Always enable fast response mode (was enabled for flasher only)

* ensure that CMD_ACK is used exclusively for the very last response of each PM3 operation. All Dbprintf() must be before.
* always switch off field before exiting
* append null packet for USB transfers % 64 bytes
* reformatting and whitespace fixes
This commit is contained in:
pwpiwi 2020-01-23 22:07:17 +01:00
parent b8ed9975e5
commit 929b61c670
17 changed files with 501 additions and 474 deletions

View file

@ -453,20 +453,17 @@ int EPA_PACE_MSE_Set_AT(pace_version_info_t pace_version_info, uint8_t password)
//-----------------------------------------------------------------------------
// Perform the PACE protocol by replaying given APDUs
//-----------------------------------------------------------------------------
void EPA_PACE_Replay(UsbCommand *c)
{
void EPA_PACE_Replay(UsbCommand *c) {
uint32_t timings[sizeof(apdu_lengths_replay) / sizeof(apdu_lengths_replay[0])] = {0};
// if an APDU has been passed, save it
// if an APDU has been passed, just save it
if (c->arg[0] != 0) {
// make sure it's not too big
if(c->arg[2] > apdus_replay[c->arg[0] - 1].len)
{
if(c->arg[2] > apdus_replay[c->arg[0] - 1].len) {
cmd_send(CMD_ACK, 1, 0, 0, NULL, 0);
return;
}
memcpy(apdus_replay[c->arg[0] - 1].data + c->arg[1],
c->d.asBytes,
c->arg[2]);
memcpy(apdus_replay[c->arg[0] - 1].data + c->arg[1], c->d.asBytes, c->arg[2]);
// save/update APDU length
if (c->arg[1] == 0) {
apdu_lengths_replay[c->arg[0] - 1] = c->arg[2];

View file

@ -674,14 +674,14 @@ static bool selectIclassTag(uint8_t *card_data, uint32_t *eof_time) {
// Send act_all
ReaderTransmitIClass(act_all, 1, &start_time);
// Card present?
if (GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_ACTALL, eof_time) < 0) return false;//Fail
if (GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_ACTALL, eof_time) < 0) return false; //Fail
//Send Identify
start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
ReaderTransmitIClass(identify, 1, &start_time);
//We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
uint8_t len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time);
if (len != 10) return false;//Fail
if (len != 10) return false; //Fail
//Copy the Anti-collision CSN to our select-packet
memcpy(&select[1], resp, 8);
@ -690,7 +690,7 @@ static bool selectIclassTag(uint8_t *card_data, uint32_t *eof_time) {
ReaderTransmitIClass(select, sizeof(select), &start_time);
//We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time);
if (len != 10) return false;//Fail
if (len != 10) return false; //Fail
//Success - we got CSN
//Save CSN in response data
@ -733,39 +733,39 @@ void ReaderIClass(uint8_t flags) {
if (selectIclassTag(resp, &eof_time)) {
result_status = FLAG_ICLASS_READER_CSN;
memcpy(card_data, resp, 8);
}
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
//Read block 1, config
if (flags & FLAG_ICLASS_READER_CONF) {
if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) {
result_status |= FLAG_ICLASS_READER_CONF;
memcpy(card_data+8, resp, 8);
} else {
Dbprintf("Failed to read config block");
}
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
}
//Read block 2, e-purse
if (flags & FLAG_ICLASS_READER_CC) {
if (sendCmdGetResponseWithRetries(readEpurse, sizeof(readEpurse), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) {
result_status |= FLAG_ICLASS_READER_CC;
memcpy(card_data + (8*2), resp, 8);
} else {
Dbprintf("Failed to read e-purse");
//Read block 1, config
if (flags & FLAG_ICLASS_READER_CONF) {
if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) {
result_status |= FLAG_ICLASS_READER_CONF;
memcpy(card_data+8, resp, 8);
} else {
Dbprintf("Failed to read config block");
}
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
}
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
}
//Read block 5, AA
if (flags & FLAG_ICLASS_READER_AA) {
if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) {
result_status |= FLAG_ICLASS_READER_AA;
memcpy(card_data + (8*5), resp, 8);
} else {
Dbprintf("Failed to read AA block");
//Read block 2, e-purse
if (flags & FLAG_ICLASS_READER_CC) {
if (sendCmdGetResponseWithRetries(readEpurse, sizeof(readEpurse), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) {
result_status |= FLAG_ICLASS_READER_CC;
memcpy(card_data + (8*2), resp, 8);
} else {
Dbprintf("Failed to read e-purse");
}
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
}
//Read block 5, AA
if (flags & FLAG_ICLASS_READER_AA) {
if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) {
result_status |= FLAG_ICLASS_READER_AA;
memcpy(card_data + (8*5), resp, 8);
} else {
Dbprintf("Failed to read AA block");
}
}
}
@ -819,9 +819,9 @@ void iClass_ReadBlk(uint8_t blockno) {
uint8_t readblockdata[10];
bool isOK = iClass_ReadBlock(blockno, readblockdata);
cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8);
LED_A_OFF();
}
@ -899,11 +899,10 @@ void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) {
} else {
Dbprintf("Write block [%02x] failed", blockNo);
}
cmd_send(CMD_ACK, isOK, 0, 0, 0, 0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
cmd_send(CMD_ACK, isOK, 0, 0, 0, 0);
LED_A_OFF();
}
@ -934,6 +933,5 @@ void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) {
LED_D_OFF();
cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
LED_A_OFF();
}

View file

@ -2026,15 +2026,15 @@ void ReaderIso14443a(UsbCommand *c) {
set_tracing(true);
if(param & ISO14A_CLEAR_TRACE) {
if (param & ISO14A_CLEAR_TRACE) {
clear_trace();
}
if(param & ISO14A_REQUEST_TRIGGER) {
if (param & ISO14A_REQUEST_TRIGGER) {
iso14a_set_trigger(true);
}
if(param & ISO14A_CONNECT) {
if (param & ISO14A_CONNECT) {
LED_A_ON();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
if(!(param & ISO14A_NO_SELECT)) {
@ -2048,16 +2048,16 @@ void ReaderIso14443a(UsbCommand *c) {
}
FpgaDisableTracing();
LED_B_ON();
cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
cmd_send(CMD_NACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
LED_B_OFF();
}
}
if(param & ISO14A_SET_TIMEOUT) {
if (param & ISO14A_SET_TIMEOUT) {
iso14a_set_timeout(timeout);
}
if(param & ISO14A_APDU && !cantSELECT) {
if (param & ISO14A_APDU && !cantSELECT) {
uint8_t res;
arg0 = iso14_apdu(cmd, len, (param & ISO14A_SEND_CHAINING), buf, &res);
FpgaDisableTracing();
@ -2066,8 +2066,8 @@ void ReaderIso14443a(UsbCommand *c) {
LED_B_OFF();
}
if(param & ISO14A_RAW && !cantSELECT) {
if(param & ISO14A_APPEND_CRC) {
if (param & ISO14A_RAW && !cantSELECT) {
if (param & ISO14A_APPEND_CRC) {
if(param & ISO14A_TOPAZMODE) {
AppendCrc14443b(cmd,len);
} else {
@ -2076,8 +2076,8 @@ void ReaderIso14443a(UsbCommand *c) {
len += 2;
if (lenbits) lenbits += 16;
}
if(lenbits>0) { // want to send a specific number of bits (e.g. short commands)
if(param & ISO14A_TOPAZMODE) {
if (lenbits > 0) { // want to send a specific number of bits (e.g. short commands)
if (param & ISO14A_TOPAZMODE) {
int bits_to_send = lenbits;
uint16_t i = 0;
ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
@ -2091,7 +2091,7 @@ void ReaderIso14443a(UsbCommand *c) {
ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
}
} else { // want to send complete bytes only
if(param & ISO14A_TOPAZMODE) {
if (param & ISO14A_TOPAZMODE) {
uint16_t i = 0;
ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
while (i < len) {
@ -2105,15 +2105,15 @@ void ReaderIso14443a(UsbCommand *c) {
FpgaDisableTracing();
LED_B_ON();
cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
cmd_send(CMD_ACK, arg0, 0, 0, buf, sizeof(buf));
LED_B_OFF();
}
if(param & ISO14A_REQUEST_TRIGGER) {
if (param & ISO14A_REQUEST_TRIGGER) {
iso14a_set_trigger(false);
}
if(param & ISO14A_NO_DISCONNECT) {
if (param & ISO14A_NO_DISCONNECT) {
return;
}

