses, uint32_t *cuid, uint8_t *uid_len) { static void MifareSimInit(uint8_t flags, uint8_t *datain, tag_response_info_t **responses, uint32_t *cuid, uint8_t *uid_len, uint8_t cardsize) {
#define TAG_RESPONSE_COUNT 5 // number of precompiled responses #define TAG_RESPONSE_COUNT 5 // number of precompiled responses
static uint8_t rATQA[] = {0x04, 0x00}; // indicate Mifare classic 1k 4Byte UID static uint8_t rATQA[] = {0x00, 0x00};
static uint8_t rUIDBCC1[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level static uint8_t rUIDBCC1[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level
static uint8_t rUIDBCC2[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 2nd cascade level static uint8_t rUIDBCC2[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 2nd cascade level
static uint8_t rSAKfinal[]= {0x08, 0xb6, 0xdd}; // mifare 1k indicated static uint8_t rSAKfinal[]= {0x00, 0x00, 0x00}; // SAK after UID complete
static uint8_t rSAK1[] = {0x04, 0xda, 0x17}; // indicate UID not finished static uint8_t rSAK1[] = {0x00, 0x00, 0x00}; // indicate UID not finished
*uid_len = 4; *uid_len = 4;
// UID can be set from emulator memory or incoming data and can be 4 or 7 bytes long // UID can be set from emulator memory or incoming data and can be 4 or 7 bytes long
@ -204,17 +221,16 @@ static void MifareSimInit(uint8_t flags, uint8_t *datain, tag_response_info_t **
case 4: case 4:
*cuid = bytes_to_num(rUIDBCC1, 4); *cuid = bytes_to_num(rUIDBCC1, 4);
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
if (MF_DBGLEVEL >= 2) { if (MF_DBGLEVEL >= MF_DBG_INFO) {
Dbprintf("4B UID: %02x%02x%02x%02x", Dbprintf("4B UID: %02x%02x%02x%02x",
rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3] ); rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3] );
} }
break; break;
case 7: case 7:
rATQA[0] |= 0x40;
*cuid = bytes_to_num(rUIDBCC2, 4); *cuid = bytes_to_num(rUIDBCC2, 4);
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
if (MF_DBGLEVEL >= 2) { if (MF_DBGLEVEL >= MF_DBG_INFO) {
Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x", Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], rUIDBCC2[0], rUIDBCC2[1], rUIDBCC2[2], rUIDBCC2[3] ); rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], rUIDBCC2[0], rUIDBCC2[1], rUIDBCC2[2], rUIDBCC2[3] );
} }
@ -223,6 +239,35 @@ static void MifareSimInit(uint8_t flags, uint8_t *datain, tag_response_info_t **
break; break;
} }
// set SAK based on cardsize
switch (cardsize) {
case '0': rSAKfinal[0] = 0x09; break; // Mifare Mini
case '2': rSAKfinal[0] = 0x10; break; // Mifare 2K
case '4': rSAKfinal[0] = 0x18; break; // Mifare 4K
default: rSAKfinal[0] = 0x08; // Mifare 1K
}
ComputeCrc14443(CRC_14443_A, rSAKfinal, 1, rSAKfinal + 1, rSAKfinal + 2);
if (MF_DBGLEVEL >= MF_DBG_INFO) {
Dbprintf("SAK: %02x", rSAKfinal[0]);
}
// set SAK for incomplete UID
rSAK1[0] = 0x04; // Bit 3 indicates incomplete UID
ComputeCrc14443(CRC_14443_A, rSAK1, 1, rSAK1 + 1, rSAK1 + 2);
// set ATQA based on cardsize and UIDlen
if (cardsize == '4') {
rATQA[0] = 0x02;
} else {
rATQA[0] = 0x04;
}
if (*uid_len == 7) {
rATQA[0] |= 0x40;
}
if (MF_DBGLEVEL >= MF_DBG_INFO) {
Dbprintf("ATQA: %02x %02x", rATQA[1], rATQA[0]);
}
static tag_response_info_t responses_init[TAG_RESPONSE_COUNT] = { static tag_response_info_t responses_init[TAG_RESPONSE_COUNT] = {
{ .response = rATQA, .response_n = sizeof(rATQA) }, // Answer to request - respond with card type { .response = rATQA, .response_n = sizeof(rATQA) }, // Answer to request - respond with card type
{ .response = rUIDBCC1, .response_n = sizeof(rUIDBCC1) }, // Anticollision cascade1 - respond with first part of uid { .response = rUIDBCC1, .response_n = sizeof(rUIDBCC1) }, // Anticollision cascade1 - respond with first part of uid
@ -232,7 +277,7 @@ static void MifareSimInit(uint8_t flags, uint8_t *datain, tag_response_info_t **
}; };
// Prepare ("precompile") the responses of the anticollision phase. There will be not enough time to do this at the moment the reader sends its REQA or SELECT // Prepare ("precompile") the responses of the anticollision phase. There will be not enough time to do this at the moment the reader sends its REQA or SELECT
// There are 7 predefined responses with a total of 18 bytes data to transmit. Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) // There are 5 predefined responses with a total of 18 bytes data to transmit. Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
// 18 * 8 data bits, 18 * 1 parity bits, 5 start bits, 5 stop bits, 5 correction bits -> need 177 bytes buffer // 18 * 8 data bits, 18 * 1 parity bits, 5 start bits, 5 stop bits, 5 correction bits -> need 177 bytes buffer
#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 177 // number of bytes required for precompiled responses #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 177 // number of bytes required for precompiled responses
@ -262,20 +307,21 @@ static bool HasValidCRC(uint8_t *receivedCmd, uint16_t receivedCmd_len) {
/** /**
*MIFARE 1K simulate. *MIFARE simulate.
* *
*@param flags : *@param flags :
* FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
* FLAG_4B_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that * FLAG_4B_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
* FLAG_7B_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that * FLAG_7B_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
* FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section not finished
* FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
* FLAG_RANDOM_NONCE - means we should generate some pseudo-random nonce data (only allows moebius attack) * FLAG_RANDOM_NONCE - means we should generate some pseudo-random nonce data (only allows moebius attack)
*@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ... *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ...
