Always enable fast response mode (was enabled for flasher only)

* ensure that CMD_ACK is used exclusively for the very last response of each PM3 operation. All Dbprintf() must be before.
* always switch off field before exiting
* append null packet for USB transfers % 64 bytes
* reformatting and whitespace fixes
This commit is contained in:
pwpiwi 2020-01-23 22:07:17 +01:00
parent b8ed9975e5
commit 929b61c670
17 changed files with 501 additions and 474 deletions

View file

@ -453,20 +453,17 @@ int EPA_PACE_MSE_Set_AT(pace_version_info_t pace_version_info, uint8_t password)
//-----------------------------------------------------------------------------
// Perform the PACE protocol by replaying given APDUs
//-----------------------------------------------------------------------------
void EPA_PACE_Replay(UsbCommand *c)
{
void EPA_PACE_Replay(UsbCommand *c) {
uint32_t timings[sizeof(apdu_lengths_replay) / sizeof(apdu_lengths_replay[0])] = {0};
// if an APDU has been passed, save it
// if an APDU has been passed, just save it
if (c->arg[0] != 0) {
// make sure it's not too big
if(c->arg[2] > apdus_replay[c->arg[0] - 1].len)
{
if(c->arg[2] > apdus_replay[c->arg[0] - 1].len) {
cmd_send(CMD_ACK, 1, 0, 0, NULL, 0);
return;
}
memcpy(apdus_replay[c->arg[0] - 1].data + c->arg[1],
c->d.asBytes,
c->arg[2]);
memcpy(apdus_replay[c->arg[0] - 1].data + c->arg[1], c->d.asBytes, c->arg[2]);
// save/update APDU length
if (c->arg[1] == 0) {
apdu_lengths_replay[c->arg[0] - 1] = c->arg[2];

View file

@ -674,14 +674,14 @@ static bool selectIclassTag(uint8_t *card_data, uint32_t *eof_time) {
// Send act_all
ReaderTransmitIClass(act_all, 1, &start_time);
// Card present?
if (GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_ACTALL, eof_time) < 0) return false;//Fail
if (GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_ACTALL, eof_time) < 0) return false; //Fail
//Send Identify
start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
ReaderTransmitIClass(identify, 1, &start_time);
//We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
uint8_t len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time);
if (len != 10) return false;//Fail
if (len != 10) return false; //Fail
//Copy the Anti-collision CSN to our select-packet
memcpy(&select[1], resp, 8);
@ -690,7 +690,7 @@ static bool selectIclassTag(uint8_t *card_data, uint32_t *eof_time) {
ReaderTransmitIClass(select, sizeof(select), &start_time);
//We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time);
if (len != 10) return false;//Fail
if (len != 10) return false; //Fail
//Success - we got CSN
//Save CSN in response data
@ -733,42 +733,42 @@ void ReaderIClass(uint8_t flags) {
if (selectIclassTag(resp, &eof_time)) {
result_status = FLAG_ICLASS_READER_CSN;
memcpy(card_data, resp, 8);
}
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
//Read block 1, config
if (flags & FLAG_ICLASS_READER_CONF) {
if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) {
result_status |= FLAG_ICLASS_READER_CONF;
memcpy(card_data+8, resp, 8);
} else {
Dbprintf("Failed to read config block");
}
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
}
//Read block 2, e-purse
if (flags & FLAG_ICLASS_READER_CC) {
if (sendCmdGetResponseWithRetries(readEpurse, sizeof(readEpurse), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) {
result_status |= FLAG_ICLASS_READER_CC;
memcpy(card_data + (8*2), resp, 8);
} else {
Dbprintf("Failed to read e-purse");
//Read block 1, config
if (flags & FLAG_ICLASS_READER_CONF) {
if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) {
result_status |= FLAG_ICLASS_READER_CONF;
memcpy(card_data+8, resp, 8);
} else {
Dbprintf("Failed to read config block");
}
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
}
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
}
//Read block 5, AA
if (flags & FLAG_ICLASS_READER_AA) {
if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) {
result_status |= FLAG_ICLASS_READER_AA;
memcpy(card_data + (8*5), resp, 8);
} else {
Dbprintf("Failed to read AA block");
//Read block 2, e-purse
if (flags & FLAG_ICLASS_READER_CC) {
if (sendCmdGetResponseWithRetries(readEpurse, sizeof(readEpurse), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) {
result_status |= FLAG_ICLASS_READER_CC;
memcpy(card_data + (8*2), resp, 8);
} else {
Dbprintf("Failed to read e-purse");
}
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
}
//Read block 5, AA
if (flags & FLAG_ICLASS_READER_AA) {
if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) {
result_status |= FLAG_ICLASS_READER_AA;
memcpy(card_data + (8*5), resp, 8);
} else {
Dbprintf("Failed to read AA block");
}
}
}
cmd_send(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data));
LED_A_OFF();
@ -819,9 +819,9 @@ void iClass_ReadBlk(uint8_t blockno) {
uint8_t readblockdata[10];
bool isOK = iClass_ReadBlock(blockno, readblockdata);
cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8);
LED_A_OFF();
}
@ -899,11 +899,10 @@ void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) {
} else {
Dbprintf("Write block [%02x] failed", blockNo);
}
cmd_send(CMD_ACK, isOK, 0, 0, 0, 0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
cmd_send(CMD_ACK, isOK, 0, 0, 0, 0);
LED_A_OFF();
}
@ -934,6 +933,5 @@ void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) {
LED_D_OFF();
cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
LED_A_OFF();
}