View file

@ -111,11 +111,12 @@ void MifareReadBlock(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
if (MF_DBGLEVEL >= 2) DbpString("READ BLOCK FINISHED");
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_B_ON();
cmd_send(CMD_ACK,isOK,0,0,dataoutbuf,16);
LED_B_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
@ -202,9 +203,10 @@ void MifareUReadBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain)
return;
}
cmd_send(CMD_ACK,1,0,0,dataout,16);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
cmd_send(CMD_ACK,1,0,0,dataout,16);
LED_A_OFF();
}
@ -266,12 +268,13 @@ void MifareReadSector(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
if (MF_DBGLEVEL >= 2) DbpString("READ SECTOR FINISHED");
// Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_B_ON();
cmd_send(CMD_ACK,isOK,0,0,dataoutbuf,16*NumBlocksPerSector(sectorNo));
LED_B_OFF();
// Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
@ -362,10 +365,11 @@ void MifareUReadCard(uint8_t arg0, uint16_t arg1, uint8_t arg2, uint8_t *datain)
if (MF_DBGLEVEL >= MF_DBG_DEBUG) Dbprintf("Blocks read %d", countblocks);
cmd_send(CMD_ACK, 1, countblocks*4, BigBuf_max_traceLen(), 0, 0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
cmd_send(CMD_ACK, 1, countblocks*4, BigBuf_max_traceLen(), 0, 0);
BigBuf_free();
LED_A_OFF();
}
@ -431,13 +435,14 @@ void MifareWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
if (MF_DBGLEVEL >= 2) DbpString("WRITE BLOCK FINISHED");
// Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_B_ON();
cmd_send(CMD_ACK,isOK,0,0,0,0);
LED_B_OFF();
// Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
@ -475,8 +480,9 @@ void MifareUWriteBlockCompat(uint8_t arg0, uint8_t *datain)
if (MF_DBGLEVEL >= 2) DbpString("WRITE BLOCK FINISHED");
cmd_send(CMD_ACK,1,0,0,0,0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
cmd_send(CMD_ACK,1,0,0,0,0);
LEDsoff();
}
*/
@ -544,8 +550,9 @@ void MifareUWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain)
if (MF_DBGLEVEL >= 2) DbpString("WRITE BLOCK FINISHED");
cmd_send(CMD_ACK,1,0,0,0,0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
cmd_send(CMD_ACK,1,0,0,0,0);
LEDsoff();
}
@ -613,8 +620,9 @@ void MifareUSetPwd(uint8_t arg0, uint8_t *datain){
return;
};
cmd_send(CMD_ACK,1,0,0,0,0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
cmd_send(CMD_ACK,1,0,0,0,0);
LEDsoff();
}
@ -743,16 +751,17 @@ void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags,
crypto1_destroy(pcs);
if (field_off) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
LED_B_ON();
cmd_send(CMD_ACK, isOK, cuid, num_nonces, buf, sizeof(buf));
LED_B_OFF();
if (MF_DBGLEVEL >= 3) DbpString("AcquireEncryptedNonces finished");
if (field_off) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
}
@ -978,13 +987,14 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *dat
memcpy(buf+16, &target_ks[1], 4);
memcpy(buf+20, &authentication_timeout, 4);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
if (MF_DBGLEVEL >= 3) DbpString("NESTED FINISHED");
LED_B_ON();
cmd_send(CMD_ACK, isOK, 0, targetBlockNo + (targetKeyType * 0x100), buf, sizeof(buf));
LED_B_OFF();
if (MF_DBGLEVEL >= 3) DbpString("NESTED FINISHED");
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
@ -1352,13 +1362,14 @@ void MifareCWipe(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain){
break;
}
// reset fpga
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
// send USB response
LED_B_ON();
cmd_send(CMD_ACK,isOK,0,0,NULL,0);
LED_B_OFF();
// reset fpga
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
return;
@ -1490,14 +1501,15 @@ void MifareCSetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai
break;
}
if ((workFlags & 0x10) || (!isOK)) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
}
LED_B_ON();
cmd_send(CMD_ACK,isOK,0,0,uid,4);
LED_B_OFF();
if ((workFlags & 0x10) || (!isOK)) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
LEDsoff();
}
@ -1574,6 +1586,10 @@ void MifareCGetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai
break;
}
if ((workFlags & 0x10) || (!isOK)) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
}
LED_B_ON();
if (workFlags & 0x20) {
if (isOK)
@ -1583,10 +1599,7 @@ void MifareCGetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai
cmd_send(CMD_ACK,isOK,0,0,data,18);
LED_B_OFF();
if ((workFlags & 0x10) || (!isOK)) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
LEDsoff();
}
void MifareCIdent(){
@ -1622,11 +1635,12 @@ void MifareCIdent(){
// From iceman1001: removed the if, since some magic tags misbehavies and send an answer to it.
mifare_classic_halt(NULL, 0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_B_ON();
cmd_send(CMD_ACK,isOK,0,0,0,0);
LED_B_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
@ -1657,7 +1671,8 @@ void Mifare_DES_Auth1(uint8_t arg0, uint8_t *datain){
}
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) DbpString("AUTH 1 FINISHED");
cmd_send(CMD_ACK,1,cuid,0,dataout, sizeof(dataout));
cmd_send(CMD_ACK, 1, cuid, 0, dataout, sizeof(dataout));
}
void Mifare_DES_Auth2(uint32_t arg0, uint8_t *datain){
@ -1671,16 +1686,17 @@ void Mifare_DES_Auth2(uint32_t arg0, uint8_t *datain){
isOK = mifare_desfire_des_auth2(cuid, key, dataout);
if( isOK) {
if (isOK) {
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Authentication part2: Failed");
OnError(4);
return;
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) DbpString("AUTH 2 FINISHED");
cmd_send(CMD_ACK, isOK, 0, 0, dataout, sizeof(dataout));
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}

View file

@ -152,7 +152,7 @@ bool intMfSniffSend() {
while (pckLen > 0) {
pckSize = MIN(USB_CMD_DATA_SIZE, pckLen);
LED_B_ON();
cmd_send(CMD_ACK, 1, BigBuf_get_traceLen(), pckSize, trace + BigBuf_get_traceLen() - pckLen, pckSize);
cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 1, BigBuf_get_traceLen(), pckSize, trace + BigBuf_get_traceLen() - pckLen, pckSize);
LED_B_OFF();
pckLen -= pckSize;
@ -160,7 +160,7 @@ bool intMfSniffSend() {
}
LED_B_ON();
cmd_send(CMD_ACK,2,0,0,0,0);
cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,2,0,0,0,0);
LED_B_OFF();
clear_trace();