* (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attmpted) * (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attmpted)
*/ */
void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain) void MifareSim(uint8_t flags, uint8_t exitAfterNReads, uint8_t cardsize, uint8_t *datain)
{ {
LED_A_ON();
tag_response_info_t *responses; tag_response_info_t *responses;
uint8_t uid_len = 4; uint8_t uid_len = 4;
uint32_t cuid = 0; uint32_t cuid = 0;
@ -288,8 +334,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
uint32_t cardINTREG = 0; uint32_t cardINTREG = 0;
uint8_t cardINTBLOCK = 0; uint8_t cardINTBLOCK = 0;
struct Crypto1State mpcs = {0, 0}; struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs; struct Crypto1State *pcs = &mpcs;
pcs = &mpcs;
uint32_t numReads = 0; //Counts numer of times reader reads a block uint32_t numReads = 0; //Counts numer of times reader reads a block
uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedCmd_dec[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedCmd_dec[MAX_MIFARE_FRAME_SIZE];
@ -297,11 +342,11 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
uint16_t receivedCmd_len; uint16_t receivedCmd_len;
uint8_t response[MAX_MIFARE_FRAME_SIZE]; uint8_t response[MAX_MIFARE_FRAME_SIZE];
uint8_t response_par[MAX_MIFARE_PARITY_SIZE]; uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
uint8_t fixed_nonce[] = {0x01, 0x02, 0x03, 0x04};
uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04}; int num_blocks = ParamCardSizeBlocks(cardsize);
uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
//Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2 // Here we collect UID, sector, keytype, NT, AR, NR, NT2, AR2, NR2
// This will be used in the reader-only attack. // This will be used in the reader-only attack.
// allow collecting up to 7 sets of nonces to allow recovery of up to 7 keys // allow collecting up to 7 sets of nonces to allow recovery of up to 7 keys
@ -322,13 +367,13 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
if (flags & FLAG_RANDOM_NONCE) { if (flags & FLAG_RANDOM_NONCE) {
nonce = prand(); nonce = prand();
} else { } else {
nonce = bytes_to_num(rAUTH_NT, 4); nonce = bytes_to_num(fixed_nonce, 4);
} }
// free eventually allocated BigBuf memory but keep Emulator Memory // free eventually allocated BigBuf memory but keep Emulator Memory
BigBuf_free_keep_EM(); BigBuf_free_keep_EM();
MifareSimInit(flags, datain, &responses, &cuid, &uid_len); MifareSimInit(flags, datain, &responses, &cuid, &uid_len, cardsize);
// We need to listen to the high-frequency, peak-detected path. // We need to listen to the high-frequency, peak-detected path.
iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
@ -345,25 +390,28 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
while (!button_pushed && !finished && !usb_poll_validate_length()) { while (!button_pushed && !finished && !usb_poll_validate_length()) {
WDT_HIT(); WDT_HIT();
// find reader field
if (cardSTATE == MFEMUL_NOFIELD) { if (cardSTATE == MFEMUL_NOFIELD) {
// wait for reader HF field
int vHf = (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10; int vHf = (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10;
if (vHf > MF_MINFIELDV) { if (vHf > MF_MINFIELDV) {
LED_A_ON(); LED_D_ON();
cardSTATE_TO_IDLE(); cardSTATE = MFEMUL_IDLE;
} }
button_pushed = BUTTON_PRESS(); button_pushed = BUTTON_PRESS();
continue; continue;
} }
//Now, get data //Now, get data
FpgaEnableTracing();
int res = EmGetCmd(receivedCmd, &receivedCmd_len, receivedCmd_par); int res = EmGetCmd(receivedCmd, &receivedCmd_len, receivedCmd_par);
if (res == 2) { //Field is off! if (res == 2) { // Reader has dropped the HF field. Power off.
LEDsoff(); FpgaDisableTracing();
LED_D_OFF();
cardSTATE = MFEMUL_NOFIELD; cardSTATE = MFEMUL_NOFIELD;
continue; continue;
} else if (res == 1) { // button pressed } else if (res == 1) { // button pressed
FpgaDisableTracing();
button_pushed = true; button_pushed = true;
break; break;
} }
@ -371,6 +419,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
// WUPA in HALTED state or REQA or WUPA in any other state // WUPA in HALTED state or REQA or WUPA in any other state
if (receivedCmd_len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) { if (receivedCmd_len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) {
EmSendPrecompiledCmd(&responses[ATQA]); EmSendPrecompiledCmd(&responses[ATQA]);
FpgaDisableTracing();
// init crypto block // init crypto block
crypto1_destroy(pcs); crypto1_destroy(pcs);
@ -378,8 +427,6 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
if (flags & FLAG_RANDOM_NONCE) { if (flags & FLAG_RANDOM_NONCE) {
nonce = prand(); nonce = prand();
} }
LED_B_OFF();
LED_C_OFF();
cardSTATE = MFEMUL_SELECT1; cardSTATE = MFEMUL_SELECT1;
continue; continue;
} }
@ -390,52 +437,56 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
case MFEMUL_IDLE:{ case MFEMUL_IDLE:{
break; break;
} }
case MFEMUL_SELECT1:{ case MFEMUL_SELECT1:{
// select all - 0x93 0x20 // select all - 0x93 0x20
if (receivedCmd_len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x20)) { if (receivedCmd_len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x20)) {
if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL CL1 received");
EmSendPrecompiledCmd(&responses[UIDBCC1]); EmSendPrecompiledCmd(&responses[UIDBCC1]);
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("SELECT ALL CL1 received");
break; break;
} }
// select card - 0x93 0x70 ... // select card - 0x93 0x70 ...