View file

@ -2026,15 +2026,15 @@ void ReaderIso14443a(UsbCommand *c) {
set_tracing(true);
if(param & ISO14A_CLEAR_TRACE) {
if (param & ISO14A_CLEAR_TRACE) {
clear_trace();
}
if(param & ISO14A_REQUEST_TRIGGER) {
if (param & ISO14A_REQUEST_TRIGGER) {
iso14a_set_trigger(true);
}
if(param & ISO14A_CONNECT) {
if (param & ISO14A_CONNECT) {
LED_A_ON();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
if(!(param & ISO14A_NO_SELECT)) {
@ -2048,16 +2048,16 @@ void ReaderIso14443a(UsbCommand *c) {
}
FpgaDisableTracing();
LED_B_ON();
cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
cmd_send(CMD_NACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
LED_B_OFF();
}
}
if(param & ISO14A_SET_TIMEOUT) {
if (param & ISO14A_SET_TIMEOUT) {
iso14a_set_timeout(timeout);
}
if(param & ISO14A_APDU && !cantSELECT) {
if (param & ISO14A_APDU && !cantSELECT) {
uint8_t res;
arg0 = iso14_apdu(cmd, len, (param & ISO14A_SEND_CHAINING), buf, &res);
FpgaDisableTracing();
@ -2066,8 +2066,8 @@ void ReaderIso14443a(UsbCommand *c) {
LED_B_OFF();
}
if(param & ISO14A_RAW && !cantSELECT) {
if(param & ISO14A_APPEND_CRC) {
if (param & ISO14A_RAW && !cantSELECT) {
if (param & ISO14A_APPEND_CRC) {
if(param & ISO14A_TOPAZMODE) {
AppendCrc14443b(cmd,len);
} else {
@ -2076,8 +2076,8 @@ void ReaderIso14443a(UsbCommand *c) {
len += 2;
if (lenbits) lenbits += 16;
}
if(lenbits>0) { // want to send a specific number of bits (e.g. short commands)
if(param & ISO14A_TOPAZMODE) {
if (lenbits > 0) { // want to send a specific number of bits (e.g. short commands)
if (param & ISO14A_TOPAZMODE) {
int bits_to_send = lenbits;
uint16_t i = 0;
ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
@ -2091,7 +2091,7 @@ void ReaderIso14443a(UsbCommand *c) {
ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
}
} else { // want to send complete bytes only
if(param & ISO14A_TOPAZMODE) {
if (param & ISO14A_TOPAZMODE) {
uint16_t i = 0;
ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
while (i < len) {
@ -2105,15 +2105,15 @@ void ReaderIso14443a(UsbCommand *c) {
FpgaDisableTracing();
LED_B_ON();
cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
cmd_send(CMD_ACK, arg0, 0, 0, buf, sizeof(buf));
LED_B_OFF();
}
if(param & ISO14A_REQUEST_TRIGGER) {
if (param & ISO14A_REQUEST_TRIGGER) {
iso14a_set_trigger(false);
}
if(param & ISO14A_NO_DISCONNECT) {
if (param & ISO14A_NO_DISCONNECT) {
return;
}