View file

@ -46,28 +46,28 @@ int CmdHF14AList(const char *Cmd)
return 0;
}
int Hf14443_4aGetCardData(iso14a_card_select_t * card) {
int Hf14443_4aGetCardData(iso14a_card_select_t *card) {
UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_CONNECT, 0, 0}};
SendCommand(&c);
UsbCommand resp;
WaitForResponse(CMD_ACK,&resp);
WaitForResponse(CMD_NACK, &resp);
memcpy(card, (iso14a_card_select_t *)resp.d.asBytes, sizeof(iso14a_card_select_t));
uint64_t select_status = resp.arg[0]; // 0: couldn't read, 1: OK, with ATS, 2: OK, no ATS, 3: proprietary Anticollision
if(select_status == 0) {
if (select_status == 0) {
PrintAndLog("E->iso14443a card select failed");
return 1;
}
if(select_status == 2) {
if (select_status == 2) {
PrintAndLog("E->Card doesn't support iso14443-4 mode");
return 1;
}
if(select_status == 3) {
if (select_status == 3) {
PrintAndLog("E->Card doesn't support standard iso14443-3 anticollision");
PrintAndLog("\tATQA : %02x %02x", card->atqa[1], card->atqa[0]);
return 1;
@ -156,20 +156,24 @@ int CmdHF14AReader(const char *Cmd) {
return 0;
}
int CmdHF14AInfo(const char *Cmd)
{
int CmdHF14AInfo(const char *Cmd) {
UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_CONNECT | ISO14A_NO_DISCONNECT, 0, 0}};
SendCommand(&c);
UsbCommand resp;
WaitForResponse(CMD_ACK,&resp);
if (!WaitForResponseTimeout(CMD_NACK, &resp, 500)) {
if (Cmd[0] != 's') PrintAndLog("Error: No response from Proxmark.\n");
return 0;
}
iso14a_card_select_t card;
memcpy(&card, (iso14a_card_select_t *)resp.d.asBytes, sizeof(iso14a_card_select_t));
uint64_t select_status = resp.arg[0]; // 0: couldn't read, 1: OK, with ATS, 2: OK, no ATS, 3: proprietary Anticollision
if(select_status == 0) {
if (select_status == 0) {
if (Cmd[0] != 's') PrintAndLog("iso14443a card select failed");
// disconnect
c.arg[0] = 0;
@ -217,13 +221,13 @@ int CmdHF14AInfo(const char *Cmd)
SendCommand(&c);
UsbCommand resp;
WaitForResponse(CMD_ACK,&resp);
WaitForResponse(CMD_NACK,&resp);
memcpy(&card, (iso14a_card_select_t *)resp.d.asBytes, sizeof(iso14a_card_select_t));
select_status = resp.arg[0]; // 0: couldn't read, 1: OK, with ATS, 2: OK, no ATS
if(select_status == 0) {
if (select_status == 0) {
//PrintAndLog("iso14443a card select failed");
// disconnect
c.arg[0] = 0;
@ -272,7 +276,7 @@ int CmdHF14AInfo(const char *Cmd)
// Double & triple sized UID, can be mapped to a manufacturer.
// HACK: does this apply for Ultralight cards?
if ( card.uidlen > 4 ) {
if (card.uidlen > 4) {
PrintAndLog("MANUFACTURER : %s", getManufacturerName(card.uid[0]));
}
@ -430,7 +434,7 @@ int CmdHF14AInfo(const char *Cmd)
(void)mfCIdentify();
if (isMifareClassic) {
switch(DetectClassicPrng()) {
switch (DetectClassicPrng()) {
case 0:
PrintAndLog("Prng detection: HARDENED (hardnested)");
break;
@ -462,7 +466,7 @@ int CmdHF14ACUIDs(const char *Cmd)
SendCommand(&c);
UsbCommand resp;
WaitForResponse(CMD_ACK,&resp);
WaitForResponse(CMD_NACK,&resp);
iso14a_card_select_t *card = (iso14a_card_select_t *) resp.d.asBytes;

View file

@ -333,7 +333,7 @@ int HFiClassReader(bool loop, bool verbose) {
while (!ukbhit()) {
SendCommand(&c);
if (WaitForResponseTimeout(CMD_ACK,&resp, 4500)) {
if (WaitForResponseTimeout(CMD_ACK, &resp, 1000)) {
uint8_t readStatus = resp.arg[0] & 0xff;
uint8_t *data = resp.d.asBytes;
@ -368,7 +368,8 @@ int HFiClassReader(bool loop, bool verbose) {
if (tagFound && !loop) return 1;
} else {
if (verbose) PrintAndLog("Command execute timeout");
if (verbose) PrintAndLog("Error: No response from Proxmark.");
break;
}
if (!loop) break;
}

View file

@ -2672,7 +2672,7 @@ int CmdHF14AMfSniff(const char *Cmd){
}
UsbCommand resp;
if (WaitForResponseTimeoutW(CMD_ACK, &resp, 2000, false)) {
if (WaitForResponseTimeoutW(CMD_UNKNOWN, &resp, 2000, false)) {
res = resp.arg[0] & 0xff;
uint16_t traceLen = resp.arg[1];
len = resp.arg[2];

View file

@ -11,11 +11,12 @@
#include "comms.h"
#include <stdio.h>
#include <pthread.h>
#include <inttypes.h>
#if defined(__linux__) && !defined(NO_UNLINK)
#include <unistd.h> // for unlink()
#include <unistd.h> // for unlink()
#endif
#include "uart.h"
#include "ui.h"
@ -33,7 +34,6 @@ static bool offline;
typedef struct {
bool run; // If TRUE, continue running the uart_communication thread
bool block_after_ACK; // if true, block after receiving an ACK package
} communication_arg_t;
static communication_arg_t conn;
@ -78,7 +78,7 @@ void SendCommand(UsbCommand *c) {
if (offline) {
PrintAndLog("Sending bytes to proxmark failed - offline");
return;
}
}
pthread_mutex_lock(&txBufferMutex);
/**
@ -183,7 +183,7 @@ static void UsbCommandReceived(UsbCommand *UC)
} break;
default:
storeCommand(UC);
storeCommand(UC);
break;
}
@ -195,10 +195,12 @@ static bool receive_from_serial(serial_port sp, uint8_t *rx_buf, size_t len, siz
*received_len = 0;
// we eventually need to call uart_receive several times if it times out in the middle of a transfer
while (uart_receive(sp, rx_buf + *received_len, len - *received_len, &bytes_read) && bytes_read && *received_len < len) {
#ifdef COMMS_DEBUG
if (bytes_read != len - *received_len) {
printf("uart_receive() returned true but not enough bytes could be received. received: %d, wanted to receive: %d, already received before: %d\n",
bytes_read, len - *received_len, *received_len);
}
#endif
*received_len += bytes_read;
bytes_read = 0;
}
@ -231,12 +233,12 @@ __attribute__((force_align_arg_pointer))
if (receive_from_serial(sp, prx, bytes_to_read, &rxlen)) {
prx += rxlen;
if (response->cmd & CMD_VARIABLE_SIZE_FLAG) { // new style response with variable size
// printf("received new style response %04" PRIx16 ", datalen = %d, arg[0] = %08" PRIx32 ", arg[1] = %08" PRIx32 ", arg[2] = %08" PRIx32 "\n",
// PrintAndLog("received new style response %04" PRIx16 ", datalen = %d, arg[0] = %08" PRIx32 ", arg[1] = %08" PRIx32 ", arg[2] = %08" PRIx32 "\n",
// response->cmd, response->datalen, response->arg[0], response->arg[1], response->arg[2]);
bytes_to_read = response->datalen;
if (receive_from_serial(sp, prx, bytes_to_read, &rxlen)) {
UsbCommand resp;
resp.cmd = response->cmd & ~CMD_VARIABLE_SIZE_FLAG;
resp.cmd = response->cmd & ~CMD_VARIABLE_SIZE_FLAG; // remove the flag
resp.arg[0] = response->arg[0];
resp.arg[1] = response->arg[1];
resp.arg[2] = response->arg[2];
@ -247,7 +249,7 @@ __attribute__((force_align_arg_pointer))
}
}
} else { // old style response uses same data structure as commands. Fixed size.
// printf("received old style response %016" PRIx64 ", arg[0] = %016" PRIx64 "\n", command->cmd, command->arg[0]);
// PrintAndLog("received old style response %016" PRIx64 ", arg[0] = %016" PRIx64 "\n", command->cmd, command->arg[0]);
bytes_to_read = sizeof(UsbCommand) - bytes_to_read;
if (receive_from_serial(sp, prx, bytes_to_read, &rxlen)) {
UsbCommandReceived(command);
@ -259,24 +261,21 @@ __attribute__((force_align_arg_pointer))
}
pthread_mutex_lock(&txBufferMutex);
if (conn->block_after_ACK) {
// if we just received an ACK, wait here until a new command is to be transmitted
if (ACK_received) {
while (!txBuffer_pending) {
pthread_cond_wait(&txBufferSig, &txBufferMutex);
}
// if we received an ACK the PM has done its job and waits for another command.
// We therefore can wait here as well until a new command is to be transmitted.
// The advantage is that the next command will be transmitted immediately without the need to wait for a receive timeout
if (ACK_received) {
while (!txBuffer_pending) {
pthread_cond_wait(&txBufferSig, &txBufferMutex);
}
}
if(txBuffer_pending) {
if (txBuffer_pending) {
if (!uart_send(sp, (uint8_t*) &txBuffer, sizeof(UsbCommand))) {
PrintAndLog("Sending bytes to proxmark failed");
}
txBuffer_pending = false;
pthread_cond_signal(&txBufferSig); // tell main thread that txBuffer is empty
}
pthread_cond_signal(&txBufferSig); // tell main thread that txBuffer is empty
pthread_mutex_unlock(&txBufferMutex);
}
@ -309,7 +308,7 @@ bool GetFromBigBuf(uint8_t *dest, int bytes, int start_index, UsbCommand *respon
uint64_t start_time = msclock();
UsbCommand resp;
if (response == NULL) {
if (response == NULL) {
response = &resp;
}
@ -373,7 +372,7 @@ bool GetFromFpgaRAM(uint8_t *dest, int bytes)
}
bool OpenProxmark(void *port, bool wait_for_port, int timeout, bool flash_mode) {
bool OpenProxmark(void *port, bool wait_for_port, int timeout) {
char *portname = (char *)port;
if (!wait_for_port) {
sp = uart_open(portname);
@ -405,7 +404,6 @@ bool OpenProxmark(void *port, bool wait_for_port, int timeout, bool flash_mode)
// start the USB communication thread
serial_port_name = portname;
conn.run = true;
conn.block_after_ACK = flash_mode;
pthread_create(&USB_communication_thread, NULL, &uart_communication, &conn);
return true;
}
@ -477,7 +475,7 @@ bool WaitForResponseTimeoutW(uint32_t cmd, UsbCommand* response, size_t ms_timeo
// Wait until the command is received
while (true) {
while(getCommand(response)) {
while (getCommand(response)) {
if (cmd == CMD_UNKNOWN || response->cmd == cmd) {
return true;
}