if (receivedCmd_len == 9 && if (receivedCmd_len == 9 &&
(receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], responses[UIDBCC1].response, 4) == 0)) { (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], responses[UIDBCC1].response, 4) == 0)) {
if (MF_DBGLEVEL >= 4) Dbprintf("SELECT CL1 %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
if (uid_len == 4) { if (uid_len == 4) {
EmSendPrecompiledCmd(&responses[SAKfinal]); EmSendPrecompiledCmd(&responses[SAKfinal]);
LED_B_ON();
cardSTATE = MFEMUL_WORK; cardSTATE = MFEMUL_WORK;
break;
} else if (uid_len == 7) { } else if (uid_len == 7) {
EmSendPrecompiledCmd(&responses[SAK1]); EmSendPrecompiledCmd(&responses[SAK1]);
cardSTATE = MFEMUL_SELECT2; cardSTATE = MFEMUL_SELECT2;
}
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("SELECT CL1 %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
break; break;
} }
} cardSTATE = MFEMUL_IDLE;
cardSTATE_TO_IDLE();
break; break;
} }
case MFEMUL_SELECT2:{ case MFEMUL_SELECT2:{
// select all cl2 - 0x95 0x20 // select all cl2 - 0x95 0x20
if (receivedCmd_len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x20)) { if (receivedCmd_len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x20)) {
if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL CL2 received");
EmSendPrecompiledCmd(&responses[UIDBCC2]); EmSendPrecompiledCmd(&responses[UIDBCC2]);
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("SELECT ALL CL2 received");
break; break;
} }
// select cl2 card - 0x95 0x70 xxxxxxxxxxxx // select cl2 card - 0x95 0x70 xxxxxxxxxxxx
if (receivedCmd_len == 9 && if (receivedCmd_len == 9 &&
(receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], responses[UIDBCC2].response, 4) == 0)) { (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], responses[UIDBCC2].response, 4) == 0)) {
if (uid_len == 7) { if (uid_len == 7) {
if (MF_DBGLEVEL >= 4) Dbprintf("SELECT CL2 %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
EmSendPrecompiledCmd(&responses[SAKfinal]); EmSendPrecompiledCmd(&responses[SAKfinal]);
LED_B_ON(); FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("SELECT CL2 %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
cardSTATE = MFEMUL_WORK; cardSTATE = MFEMUL_WORK;
break; break;
} }
} }
cardSTATE_TO_IDLE(); cardSTATE = MFEMUL_IDLE;
break; break;
} }
case MFEMUL_WORK:{ case MFEMUL_WORK:{
if (receivedCmd_len != 4) { // all commands must have exactly 4 bytes if (receivedCmd_len != 4) { // all commands must have exactly 4 bytes
break; break;
@ -448,59 +499,71 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
memcpy(receivedCmd_dec, receivedCmd, receivedCmd_len); memcpy(receivedCmd_dec, receivedCmd, receivedCmd_len);
} }
if (!HasValidCRC(receivedCmd_dec, receivedCmd_len)) { // all commands must have a valid CRC if (!HasValidCRC(receivedCmd_dec, receivedCmd_len)) { // all commands must have a valid CRC
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_TR));
break; break;
} }
if (receivedCmd_dec[0] == MIFARE_AUTH_KEYA || receivedCmd_dec[0] == MIFARE_AUTH_KEYB) { if (receivedCmd_dec[0] == MIFARE_AUTH_KEYA || receivedCmd_dec[0] == MIFARE_AUTH_KEYB) {
// if authenticating to a block that shouldn't exist - as long as we are not doing the reader attack // if authenticating to a block that shouldn't exist - as long as we are not doing the reader attack
if (receivedCmd_dec[1] >= 16 * 4 && !(flags & FLAG_NR_AR_ATTACK)) { if (receivedCmd_dec[1] >= num_blocks && !(flags & FLAG_NR_AR_ATTACK)) {
//is this the correct response to an auth on a out of range block? marshmellow //is this the correct response to an auth on a out of range block? marshmellow
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],receivedCmd_dec[1]); FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking", receivedCmd_dec[0], receivedCmd_dec[1], receivedCmd_dec[1]);
break; break;
} }
cardAUTHSC = receivedCmd_dec[1] / 4; // received block num cardAUTHSC = BlockToSector(receivedCmd_dec[1]); // received block num
cardAUTHKEY = receivedCmd_dec[0] & 0x01; cardAUTHKEY = receivedCmd_dec[0] & 0x01;
crypto1_destroy(pcs);//Added by martin crypto1_destroy(pcs);//Added by martin
crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
if (!encrypted_data) { // first authentication if (!encrypted_data) { // first authentication
if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY);
crypto1_word(pcs, cuid ^ nonce, 0); // Update crypto state crypto1_word(pcs, cuid ^ nonce, 0); // Update crypto state
num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce num_to_bytes(nonce, 4, response); // Send unencrypted nonce
EmSendCmd(response, sizeof(nonce));
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d", receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY);
} else { // nested authentication } else { // nested authentication
if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d", receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY); num_to_bytes(nonce, sizeof(nonce), response);
ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); uint8_t pcs_in[4] = {0};
num_to_bytes(ans, 4, rAUTH_AT); num_to_bytes(cuid ^ nonce, sizeof(nonce), pcs_in);
mf_crypto1_encryptEx(pcs, response, pcs_in, sizeof(nonce), response_par);
EmSendCmdPar(response, sizeof(nonce), response_par); // send encrypted nonce
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d", receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY);
} }
EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
cardSTATE = MFEMUL_AUTH1; cardSTATE = MFEMUL_AUTH1;
break; break;
} }
if (!encrypted_data) { // all other commands must be encrypted (authenticated)
// halt can be sent encrypted or in clear
if (receivedCmd_dec[0] == ISO14443A_CMD_HALT && receivedCmd_dec[1] == 0x00) {