View file

@ -17,7 +17,7 @@
extern void SetOffline(bool new_offline);
extern bool IsOffline();
extern bool OpenProxmark(void *port, bool wait_for_port, int timeout, bool flash_mode);
extern bool OpenProxmark(void *port, bool wait_for_port, int timeout);
extern void CloseProxmark(void);
extern void SendCommand(UsbCommand *c);
extern void clearCommandBuffer();

View file

@ -336,7 +336,7 @@ static int enter_bootloader(char *serial_port_name)
msleep(100);
CloseProxmark();
bool opened = OpenProxmark(serial_port_name, true, 120, true); // wait for 2 minutes
bool opened = OpenProxmark(serial_port_name, true, 120); // wait for 2 minutes
if (opened) {
fprintf(stderr," Found.\n");
return 0;

View file

@ -83,7 +83,7 @@ int main(int argc, char **argv)
char* serial_port_name = argv[1];
if (!OpenProxmark(serial_port_name, true, 120, true)) { // wait for 2 minutes
if (!OpenProxmark(serial_port_name, true, 120)) { // wait for 2 minutes
fprintf(stderr, "Could not find Proxmark on %s.\n\n", serial_port_name);
return -1;
} else {

View file

@ -1164,7 +1164,7 @@ int DetectClassicPrng(void){
clearCommandBuffer();
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) {
if (!WaitForResponseTimeout(CMD_NACK, &resp, 2000)) {
PrintAndLog("PRNG UID: Reply timeout.");
return -1;
}

View file

@ -286,7 +286,7 @@ int main(int argc, char* argv[]) {
set_my_executable_path();
// try to open USB connection to Proxmark
usb_present = OpenProxmark(argv[1], waitCOMPort, 20, false);
usb_present = OpenProxmark(argv[1], waitCOMPort, 20);
#ifdef HAVE_GUI
#ifdef _WIN32
@ -309,8 +309,10 @@ int main(int argc, char* argv[]) {
main_loop(script_cmds_file, script_cmd, usb_present);
#endif
// Clean up the port
// Switch off field and clean up the port
if (usb_present) {
UsbCommand c = {CMD_FPGA_MAJOR_MODE_OFF};
SendCommand(&c);
CloseProxmark();
}

View file

@ -222,28 +222,26 @@ static const char* getStringDescriptor(uint8_t idx) {
// Bitmap for all status bits in CSR which must be written as 1 to cause no effect
#define REG_NO_EFFECT_1_ALL AT91C_UDP_RX_DATA_BK0 | AT91C_UDP_RX_DATA_BK1 \
|AT91C_UDP_STALLSENT | AT91C_UDP_RXSETUP \
|AT91C_UDP_TXCOMP
#define REG_NO_EFFECT_1_ALL (AT91C_UDP_RX_DATA_BK0 | AT91C_UDP_RX_DATA_BK1 | AT91C_UDP_STALLSENT | AT91C_UDP_RXSETUP | AT91C_UDP_TXCOMP)
// Clear flags in the UDP_CSR register
#define UDP_CLEAR_EP_FLAGS(endpoint, flags) { \
volatile unsigned int reg; \
reg = pUdp->UDP_CSR[(endpoint)]; \
reg = AT91C_BASE_UDP->UDP_CSR[(endpoint)]; \
reg |= REG_NO_EFFECT_1_ALL; \
reg &= ~(flags); \
pUdp->UDP_CSR[(endpoint)] = reg; \
AT91C_BASE_UDP->UDP_CSR[(endpoint)] = reg; \
}
// Set flags in the UDP_CSR register
#define UDP_SET_EP_FLAGS(endpoint, flags) { \
volatile unsigned int reg; \
reg = pUdp->UDP_CSR[(endpoint)]; \
reg = AT91C_BASE_UDP->UDP_CSR[(endpoint)]; \
reg |= REG_NO_EFFECT_1_ALL; \
reg |= (flags); \
pUdp->UDP_CSR[(endpoint)] = reg; \
AT91C_BASE_UDP->UDP_CSR[(endpoint)] = reg; \
}
@ -283,19 +281,16 @@ typedef struct {
} AT91S_CDC_LINE_CODING, *AT91PS_CDC_LINE_CODING;
AT91S_CDC_LINE_CODING line = {
static AT91S_CDC_LINE_CODING line = {
115200, // baudrate
0, // 1 Stop Bit
0, // None Parity
8}; // 8 Data bits
static void AT91F_CDC_Enumerate();
AT91PS_UDP pUdp = AT91C_BASE_UDP;
uint8_t btConfiguration = 0;
uint8_t btConnection = 0;
uint8_t btReceiveBank = AT91C_UDP_RX_DATA_BK0;
static uint8_t btConfiguration = 0;
static uint8_t btConnection = 0;
static uint8_t btReceiveBank = AT91C_UDP_RX_DATA_BK0;
//*----------------------------------------------------------------------------
@ -307,8 +302,8 @@ void usb_disable() {
AT91C_BASE_PIOA->PIO_ODR = GPIO_USB_PU;
// Clear all lingering interrupts
if (pUdp->UDP_ISR & AT91C_UDP_ENDBUSRES) {
pUdp->UDP_ICR = AT91C_UDP_ENDBUSRES;
if (AT91C_BASE_UDP->UDP_ISR & AT91C_UDP_ENDBUSRES) {
AT91C_BASE_UDP->UDP_ICR = AT91C_UDP_ENDBUSRES;
}
}
@ -346,24 +341,233 @@ void usb_enable() {
}
//*----------------------------------------------------------------------------
//* \fn AT91F_USB_SendZlp
//* \brief Send zero length packet through an endpoint
//*----------------------------------------------------------------------------
static void AT91F_USB_SendZlp(uint8_t endpoint) {
UDP_SET_EP_FLAGS(endpoint, AT91C_UDP_TXPKTRDY);
while (!(AT91C_BASE_UDP->UDP_CSR[endpoint] & AT91C_UDP_TXCOMP))
/* wait */;
UDP_CLEAR_EP_FLAGS(endpoint, AT91C_UDP_TXCOMP);
while (AT91C_BASE_UDP->UDP_CSR[endpoint] & AT91C_UDP_TXCOMP)
/* wait */;
}
//*----------------------------------------------------------------------------
//* \fn AT91F_USB_SendData
//* \brief Send Data through the control endpoint
//*----------------------------------------------------------------------------
static void AT91F_USB_SendData(const char *pData, uint32_t length) {
uint32_t cpt = 0;
AT91_REG csr;
do {
cpt = MIN(length, 8);
length -= cpt;
while (cpt--)
AT91C_BASE_UDP->UDP_FDR[0] = *pData++;
if (AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_TXCOMP) {
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_TXCOMP);
while (AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_TXCOMP)
/* wait */;
}
UDP_SET_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_TXPKTRDY);
do {
csr = AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL];
// Data IN stage has been stopped by a status OUT
if (csr & AT91C_UDP_RX_DATA_BK0) {
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_RX_DATA_BK0);
return;
}
} while (!(csr & AT91C_UDP_TXCOMP));
} while (length);
if (AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_TXCOMP) {
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_TXCOMP);
while (AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_TXCOMP)
/* wait */;
}
}
//*----------------------------------------------------------------------------
//* \fn AT91F_USB_SendStall
//* \brief Stall the control endpoint
//*----------------------------------------------------------------------------
static void AT91F_USB_SendStall(void) {
UDP_SET_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_FORCESTALL);
while (!(AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_ISOERROR))
/* wait */;
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_FORCESTALL | AT91C_UDP_ISOERROR);
while (AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL] & (AT91C_UDP_FORCESTALL | AT91C_UDP_ISOERROR))
/* wait */;
}
//*----------------------------------------------------------------------------
//* \fn AT91F_CDC_Enumerate
//* \brief This function is a callback invoked when a SETUP packet is received
//*----------------------------------------------------------------------------
static void AT91F_CDC_Enumerate() {
uint8_t bmRequestType, bRequest;
uint16_t wValue, wIndex, wLength, wStatus;
if (!(AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_RXSETUP))
return;
bmRequestType = AT91C_BASE_UDP->UDP_FDR[AT91C_EP_CONTROL];
bRequest = AT91C_BASE_UDP->UDP_FDR[AT91C_EP_CONTROL];
wValue = (AT91C_BASE_UDP->UDP_FDR[AT91C_EP_CONTROL] & 0xFF);
wValue |= (AT91C_BASE_UDP->UDP_FDR[AT91C_EP_CONTROL] << 8);
wIndex = (AT91C_BASE_UDP->UDP_FDR[AT91C_EP_CONTROL] & 0xFF);
wIndex |= (AT91C_BASE_UDP->UDP_FDR[AT91C_EP_CONTROL] << 8);
wLength = (AT91C_BASE_UDP->UDP_FDR[AT91C_EP_CONTROL] & 0xFF);
wLength |= (AT91C_BASE_UDP->UDP_FDR[AT91C_EP_CONTROL] << 8);
if (bmRequestType & 0x80) { // Data Phase Transfer Direction Device to Host
UDP_SET_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_DIR);
while (!(AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_DIR))
/* wait */;
}
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_RXSETUP);
while (AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_RXSETUP)
/* wait */;
// Handle supported standard device request Cf Table 9-3 in USB specification Rev 1.1
switch ((bRequest << 8) | bmRequestType) {
case STD_GET_DESCRIPTOR:
if (wValue == 0x100) // Return Device Descriptor
AT91F_USB_SendData(devDescriptor, MIN(sizeof(devDescriptor), wLength));
else if (wValue == 0x200) // Return Configuration Descriptor
AT91F_USB_SendData(cfgDescriptor, MIN(sizeof(cfgDescriptor), wLength));
else if ((wValue & 0xF00) == 0x300) { // Return String Descriptor
const char *strDescriptor = getStringDescriptor(wValue & 0xff);
if (strDescriptor != NULL) {
AT91F_USB_SendData(strDescriptor, MIN(strDescriptor[0], wLength));
} else {
AT91F_USB_SendStall();
}
}
else
AT91F_USB_SendStall();
break;
case STD_SET_ADDRESS:
AT91F_USB_SendZlp(AT91C_EP_CONTROL);
AT91C_BASE_UDP->UDP_FADDR = (AT91C_UDP_FEN | wValue);
AT91C_BASE_UDP->UDP_GLBSTATE = (wValue) ? AT91C_UDP_FADDEN : 0;
break;
case STD_SET_CONFIGURATION:
btConfiguration = wValue;
AT91F_USB_SendZlp(AT91C_EP_CONTROL);
AT91C_BASE_UDP->UDP_GLBSTATE = (wValue) ? AT91C_UDP_CONFG : AT91C_UDP_FADDEN;
AT91C_BASE_UDP->UDP_CSR[AT91C_EP_OUT] = (wValue) ? (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_BULK_OUT) : 0;
AT91C_BASE_UDP->UDP_CSR[AT91C_EP_IN] = (wValue) ? (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_BULK_IN) : 0;
AT91C_BASE_UDP->UDP_CSR[AT91C_EP_NOTIFY] = (wValue) ? (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_INT_IN) : 0;