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("--> HALTED.");
cardSTATE = MFEMUL_HALTED;
break; break;
} }
if(receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK if(receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK
|| receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK || receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK
|| receivedCmd_dec[0] == MIFARE_CMD_INC || receivedCmd_dec[0] == MIFARE_CMD_INC
|| receivedCmd_dec[0] == MIFARE_CMD_DEC || receivedCmd_dec[0] == MIFARE_CMD_DEC
|| receivedCmd_dec[0] == MIFARE_CMD_RESTORE || receivedCmd_dec[0] == MIFARE_CMD_RESTORE
|| receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) { || receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) {
if (receivedCmd_dec[1] >= 16 * 4) { if (receivedCmd_dec[1] >= num_blocks) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],receivedCmd_dec[1]); FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],receivedCmd_dec[1]);
break; break;
} }
if (receivedCmd_dec[1] / 4 != cardAUTHSC) { if (BlockToSector(receivedCmd_dec[1]) != cardAUTHSC) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],cardAUTHSC); FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],cardAUTHSC);
break; break;
} }
} }
if (receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK) { if (receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK) {
uint8_t blockNo = receivedCmd_dec[1]; uint8_t blockNo = receivedCmd_dec[1];
if (MF_DBGLEVEL >= 4) {
Dbprintf("Reader reading block %d (0x%02x)", blockNo, blockNo);
}
emlGetMem(response, blockNo, 1); emlGetMem(response, blockNo, 1);
if (IsSectorTrailer(blockNo)) { if (IsSectorTrailer(blockNo)) {
memset(response, 0x00, 6); // keyA can never be read memset(response, 0x00, 6); // keyA can never be read
@ -518,6 +581,10 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
AppendCrc14443a(response, 16); AppendCrc14443a(response, 16);
mf_crypto1_encrypt(pcs, response, 18, response_par); mf_crypto1_encrypt(pcs, response, 18, response_par);
EmSendCmdPar(response, 18, response_par); EmSendCmdPar(response, 18, response_par);
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {
Dbprintf("Reader reading block %d (0x%02x)", blockNo, blockNo);
}
numReads++; numReads++;
if(exitAfterNReads > 0 && numReads == exitAfterNReads) { if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
Dbprintf("%d reads done, exiting", numReads); Dbprintf("%d reads done, exiting", numReads);
@ -525,23 +592,33 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
} }
break; break;
} }
if (receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK) { if (receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK) {
uint8_t blockNo = receivedCmd_dec[1]; uint8_t blockNo = receivedCmd_dec[1];
if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)", blockNo, blockNo);
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("RECV 0xA0 write block %d (%02x)", blockNo, blockNo);
cardWRBL = blockNo; cardWRBL = blockNo;
cardSTATE = MFEMUL_WRITEBL2; cardSTATE = MFEMUL_WRITEBL2;
break; break;
} }
if (receivedCmd_dec[0] == MIFARE_CMD_INC || receivedCmd_dec[0] == MIFARE_CMD_DEC || receivedCmd_dec[0] == MIFARE_CMD_RESTORE) { if (receivedCmd_dec[0] == MIFARE_CMD_INC || receivedCmd_dec[0] == MIFARE_CMD_DEC || receivedCmd_dec[0] == MIFARE_CMD_RESTORE) {
uint8_t blockNo = receivedCmd_dec[1]; uint8_t blockNo = receivedCmd_dec[1];
if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo);
if (emlCheckValBl(blockNo)) { if (emlCheckValBl(blockNo)) {
if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {
Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo);
}
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
break; break;
} }
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {
Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo);
}
cardWRBL = blockNo; cardWRBL = blockNo;
if (receivedCmd_dec[0] == MIFARE_CMD_INC) if (receivedCmd_dec[0] == MIFARE_CMD_INC)
cardSTATE = MFEMUL_INTREG_INC; cardSTATE = MFEMUL_INTREG_INC;
@ -551,31 +628,29 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
cardSTATE = MFEMUL_INTREG_REST; cardSTATE = MFEMUL_INTREG_REST;
break; break;
} }
if (receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) { if (receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) {
uint8_t blockNo = receivedCmd_dec[1]; uint8_t blockNo = receivedCmd_dec[1];
if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo);
if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd_dec[1])) if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd_dec[1]))
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
else else
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo);
break; break;
} }
// halt
if (receivedCmd_dec[0] == ISO14443A_CMD_HALT && receivedCmd_dec[1] == 0x00) {
if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED.");
LED_B_OFF();
LED_C_OFF();
cardSTATE = MFEMUL_HALTED;
break;
}
// command not allowed // command not allowed
if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Received command not allowed, nacking");
cardSTATE = MFEMUL_IDLE;
break; break;
} }
case MFEMUL_AUTH1:{ case MFEMUL_AUTH1:{
if (receivedCmd_len != 8) { if (receivedCmd_len != 8) {
cardSTATE_TO_IDLE(); cardSTATE = MFEMUL_IDLE;
break; break;
} }
@ -650,7 +725,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
// test if auth OK // test if auth OK
if (cardRr != prng_successor(nonce, 64)){ if (cardRr != prng_successor(nonce, 64)){
if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x", FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
cardAUTHSC, cardAUTHKEY == AUTHKEYA ? 'A' : 'B', cardAUTHSC, cardAUTHKEY == AUTHKEYA ? 'A' : 'B',
cardRr, prng_successor(nonce, 64)); cardRr, prng_successor(nonce, 64));
// Shouldn't we respond anything here? // Shouldn't we respond anything here?
@ -658,17 +734,19 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
// reader to do a WUPA after a while. /Martin // reader to do a WUPA after a while. /Martin
// -- which is the correct response. /piwi // -- which is the correct response. /piwi
cardAUTHKEY = AUTHKEYNONE; // not authenticated cardAUTHKEY = AUTHKEYNONE; // not authenticated
cardSTATE_TO_IDLE(); cardSTATE = MFEMUL_IDLE;
break; break;
} }
ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0); ans = prng_successor(nonce, 96);
num_to_bytes(ans, 4, rAUTH_AT); num_to_bytes(ans, 4, response);
EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); mf_crypto1_encrypt(pcs, response, 4, response_par);
if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c.", cardAUTHSC, cardAUTHKEY == AUTHKEYA ? 'A' : 'B'); EmSendCmdPar(response, 4, response_par);
LED_C_ON(); FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("AUTH COMPLETED for sector %d with key %c.", cardAUTHSC, cardAUTHKEY == AUTHKEYA ? 'A' : 'B');
cardSTATE = MFEMUL_WORK; cardSTATE = MFEMUL_WORK;
break; break;
} }
case MFEMUL_WRITEBL2:{ case MFEMUL_WRITEBL2:{
if (receivedCmd_len == 18) { if (receivedCmd_len == 18) {
mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, receivedCmd_dec); mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, receivedCmd_dec);
@ -695,53 +773,60 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
break; break;
} }
} }
cardSTATE_TO_IDLE(); cardSTATE = MFEMUL_IDLE;
break; break;
} }
case MFEMUL_INTREG_INC:{ case MFEMUL_INTREG_INC:{
if (receivedCmd_len == 6) { if (receivedCmd_len == 6) {
mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans); mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans);
if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
cardSTATE_TO_IDLE(); cardSTATE = MFEMUL_IDLE;
break; break;
} }
cardINTREG = cardINTREG + ans; cardINTREG = cardINTREG + ans;
}
cardSTATE = MFEMUL_WORK; cardSTATE = MFEMUL_WORK;
}
break; break;
} }
case MFEMUL_INTREG_DEC:{ case MFEMUL_INTREG_DEC:{
if (receivedCmd_len == 6) { if (receivedCmd_len == 6) {
mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans); mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans);
if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
cardSTATE_TO_IDLE(); cardSTATE = MFEMUL_IDLE;
break; break;
} }
}
cardINTREG = cardINTREG - ans; cardINTREG = cardINTREG - ans;
cardSTATE = MFEMUL_WORK; cardSTATE = MFEMUL_WORK;
}
break; break;
} }
case MFEMUL_INTREG_REST:{ case MFEMUL_INTREG_REST:{
mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans); mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans);
if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
cardSTATE_TO_IDLE(); cardSTATE = MFEMUL_IDLE;
break; break;
} }
cardSTATE = MFEMUL_WORK; cardSTATE = MFEMUL_WORK;
break; break;
} }
}
} // end of switch
FpgaDisableTracing();
button_pushed = BUTTON_PRESS(); button_pushed = BUTTON_PRESS();
}
} // end of while
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff(); LEDsoff();
if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1) { if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= MF_DBG_INFO) {
for ( uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) { for ( uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
if (ar_nr_collected[i] == 2) { if (ar_nr_collected[i] == 2) {
Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector); Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
@ -758,7 +843,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
for ( uint8_t i = ATTACK_KEY_COUNT; i < ATTACK_KEY_COUNT*2; i++) { for ( uint8_t i = ATTACK_KEY_COUNT; i < ATTACK_KEY_COUNT*2; i++) {
if (ar_nr_collected[i] == 2) { if (ar_nr_collected[i] == 2) {
Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector); Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
Dbprintf("../tools/mfkey/mfkey32v2 %08x %08x %08x %08x %08x %08x %08x", Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x %08x",
ar_nr_resp[i].cuid, //UID ar_nr_resp[i].cuid, //UID
ar_nr_resp[i].nonce, //NT ar_nr_resp[i].nonce, //NT
ar_nr_resp[i].nr, //NR1 ar_nr_resp[i].nr, //NR1
@ -770,10 +855,12 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
} }
} }
} }
if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", get_tracing(), BigBuf_get_traceLen()); if (MF_DBGLEVEL >= MF_DBG_INFO) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", get_tracing(), BigBuf_get_traceLen());
if(flags & FLAG_INTERACTIVE) { // Interactive mode flag, means we need to send ACK if(flags & FLAG_INTERACTIVE) { // Interactive mode flag, means we need to send ACK
//Send the collected ar_nr in the response //Send the collected ar_nr in the response
cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, button_pushed, 0, &ar_nr_resp, sizeof(ar_nr_resp)); cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, button_pushed, 0, &ar_nr_resp, sizeof(ar_nr_resp));
} }
LED_A_OFF();
} }

View file

@ -15,6 +15,6 @@
#include <stdint.h> #include <stdint.h>
extern void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain); extern void MifareSim(uint8_t flags, uint8_t exitAfterNReads, uint8_t cardsize, uint8_t *datain);