break;
case STD_GET_CONFIGURATION:
AT91F_USB_SendData((char *) &(btConfiguration), sizeof(btConfiguration));
break;
case STD_GET_STATUS_ZERO:
wStatus = 0; // Device is Bus powered, remote wakeup disabled
AT91F_USB_SendData((char *) &wStatus, sizeof(wStatus));
break;
case STD_GET_STATUS_INTERFACE:
wStatus = 0; // reserved for future use
AT91F_USB_SendData((char *) &wStatus, sizeof(wStatus));
break;
case STD_GET_STATUS_ENDPOINT:
wStatus = 0;
wIndex &= 0x0F;
if ((AT91C_BASE_UDP->UDP_GLBSTATE & AT91C_UDP_CONFG) && (wIndex <= AT91C_EP_NOTIFY)) {
wStatus = (AT91C_BASE_UDP->UDP_CSR[wIndex] & AT91C_UDP_EPEDS) ? 0 : 1;
AT91F_USB_SendData((char *) &wStatus, sizeof(wStatus));
} else if ((AT91C_BASE_UDP->UDP_GLBSTATE & AT91C_UDP_FADDEN) && (wIndex == AT91C_EP_CONTROL)) {
wStatus = (AT91C_BASE_UDP->UDP_CSR[wIndex] & AT91C_UDP_EPEDS) ? 0 : 1;
AT91F_USB_SendData((char *) &wStatus, sizeof(wStatus));
} else
AT91F_USB_SendStall();
break;
case STD_SET_FEATURE_ZERO:
AT91F_USB_SendStall();
break;
case STD_SET_FEATURE_INTERFACE:
AT91F_USB_SendZlp(AT91C_EP_CONTROL);
break;
case STD_SET_FEATURE_ENDPOINT:
wIndex &= 0x0F;
if ((wValue == 0) && (wIndex >= AT91C_EP_OUT) && (wIndex <= AT91C_EP_NOTIFY)) {
AT91C_BASE_UDP->UDP_CSR[wIndex] = 0;
AT91F_USB_SendZlp(AT91C_EP_CONTROL);
} else
AT91F_USB_SendStall();
break;
case STD_CLEAR_FEATURE_ZERO:
AT91F_USB_SendStall();
break;
case STD_CLEAR_FEATURE_INTERFACE:
AT91F_USB_SendZlp(AT91C_EP_CONTROL);
break;
case STD_CLEAR_FEATURE_ENDPOINT:
wIndex &= 0x0F;
if ((wValue == 0) && (wIndex >= AT91C_EP_OUT) && (wIndex <= AT91C_EP_NOTIFY)) {
if (wIndex == AT91C_EP_OUT)
AT91C_BASE_UDP->UDP_CSR[AT91C_EP_OUT] = (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_BULK_OUT);
else if (wIndex == AT91C_EP_IN)
AT91C_BASE_UDP->UDP_CSR[AT91C_EP_IN] = (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_BULK_IN);
else if (wIndex == AT91C_EP_NOTIFY)
AT91C_BASE_UDP->UDP_CSR[AT91C_EP_NOTIFY] = (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_INT_IN);
AT91F_USB_SendZlp(AT91C_EP_CONTROL);
}
else
AT91F_USB_SendStall();
break;
// handle CDC class requests
case SET_LINE_CODING:
while (!(AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_RX_DATA_BK0))
/* wait */;
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_RX_DATA_BK0);
AT91F_USB_SendZlp(AT91C_EP_CONTROL);
break;
case GET_LINE_CODING:
AT91F_USB_SendData((char *) &line, MIN(sizeof(line), wLength));
break;
case SET_CONTROL_LINE_STATE:
btConnection = wValue;
AT91F_USB_SendZlp(AT91C_EP_CONTROL);
break;
default:
AT91F_USB_SendStall();
break;
}
}
//*----------------------------------------------------------------------------
//* \fn usb_check
//* \brief Test if the device is configured and handle enumeration
//*----------------------------------------------------------------------------
static bool usb_check() {
AT91_REG isr = pUdp->UDP_ISR;
AT91_REG isr = AT91C_BASE_UDP->UDP_ISR;
if (isr & AT91C_UDP_ENDBUSRES) {
pUdp->UDP_ICR = AT91C_UDP_ENDBUSRES;
AT91C_BASE_UDP->UDP_ICR = AT91C_UDP_ENDBUSRES;
// reset all endpoints
pUdp->UDP_RSTEP = (unsigned int)-1;
pUdp->UDP_RSTEP = 0;
AT91C_BASE_UDP->UDP_RSTEP = (unsigned int)-1;
AT91C_BASE_UDP->UDP_RSTEP = 0;
// Enable the function
pUdp->UDP_FADDR = AT91C_UDP_FEN;
AT91C_BASE_UDP->UDP_FADDR = AT91C_UDP_FEN;
// Configure endpoint 0
pUdp->UDP_CSR[AT91C_EP_CONTROL] = (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_CTRL);
AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL] = (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_CTRL);
} else if (isr & AT91C_UDP_EPINT0) {
pUdp->UDP_ICR = AT91C_UDP_EPINT0;
AT91C_BASE_UDP->UDP_ICR = AT91C_UDP_EPINT0;
AT91F_CDC_Enumerate();
}
return (btConfiguration) ? true : false;
@ -372,7 +576,7 @@ static bool usb_check() {
bool usb_poll() {
if (!usb_check()) return false;
return (pUdp->UDP_CSR[AT91C_EP_OUT] & btReceiveBank);
return (AT91C_BASE_UDP->UDP_CSR[AT91C_EP_OUT] & btReceiveBank);
}
@ -386,8 +590,8 @@ bool usb_poll() {
**/
bool usb_poll_validate_length() {
if (!usb_check()) return false;
if (!(pUdp->UDP_CSR[AT91C_EP_OUT] & btReceiveBank)) return false;
return (pUdp->UDP_CSR[AT91C_EP_OUT] >> 16) > 0;
if (!(AT91C_BASE_UDP->UDP_CSR[AT91C_EP_OUT] & btReceiveBank)) return false;
return (AT91C_BASE_UDP->UDP_CSR[AT91C_EP_OUT] >> 16) > 0;
}
@ -403,11 +607,11 @@ static uint32_t usb_read(uint8_t* data, size_t len) {
while (len) {
if (!usb_check()) break;
if ( pUdp->UDP_CSR[AT91C_EP_OUT] & bank ) {
packetSize = MIN(pUdp->UDP_CSR[AT91C_EP_OUT] >> 16, len);
if ( AT91C_BASE_UDP->UDP_CSR[AT91C_EP_OUT] & bank ) {
packetSize = MIN(AT91C_BASE_UDP->UDP_CSR[AT91C_EP_OUT] >> 16, len);
len -= packetSize;
while (packetSize--)
data[nbBytesRcv++] = pUdp->UDP_FDR[AT91C_EP_OUT];
data[nbBytesRcv++] = AT91C_BASE_UDP->UDP_FDR[AT91C_EP_OUT];
UDP_CLEAR_EP_FLAGS(AT91C_EP_OUT, bank);
if (bank == AT91C_UDP_RX_DATA_BK0) {
bank = AT91C_UDP_RX_DATA_BK1;
@ -438,249 +642,47 @@ static uint32_t usb_write(const uint8_t* data, const size_t len) {
cpt = MIN(length, AT91C_EP_IN_SIZE);
length -= cpt;
while (cpt--) {
pUdp->UDP_FDR[AT91C_EP_IN] = *data++;
AT91C_BASE_UDP->UDP_FDR[AT91C_EP_IN] = *data++;
}
UDP_SET_EP_FLAGS(AT91C_EP_IN, AT91C_UDP_TXPKTRDY);
while (!(AT91C_BASE_UDP->UDP_CSR[AT91C_EP_IN] & AT91C_UDP_TXPKTRDY))
/* wait */;
while (length) {
// Fill the next bank
cpt = MIN(length, AT91C_EP_IN_SIZE);
length -= cpt;
while (cpt--) {
pUdp->UDP_FDR[AT91C_EP_IN] = *data++;
AT91C_BASE_UDP->UDP_FDR[AT91C_EP_IN] = *data++;
}
// Wait for the previous bank to be sent
while (!(pUdp->UDP_CSR[AT91C_EP_IN] & AT91C_UDP_TXCOMP)) {
while (!(AT91C_BASE_UDP->UDP_CSR[AT91C_EP_IN] & AT91C_UDP_TXCOMP)) {
if (!usb_check()) return length;
}
UDP_CLEAR_EP_FLAGS(AT91C_EP_IN, AT91C_UDP_TXCOMP);
while (pUdp->UDP_CSR[AT91C_EP_IN] & AT91C_UDP_TXCOMP)
/* wait */;
UDP_SET_EP_FLAGS(AT91C_EP_IN, AT91C_UDP_TXPKTRDY);
while (!(AT91C_BASE_UDP->UDP_CSR[AT91C_EP_IN] & AT91C_UDP_TXPKTRDY))
/* wait */;
UDP_CLEAR_EP_FLAGS(AT91C_EP_IN, AT91C_UDP_TXCOMP);
while (AT91C_BASE_UDP->UDP_CSR[AT91C_EP_IN] & AT91C_UDP_TXCOMP)
/* wait */;
}
// Wait for the end of transfer
while (!(pUdp->UDP_CSR[AT91C_EP_IN] & AT91C_UDP_TXCOMP)) {
while (!(AT91C_BASE_UDP->UDP_CSR[AT91C_EP_IN] & AT91C_UDP_TXCOMP)) {
if (!usb_check()) return length;
}
UDP_CLEAR_EP_FLAGS(AT91C_EP_IN, AT91C_UDP_TXCOMP);
while (pUdp->UDP_CSR[AT91C_EP_IN] & AT91C_UDP_TXCOMP)
while (AT91C_BASE_UDP->UDP_CSR[AT91C_EP_IN] & AT91C_UDP_TXCOMP)
/* wait */;
if (len % AT91C_EP_IN_SIZE == 0) { // need to send a zero length packet to complete the transfer
AT91F_USB_SendZlp(AT91C_EP_IN);
}
return length;
}
//*----------------------------------------------------------------------------
//* \fn AT91F_USB_SendData
//* \brief Send Data through the control endpoint
//*----------------------------------------------------------------------------
static void AT91F_USB_SendData(AT91PS_UDP pUdp, const char *pData, uint32_t length) {
uint32_t cpt = 0;
AT91_REG csr;
do {
cpt = MIN(length, 8);
length -= cpt;
while (cpt--)
pUdp->UDP_FDR[0] = *pData++;
if (pUdp->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_TXCOMP) {
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_TXCOMP);