#endif #endif

View file

@ -23,7 +23,7 @@
#include "crapto1/crapto1.h" #include "crapto1/crapto1.h"
#include "mbedtls/des.h" #include "mbedtls/des.h"
int MF_DBGLEVEL = MF_DBG_ALL; int MF_DBGLEVEL = MF_DBG_INFO;
// crypto1 helpers // crypto1 helpers
void mf_crypto1_decryptEx(struct Crypto1State *pcs, uint8_t *data_in, int len, uint8_t *data_out){ void mf_crypto1_decryptEx(struct Crypto1State *pcs, uint8_t *data_in, int len, uint8_t *data_out){
@ -47,14 +47,14 @@ void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len){
mf_crypto1_decryptEx(pcs, data, len, data); mf_crypto1_decryptEx(pcs, data, len, data);
} }
void mf_crypto1_encrypt(struct Crypto1State *pcs, uint8_t *data, uint16_t len, uint8_t *par) { void mf_crypto1_encryptEx(struct Crypto1State *pcs, uint8_t *data, uint8_t *in, uint16_t len, uint8_t *par) {
uint8_t bt = 0; uint8_t bt = 0;
int i; int i;
par[0] = 0; par[0] = 0;
for (i = 0; i < len; i++) { for (i = 0; i < len; i++) {
bt = data[i]; bt = data[i];
data[i] = crypto1_byte(pcs, 0x00, 0) ^ data[i]; data[i] = crypto1_byte(pcs, in==NULL?0x00:in[i], 0) ^ data[i];
if((i&0x0007) == 0) if((i&0x0007) == 0)
par[i>>3] = 0; par[i>>3] = 0;
par[i>>3] |= (((filter(pcs->odd) ^ oddparity8(bt)) & 0x01)<<(7-(i&0x0007))); par[i>>3] |= (((filter(pcs->odd) ^ oddparity8(bt)) & 0x01)<<(7-(i&0x0007)));
@ -62,6 +62,10 @@ void mf_crypto1_encrypt(struct Crypto1State *pcs, uint8_t *data, uint16_t len, u
return; return;
} }
void mf_crypto1_encrypt(struct Crypto1State *pcs, uint8_t *data, uint16_t len, uint8_t *par) {
mf_crypto1_encryptEx(pcs, data, NULL, len, par);
}
uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data) { uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data) {
uint8_t bt = 0; uint8_t bt = 0;
int i; int i;

View file

@ -34,11 +34,11 @@
#define MF_MINFIELDV 4000 #define MF_MINFIELDV 4000
// debug // debug
// 0 - no debug messages 1 - error messages 2 - all messages 4 - extended debug mode #define MF_DBG_NONE 0 // no messages
#define MF_DBG_NONE 0 #define MF_DBG_ERROR 1 // errors only
#define MF_DBG_ERROR 1 #define MF_DBG_INFO 2 // errors + info messages
#define MF_DBG_ALL 2 #define MF_DBG_DEBUG 3 // errors + info + debug messages
#define MF_DBG_EXTENDED 4 #define MF_DBG_EXTENDED 4 // errors + info + debug + breaking debug messages
extern int MF_DBGLEVEL; extern int MF_DBGLEVEL;
@ -71,6 +71,7 @@ int mifare_desfire_des_auth2(uint32_t uid, uint8_t *key, uint8_t *blockData);
void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *receivedCmd, int len); void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *receivedCmd, int len);
void mf_crypto1_decryptEx(struct Crypto1State *pcs, uint8_t *data_in, int len, uint8_t *data_out); void mf_crypto1_decryptEx(struct Crypto1State *pcs, uint8_t *data_in, int len, uint8_t *data_out);
void mf_crypto1_encrypt(struct Crypto1State *pcs, uint8_t *data, uint16_t len, uint8_t *par); void mf_crypto1_encrypt(struct Crypto1State *pcs, uint8_t *data, uint16_t len, uint8_t *par);
void mf_crypto1_encryptEx(struct Crypto1State *pcs, uint8_t *data, uint8_t *in, uint16_t len, uint8_t *par);
uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data); uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data);
// Mifare memory structure // Mifare memory structure

View file

@ -937,7 +937,6 @@ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, ui
char line[16][110]; char line[16][110];
for (int j = 0; j < data_len && j/16 < 16; j++) { for (int j = 0; j < data_len && j/16 < 16; j++) {
uint8_t parityBits = parityBytes[j>>3]; uint8_t parityBits = parityBytes[j>>3];
if (protocol != ISO_14443B if (protocol != ISO_14443B
&& protocol != ISO_15693 && protocol != ISO_15693
@ -948,7 +947,6 @@ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, ui
} else { } else {
snprintf(line[j/16]+(( j % 16) * 4), 110, " %02x ", frame[j]); snprintf(line[j/16]+(( j % 16) * 4), 110, " %02x ", frame[j]);
} }
} }
if (markCRCBytes) { if (markCRCBytes) {
@ -961,6 +959,13 @@ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, ui
} }
} }
// mark short bytes (less than 8 Bit + Parity)
if (protocol == ISO_14443A || protocol == PROTO_MIFARE) {
if (duration < 128 * (9 * data_len)) {
line[(data_len-1)/16][((data_len-1)%16) * 4 + 3] = '\'';
}
}
if (data_len == 0) { if (data_len == 0) {
sprintf(line[0]," <empty trace - possible error>"); sprintf(line[0]," <empty trace - possible error>");
} }
@ -990,7 +995,7 @@ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, ui
int num_lines = MIN((data_len - 1)/16 + 1, 16); int num_lines = MIN((data_len - 1)/16 + 1, 16);
for (int j = 0; j < num_lines ; j++) { for (int j = 0; j < num_lines ; j++) {
if (j == 0) { if (j == 0) {
PrintAndLog(" %10d | %10d | %s |%-64s | %s| %s", PrintAndLog(" %10" PRIu32 " | %10" PRIu32 " | %s |%-64s | %s| %s",
(timestamp - first_timestamp), (timestamp - first_timestamp),
(EndOfTransmissionTimestamp - first_timestamp), (EndOfTransmissionTimestamp - first_timestamp),
(isResponse ? "Tag" : "Rdr"), (isResponse ? "Tag" : "Rdr"),
@ -1222,7 +1227,7 @@ int CmdHFList(const char *Cmd)