while (pUdp->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_TXCOMP)
/* wait */;
}
UDP_SET_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_TXPKTRDY);
do {
csr = pUdp->UDP_CSR[AT91C_EP_CONTROL];
// Data IN stage has been stopped by a status OUT
if (csr & AT91C_UDP_RX_DATA_BK0) {
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_RX_DATA_BK0);
return;
}
} while (!(csr & AT91C_UDP_TXCOMP));
} while (length);
if (pUdp->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_TXCOMP) {
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_TXCOMP);
while (pUdp->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_TXCOMP)
/* wait */;
}
}
//*----------------------------------------------------------------------------
//* \fn AT91F_USB_SendZlp
//* \brief Send zero length packet through the control endpoint
//*----------------------------------------------------------------------------
static void AT91F_USB_SendZlp(AT91PS_UDP pUdp) {
UDP_SET_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_TXPKTRDY);
while (!(pUdp->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_TXCOMP))
/* wait */;
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_TXCOMP);
while (pUdp->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_TXCOMP)
/* wait */;
}
//*----------------------------------------------------------------------------
//* \fn AT91F_USB_SendStall
//* \brief Stall the control endpoint
//*----------------------------------------------------------------------------
static void AT91F_USB_SendStall(AT91PS_UDP pUdp) {
UDP_SET_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_FORCESTALL);
while (!(pUdp->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_ISOERROR))
/* wait */;
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_FORCESTALL | AT91C_UDP_ISOERROR);
while (pUdp->UDP_CSR[AT91C_EP_CONTROL] & (AT91C_UDP_FORCESTALL | AT91C_UDP_ISOERROR))
/* wait */;
}
//*----------------------------------------------------------------------------
//* \fn AT91F_CDC_Enumerate
//* \brief This function is a callback invoked when a SETUP packet is received
//*----------------------------------------------------------------------------
static void AT91F_CDC_Enumerate() {
uint8_t bmRequestType, bRequest;
uint16_t wValue, wIndex, wLength, wStatus;
if (!(pUdp->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_RXSETUP))
return;
bmRequestType = pUdp->UDP_FDR[AT91C_EP_CONTROL];
bRequest = pUdp->UDP_FDR[AT91C_EP_CONTROL];
wValue = (pUdp->UDP_FDR[AT91C_EP_CONTROL] & 0xFF);
wValue |= (pUdp->UDP_FDR[AT91C_EP_CONTROL] << 8);
wIndex = (pUdp->UDP_FDR[AT91C_EP_CONTROL] & 0xFF);
wIndex |= (pUdp->UDP_FDR[AT91C_EP_CONTROL] << 8);
wLength = (pUdp->UDP_FDR[AT91C_EP_CONTROL] & 0xFF);
wLength |= (pUdp->UDP_FDR[AT91C_EP_CONTROL] << 8);
if (bmRequestType & 0x80) { // Data Phase Transfer Direction Device to Host
UDP_SET_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_DIR);
while (!(pUdp->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_DIR))
/* wait */;
}
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_RXSETUP);
while (pUdp->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_RXSETUP)
/* wait */;
// Handle supported standard device request Cf Table 9-3 in USB specification Rev 1.1
switch ((bRequest << 8) | bmRequestType) {
case STD_GET_DESCRIPTOR:
if (wValue == 0x100) // Return Device Descriptor
AT91F_USB_SendData(pUdp, devDescriptor, MIN(sizeof(devDescriptor), wLength));
else if (wValue == 0x200) // Return Configuration Descriptor
AT91F_USB_SendData(pUdp, cfgDescriptor, MIN(sizeof(cfgDescriptor), wLength));
else if ((wValue & 0xF00) == 0x300) { // Return String Descriptor
const char *strDescriptor = getStringDescriptor(wValue & 0xff);
if (strDescriptor != NULL) {
AT91F_USB_SendData(pUdp, strDescriptor, MIN(strDescriptor[0], wLength));
} else {
AT91F_USB_SendStall(pUdp);
}
}
else
AT91F_USB_SendStall(pUdp);
break;
case STD_SET_ADDRESS:
AT91F_USB_SendZlp(pUdp);
pUdp->UDP_FADDR = (AT91C_UDP_FEN | wValue);
pUdp->UDP_GLBSTATE = (wValue) ? AT91C_UDP_FADDEN : 0;
break;
case STD_SET_CONFIGURATION:
btConfiguration = wValue;
AT91F_USB_SendZlp(pUdp);
pUdp->UDP_GLBSTATE = (wValue) ? AT91C_UDP_CONFG : AT91C_UDP_FADDEN;
pUdp->UDP_CSR[AT91C_EP_OUT] = (wValue) ? (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_BULK_OUT) : 0;
pUdp->UDP_CSR[AT91C_EP_IN] = (wValue) ? (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_BULK_IN) : 0;
pUdp->UDP_CSR[AT91C_EP_NOTIFY] = (wValue) ? (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_INT_IN) : 0;
break;
case STD_GET_CONFIGURATION:
AT91F_USB_SendData(pUdp, (char *) &(btConfiguration), sizeof(btConfiguration));
break;
case STD_GET_STATUS_ZERO:
wStatus = 0; // Device is Bus powered, remote wakeup disabled
AT91F_USB_SendData(pUdp, (char *) &wStatus, sizeof(wStatus));
break;
case STD_GET_STATUS_INTERFACE:
wStatus = 0; // reserved for future use
AT91F_USB_SendData(pUdp, (char *) &wStatus, sizeof(wStatus));
break;
case STD_GET_STATUS_ENDPOINT:
wStatus = 0;
wIndex &= 0x0F;
if ((pUdp->UDP_GLBSTATE & AT91C_UDP_CONFG) && (wIndex <= AT91C_EP_NOTIFY)) {
wStatus = (pUdp->UDP_CSR[wIndex] & AT91C_UDP_EPEDS) ? 0 : 1;
AT91F_USB_SendData(pUdp, (char *) &wStatus, sizeof(wStatus));
} else if ((pUdp->UDP_GLBSTATE & AT91C_UDP_FADDEN) && (wIndex == AT91C_EP_CONTROL)) {
wStatus = (pUdp->UDP_CSR[wIndex] & AT91C_UDP_EPEDS) ? 0 : 1;
AT91F_USB_SendData(pUdp, (char *) &wStatus, sizeof(wStatus));
} else
AT91F_USB_SendStall(pUdp);
break;
case STD_SET_FEATURE_ZERO:
AT91F_USB_SendStall(pUdp);
break;
case STD_SET_FEATURE_INTERFACE:
AT91F_USB_SendZlp(pUdp);
break;
case STD_SET_FEATURE_ENDPOINT:
wIndex &= 0x0F;
if ((wValue == 0) && (wIndex >= AT91C_EP_OUT) && (wIndex <= AT91C_EP_NOTIFY)) {
pUdp->UDP_CSR[wIndex] = 0;
AT91F_USB_SendZlp(pUdp);
} else
AT91F_USB_SendStall(pUdp);
break;
case STD_CLEAR_FEATURE_ZERO:
AT91F_USB_SendStall(pUdp);
break;
case STD_CLEAR_FEATURE_INTERFACE:
AT91F_USB_SendZlp(pUdp);
break;
case STD_CLEAR_FEATURE_ENDPOINT:
wIndex &= 0x0F;
if ((wValue == 0) && (wIndex >= AT91C_EP_OUT) && (wIndex <= AT91C_EP_NOTIFY)) {
if (wIndex == AT91C_EP_OUT)
pUdp->UDP_CSR[AT91C_EP_OUT] = (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_BULK_OUT);
else if (wIndex == AT91C_EP_IN)
pUdp->UDP_CSR[AT91C_EP_IN] = (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_BULK_IN);
else if (wIndex == AT91C_EP_NOTIFY)
pUdp->UDP_CSR[AT91C_EP_NOTIFY] = (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_INT_IN);
AT91F_USB_SendZlp(pUdp);
}
else
AT91F_USB_SendStall(pUdp);
break;
// handle CDC class requests
case SET_LINE_CODING:
while (!(pUdp->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_RX_DATA_BK0))
/* wait */;
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_RX_DATA_BK0);
AT91F_USB_SendZlp(pUdp);
break;
case GET_LINE_CODING:
AT91F_USB_SendData(pUdp, (char *) &line, MIN(sizeof(line), wLength));
break;
case SET_CONTROL_LINE_STATE:
btConnection = wValue;
AT91F_USB_SendZlp(pUdp);
break;
default:
AT91F_USB_SendStall(pUdp);
break;
}
}
//***************************************************************************
// Interface to the main program
//***************************************************************************