PrintAndLog("iso14443a - All times are in carrier periods (1/13.56Mhz)"); PrintAndLog("iso14443a - All times are in carrier periods (1/13.56Mhz)");
PrintAndLog("iClass - Timings are not as accurate"); PrintAndLog("iClass - Timings are not as accurate");
PrintAndLog(""); PrintAndLog("");
PrintAndLog(" Start | End | Src | Data (! denotes parity error) | CRC | Annotation |"); PrintAndLog(" Start | End | Src | Data (! denotes parity error, ' denotes short bytes) | CRC | Annotation |");
PrintAndLog("------------|------------|-----|-----------------------------------------------------------------|-----|--------------------|"); PrintAndLog("------------|------------|-----|-----------------------------------------------------------------|-----|--------------------|");
ClearAuthData(); ClearAuthData();

View file

@ -254,14 +254,14 @@ uint8_t NumBlocksPerSector(uint8_t sectorNo)
} }
static int ParamCardSizeSectors(const char c) { static int ParamCardSizeSectors(const char c) {
int numBlocks = 16; int numSectors = 16;
switch (c) { switch (c) {
case '0' : numBlocks = 5; break; case '0' : numSectors = 5; break;
case '2' : numBlocks = 32; break; case '2' : numSectors = 32; break;
case '4' : numBlocks = 40; break; case '4' : numSectors = 40; break;
default: numBlocks = 16; default: numSectors = 16;
} }
return numBlocks; return numSectors;
} }
static int ParamCardSizeBlocks(const char c) { static int ParamCardSizeBlocks(const char c) {
@ -1421,11 +1421,12 @@ void readerAttack(nonces_t ar_resp[], bool setEmulatorMem, bool doStandardAttack
}*/ }*/
} }
int usage_hf14_mf1ksim(void) { int usage_hf14_mfsim(void) {
PrintAndLog("Usage: hf mf sim h u <uid (8, 14, or 20 hex symbols)> n <numreads> i x"); PrintAndLog("Usage: hf mf sim [h] [*<card memory>] [u <uid (8, 14, or 20 hex symbols)>] [n <numreads>] [i] [x]");
PrintAndLog("options:"); PrintAndLog("options:");
PrintAndLog(" h this help"); PrintAndLog(" h (Optional) this help");
PrintAndLog(" u (Optional) UID 4,7 or 10 bytes. If not specified, the UID 4B from emulator memory will be used"); PrintAndLog(" card memory: 0 - MINI(320 bytes), 1 - 1K, 2 - 2K, 4 - 4K, <other, default> - 1K");
PrintAndLog(" u (Optional) UID 4 or 7 bytes. If not specified, the UID 4B from emulator memory will be used");
PrintAndLog(" n (Optional) Automatically exit simulation after <numreads> blocks have been read by reader. 0 = infinite"); PrintAndLog(" n (Optional) Automatically exit simulation after <numreads> blocks have been read by reader. 0 = infinite");
PrintAndLog(" i (Optional) Interactive, means that console will not be returned until simulation finishes or is aborted"); PrintAndLog(" i (Optional) Interactive, means that console will not be returned until simulation finishes or is aborted");
PrintAndLog(" x (Optional) Crack, performs the 'reader attack', nr/ar attack against a legitimate reader, fishes out the key(s)"); PrintAndLog(" x (Optional) Crack, performs the 'reader attack', nr/ar attack against a legitimate reader, fishes out the key(s)");
@ -1434,21 +1435,20 @@ int usage_hf14_mf1ksim(void) {
PrintAndLog(" r (Optional) Generate random nonces instead of sequential nonces. Standard reader attack won't work with this option, only moebius attack works."); PrintAndLog(" r (Optional) Generate random nonces instead of sequential nonces. Standard reader attack won't work with this option, only moebius attack works.");
PrintAndLog("samples:"); PrintAndLog("samples:");
PrintAndLog(" hf mf sim u 0a0a0a0a"); PrintAndLog(" hf mf sim u 0a0a0a0a");
PrintAndLog(" hf mf sim *4");
PrintAndLog(" hf mf sim u 11223344556677"); PrintAndLog(" hf mf sim u 11223344556677");
PrintAndLog(" hf mf sim u 112233445566778899AA");
PrintAndLog(" hf mf sim f uids.txt"); PrintAndLog(" hf mf sim f uids.txt");
PrintAndLog(" hf mf sim u 0a0a0a0a e"); PrintAndLog(" hf mf sim u 0a0a0a0a e");
return 0; return 0;
} }
int CmdHF14AMf1kSim(const char *Cmd) { int CmdHF14AMfSim(const char *Cmd) {
UsbCommand resp; UsbCommand resp;
uint8_t uid[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; uint8_t uid[7] = {0};
uint8_t exitAfterNReads = 0; uint8_t exitAfterNReads = 0;
uint8_t flags = 0; uint8_t flags = 0;
int uidlen = 0; int uidlen = 0;
uint8_t pnr = 0;
bool setEmulatorMem = false; bool setEmulatorMem = false;
bool attackFromFile = false; bool attackFromFile = false;
FILE *f; FILE *f;
@ -1459,9 +1459,21 @@ int CmdHF14AMf1kSim(const char *Cmd) {
uint8_t cmdp = 0; uint8_t cmdp = 0;
bool errors = false; bool errors = false;
uint8_t cardsize = '1';
while(param_getchar(Cmd, cmdp) != 0x00) { while(param_getchar(Cmd, cmdp) != 0x00) {
switch(param_getchar(Cmd, cmdp)) { switch(param_getchar(Cmd, cmdp)) {
case '*':
cardsize = param_getchar(Cmd + 1, cmdp);
switch(cardsize) {
case '0':
case '1':
case '2':
case '4': break;
default: cardsize = '1';
}
cmdp++;
break;
case 'e': case 'e':
case 'E': case 'E':
setEmulatorMem = true; setEmulatorMem = true;
@ -1485,7 +1497,7 @@ int CmdHF14AMf1kSim(const char *Cmd) {
break; break;
case 'h': case 'h':
case 'H': case 'H':
return usage_hf14_mf1ksim(); return usage_hf14_mfsim();
case 'i': case 'i':
case 'I': case 'I':
flags |= FLAG_INTERACTIVE; flags |= FLAG_INTERACTIVE;
@ -1493,7 +1505,7 @@ int CmdHF14AMf1kSim(const char *Cmd) {
break; break;
case 'n': case 'n':
case 'N': case 'N':
exitAfterNReads = param_get8(Cmd, pnr+1); exitAfterNReads = param_get8(Cmd, cmdp+1);
cmdp += 2; cmdp += 2;
break; break;
case 'r': case 'r':
@ -1505,10 +1517,9 @@ int CmdHF14AMf1kSim(const char *Cmd) {
case 'U': case 'U':
param_gethex_ex(Cmd, cmdp+1, uid, &uidlen); param_gethex_ex(Cmd, cmdp+1, uid, &uidlen);
switch(uidlen) { switch(uidlen) {
case 20: flags = FLAG_10B_UID_IN_DATA; break; //not complete
case 14: flags = FLAG_7B_UID_IN_DATA; break; case 14: flags = FLAG_7B_UID_IN_DATA; break;
case 8: flags = FLAG_4B_UID_IN_DATA; break; case 8: flags = FLAG_4B_UID_IN_DATA; break;
default: return usage_hf14_mf1ksim(); default: return usage_hf14_mfsim();
} }
cmdp += 2; cmdp += 2;
break; break;
@ -1525,7 +1536,7 @@ int CmdHF14AMf1kSim(const char *Cmd) {
if(errors) break; if(errors) break;
} }
//Validations //Validations
if(errors) return usage_hf14_mf1ksim(); if(errors) return usage_hf14_mfsim();
//get uid from file //get uid from file
if (attackFromFile) { if (attackFromFile) {
@ -1552,7 +1563,6 @@ int CmdHF14AMf1kSim(const char *Cmd) {
uidlen = strlen(buf)-1; uidlen = strlen(buf)-1;
switch(uidlen) { switch(uidlen) {
case 20: flags |= FLAG_10B_UID_IN_DATA; break; //not complete
case 14: flags |= FLAG_7B_UID_IN_DATA; break; case 14: flags |= FLAG_7B_UID_IN_DATA; break;
case 8: flags |= FLAG_4B_UID_IN_DATA; break; case 8: flags |= FLAG_4B_UID_IN_DATA; break;
default: default:
@ -1565,13 +1575,17 @@ int CmdHF14AMf1kSim(const char *Cmd) {
sscanf(&buf[i], "%02x", (unsigned int *)&uid[i / 2]); sscanf(&buf[i], "%02x", (unsigned int *)&uid[i / 2]);
} }
PrintAndLog("mf 1k sim uid: %s, numreads:%d, flags:%d (0x%02x) - press button to abort", PrintAndLog("mf sim cardsize: %s, uid: %s, numreads:%d, flags:%d (0x%02x) - press button to abort",
cardsize == '0' ? "Mini" :
cardsize == '2' ? "2K" :
cardsize == '4' ? "4K" : "1K",
flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4): flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4):
flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): "N/A",
flags & FLAG_10B_UID_IN_DATA ? sprint_hex(uid,10): "N/A" exitAfterNReads,
, exitAfterNReads, flags, flags); flags,
flags);
UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads,0}}; UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads, cardsize}};
memcpy(c.d.asBytes, uid, sizeof(uid)); memcpy(c.d.asBytes, uid, sizeof(uid));
clearCommandBuffer(); clearCommandBuffer();
SendCommand(&c); SendCommand(&c);
@ -1593,15 +1607,20 @@ int CmdHF14AMf1kSim(const char *Cmd) {
count++; count++;
} }
fclose(f); fclose(f);
} else { //not from file } else { //not from file
PrintAndLog("mf 1k sim uid: %s, numreads:%d, flags:%d (0x%02x) ", PrintAndLog("mf sim cardsize: %s, uid: %s, numreads:%d, flags:%d (0x%02x) ",
cardsize == '0' ? "Mini" :
cardsize == '2' ? "2K" :
cardsize == '4' ? "4K" : "1K",
flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4): flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4):
flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): "N/A",
flags & FLAG_10B_UID_IN_DATA ? sprint_hex(uid,10): "N/A" exitAfterNReads,
, exitAfterNReads, flags, flags); flags,
flags);
UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads,0}}; UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads, cardsize}};
memcpy(c.d.asBytes, uid, sizeof(uid)); memcpy(c.d.asBytes, uid, sizeof(uid));
clearCommandBuffer(); clearCommandBuffer();
SendCommand(&c); SendCommand(&c);
@ -2925,8 +2944,8 @@ static command_t CommandTable[] =
{"hardnested", CmdHF14AMfNestedHard, 0, "Nested attack for hardened Mifare cards"}, {"hardnested", CmdHF14AMfNestedHard, 0, "Nested attack for hardened Mifare cards"},
{"nested", CmdHF14AMfNested, 0, "Test nested authentication"}, {"nested", CmdHF14AMfNested, 0, "Test nested authentication"},
{"sniff", CmdHF14AMfSniff, 0, "Sniff card-reader communication"}, {"sniff", CmdHF14AMfSniff, 0, "Sniff card-reader communication"},
{"sim", CmdHF14AMf1kSim, 0, "Simulate MIFARE card"}, {"sim", CmdHF14AMfSim, 0, "Simulate MIFARE card"},
{"eclr", CmdHF14AMfEClear, 0, "Clear simulator memory block"}, {"eclr", CmdHF14AMfEClear, 0, "Clear simulator memory"},
{"eget", CmdHF14AMfEGet, 0, "Get simulator memory block"}, {"eget", CmdHF14AMfEGet, 0, "Get simulator memory block"},
{"eset", CmdHF14AMfESet, 0, "Set simulator memory block"}, {"eset", CmdHF14AMfESet, 0, "Set simulator memory block"},
{"eload", CmdHF14AMfELoad, 0, "Load from file emul dump"}, {"eload", CmdHF14AMfELoad, 0, "Load from file emul dump"},

View file

@ -226,12 +226,11 @@ typedef struct{
//Mifare simulation flags //Mifare simulation flags
#define FLAG_INTERACTIVE 0x01 #define FLAG_INTERACTIVE (1<<0)
#define FLAG_4B_UID_IN_DATA 0x02 #define FLAG_4B_UID_IN_DATA (1<<1)
#define FLAG_7B_UID_IN_DATA 0x04 #define FLAG_7B_UID_IN_DATA (1<<2)
#define FLAG_10B_UID_IN_DATA 0x08 #define FLAG_NR_AR_ATTACK (1<<4)
#define FLAG_NR_AR_ATTACK 0x10 #define FLAG_RANDOM_NONCE (1<<5)
#define FLAG_RANDOM_NONCE 0x20
//Iclass reader flags //Iclass reader flags