View file

@ -29,24 +29,21 @@
* @file uart.h
*/
#ifndef _PM3_UART_H_
#define _PM3_UART_H_
#ifndef PM3_UART_H__
#define PM3_UART_H__
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
/* Used to substitute for an example serial port path on each platform.
*/
#ifdef _WIN32
#define SERIAL_PORT_H "com3"
#define SERIAL_PORT_H "com3"
#elif __APPLE__
#define SERIAL_PORT_H "/dev/tty.usbmodem*"
#define SERIAL_PORT_H "/dev/tty.usbmodem*"
#else
#define SERIAL_PORT_H "/dev/ttyACM0"
#define SERIAL_PORT_H "/dev/ttyACM0"
#endif
/* serial_port is declared as a void*, which you should cast to whatever type
@ -69,11 +66,11 @@ typedef void* serial_port;
*
* On errors, this method returns INVALID_SERIAL_PORT or CLAIMED_SERIAL_PORT.
*/
serial_port uart_open(const char* pcPortName);
extern serial_port uart_open(const char* pcPortName);
/* Closes the given port.
*/
void uart_close(const serial_port sp);
extern void uart_close(const serial_port sp);
/* Reads from the given serial port for up to 30ms.
* pbtRx: A pointer to a buffer for the returned data to be written to.
@ -86,13 +83,13 @@ void uart_close(const serial_port sp);
* partial read may have completed into the buffer by the corresponding
* implementation, so pszRxLen should be checked to see if any data was written.
*/
bool uart_receive(const serial_port sp, uint8_t* pbtRx, size_t pszMaxRxLen, size_t* pszRxLen);
extern bool uart_receive(const serial_port sp, uint8_t* pbtRx, size_t pszMaxRxLen, size_t* pszRxLen);
/* Sends a buffer to a given serial port.
* pbtTx: A pointer to a buffer containing the data to send.
* szTxLen: The amount of data to be sent.
*/
bool uart_send(const serial_port sp, const uint8_t* pbtTx, const size_t szTxLen);
extern bool uart_send(const serial_port sp, const uint8_t* pbtTx, const size_t szTxLen);
/* Sets the current speed of the serial port, in baud.
*/
@ -100,7 +97,7 @@ bool uart_set_speed(serial_port sp, const uint32_t uiPortSpeed);
/* Gets the current speed of the serial port, in baud.
*/
uint32_t uart_get_speed(const serial_port sp);
extern uint32_t uart_get_speed(const serial_port sp);
#endif // _PM3_UART_H_

View file

@ -38,97 +38,109 @@
#include "uart.h"
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
// The windows serial port implementation
#ifdef _WIN32
#include <windows.h>
typedef struct {
HANDLE hPort; // Serial port handle
DCB dcb; // Device control settings
COMMTIMEOUTS ct; // Serial port time-out configuration
HANDLE hPort; // Serial port handle
DCB dcb; // Device control settings
COMMTIMEOUTS ct; // Serial port time-out configuration
} serial_port_windows;
void upcase(char *p) {
while(*p != '\0') {
if(*p >= 97 && *p <= 122) {
*p -= 32;
}
++p;
}
while(*p != '\0') {
if(*p >= 97 && *p <= 122) {
*p -= 32;
}
++p;
}
}
serial_port uart_open(const char* pcPortName) {
char acPortName[255];
serial_port_windows* sp = malloc(sizeof(serial_port_windows));
// Copy the input "com?" to "\\.\COM?" format
sprintf(acPortName,"\\\\.\\%s",pcPortName);
upcase(acPortName);
// Try to open the serial port
sp->hPort = CreateFileA(acPortName,GENERIC_READ|GENERIC_WRITE,0,NULL,OPEN_EXISTING,0,NULL);
if (sp->hPort == INVALID_HANDLE_VALUE) {
uart_close(sp);
return INVALID_SERIAL_PORT;
}
// Prepare the device control
memset(&sp->dcb, 0, sizeof(DCB));
sp->dcb.DCBlength = sizeof(DCB);
if(!BuildCommDCBA("baud=9600 data=8 parity=N stop=1",&sp->dcb)) {
uart_close(sp);
return INVALID_SERIAL_PORT;
}
// Update the active serial port
if(!SetCommState(sp->hPort,&sp->dcb)) {
uart_close(sp);
return INVALID_SERIAL_PORT;
}
sp->ct.ReadIntervalTimeout = 0;
sp->ct.ReadTotalTimeoutMultiplier = 0;
sp->ct.ReadTotalTimeoutConstant = 30;
sp->ct.WriteTotalTimeoutMultiplier = 0;
sp->ct.WriteTotalTimeoutConstant = 30;
if(!SetCommTimeouts(sp->hPort,&sp->ct)) {
uart_close(sp);
return INVALID_SERIAL_PORT;
}
PurgeComm(sp->hPort, PURGE_RXABORT | PURGE_RXCLEAR);
return sp;
}
void uart_close(const serial_port sp) {
CloseHandle(((serial_port_windows*)sp)->hPort);
free(sp);
CloseHandle(((serial_port_windows*)sp)->hPort);
free(sp);
}
serial_port uart_open(const char* pcPortName) {
char acPortName[255];
serial_port_windows* sp = malloc(sizeof(serial_port_windows));
// Copy the input "com?" to "\\.\COM?" format
sprintf(acPortName,"\\\\.\\%s",pcPortName);
upcase(acPortName);
// Try to open the serial port
sp->hPort = CreateFileA(acPortName, GENERIC_READ | GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0, NULL);
if (sp->hPort == INVALID_HANDLE_VALUE) {
uart_close(sp);
return INVALID_SERIAL_PORT;
}
// Prepare the device control
memset(&sp->dcb, 0, sizeof(DCB));
sp->dcb.DCBlength = sizeof(DCB);
if (!BuildCommDCBA("baud=9600 data=8 parity=N stop=1",&sp->dcb)) {
uart_close(sp);
return INVALID_SERIAL_PORT;
}
// Update the active serial port
if (!SetCommState(sp->hPort,&sp->dcb)) {
uart_close(sp);
return INVALID_SERIAL_PORT;
}
sp->ct.ReadIntervalTimeout = 0;
sp->ct.ReadTotalTimeoutMultiplier = 0;
sp->ct.ReadTotalTimeoutConstant = 30;
sp->ct.WriteTotalTimeoutMultiplier = 0;
sp->ct.WriteTotalTimeoutConstant = 30;
if (!SetCommTimeouts(sp->hPort, &sp->ct)) {
uart_close(sp);
return INVALID_SERIAL_PORT;
}
PurgeComm(sp->hPort, PURGE_RXABORT | PURGE_RXCLEAR);
return sp;
}
bool uart_receive(const serial_port sp, uint8_t *pbtRx, size_t pszMaxRxLen, size_t *pszRxLen) {
return ReadFile(((serial_port_windows*)sp)->hPort, pbtRx, pszMaxRxLen, (LPDWORD)pszRxLen, NULL);
return ReadFile(((serial_port_windows*)sp)->hPort, pbtRx, pszMaxRxLen, (LPDWORD)pszRxLen, NULL);
}
bool uart_send(const serial_port sp, const uint8_t* pbtTx, const size_t szTxLen) {
DWORD dwTxLen = 0;
return WriteFile(((serial_port_windows*)sp)->hPort, pbtTx, szTxLen, &dwTxLen, NULL);
DWORD dwTxLen = 0;
return WriteFile(((serial_port_windows*)sp)->hPort, pbtTx, szTxLen, &dwTxLen, NULL);
}
bool uart_set_speed(serial_port sp, const uint32_t uiPortSpeed) {
serial_port_windows* spw;
spw = (serial_port_windows*)sp;
spw->dcb.BaudRate = uiPortSpeed;
return SetCommState(spw->hPort, &spw->dcb);
serial_port_windows* spw;
spw = (serial_port_windows*)sp;
spw->dcb.BaudRate = uiPortSpeed;
return SetCommState(spw->hPort, &spw->dcb);
}
uint32_t uart_get_speed(const serial_port sp) {
const serial_port_windows* spw = (serial_port_windows*)sp;
if (!GetCommState(spw->hPort, (serial_port)&spw->dcb)) {
return spw->dcb.BaudRate;
}
return 0;
const serial_port_windows* spw = (serial_port_windows*)sp;
if (!GetCommState(spw->hPort, (serial_port)&spw->dcb)) {
return spw->dcb.BaudRate;
}
return 0;
}
#endif