View file

@ -111,11 +111,12 @@ void MifareReadBlock(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
if (MF_DBGLEVEL >= 2) DbpString("READ BLOCK FINISHED");
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_B_ON();
cmd_send(CMD_ACK,isOK,0,0,dataoutbuf,16);
LED_B_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
@ -202,9 +203,10 @@ void MifareUReadBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain)
return;
}
cmd_send(CMD_ACK,1,0,0,dataout,16);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
cmd_send(CMD_ACK,1,0,0,dataout,16);
LED_A_OFF();
}
@ -266,12 +268,13 @@ void MifareReadSector(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
if (MF_DBGLEVEL >= 2) DbpString("READ SECTOR FINISHED");
// Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_B_ON();
cmd_send(CMD_ACK,isOK,0,0,dataoutbuf,16*NumBlocksPerSector(sectorNo));
LED_B_OFF();
// Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
@ -362,10 +365,11 @@ void MifareUReadCard(uint8_t arg0, uint16_t arg1, uint8_t arg2, uint8_t *datain)
if (MF_DBGLEVEL >= MF_DBG_DEBUG) Dbprintf("Blocks read %d", countblocks);
cmd_send(CMD_ACK, 1, countblocks*4, BigBuf_max_traceLen(), 0, 0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
cmd_send(CMD_ACK, 1, countblocks*4, BigBuf_max_traceLen(), 0, 0);
BigBuf_free();
LED_A_OFF();
}
@ -431,13 +435,14 @@ void MifareWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
if (MF_DBGLEVEL >= 2) DbpString("WRITE BLOCK FINISHED");
// Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_B_ON();
cmd_send(CMD_ACK,isOK,0,0,0,0);
LED_B_OFF();
// Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
@ -475,8 +480,9 @@ void MifareUWriteBlockCompat(uint8_t arg0, uint8_t *datain)
if (MF_DBGLEVEL >= 2) DbpString("WRITE BLOCK FINISHED");
cmd_send(CMD_ACK,1,0,0,0,0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
cmd_send(CMD_ACK,1,0,0,0,0);
LEDsoff();
}
*/
@ -544,8 +550,9 @@ void MifareUWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain)
if (MF_DBGLEVEL >= 2) DbpString("WRITE BLOCK FINISHED");
cmd_send(CMD_ACK,1,0,0,0,0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
cmd_send(CMD_ACK,1,0,0,0,0);
LEDsoff();
}
@ -613,8 +620,9 @@ void MifareUSetPwd(uint8_t arg0, uint8_t *datain){
return;
};
cmd_send(CMD_ACK,1,0,0,0,0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
cmd_send(CMD_ACK,1,0,0,0,0);
LEDsoff();
}
@ -743,16 +751,17 @@ void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags,
crypto1_destroy(pcs);
if (field_off) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
LED_B_ON();
cmd_send(CMD_ACK, isOK, cuid, num_nonces, buf, sizeof(buf));
LED_B_OFF();
if (MF_DBGLEVEL >= 3) DbpString("AcquireEncryptedNonces finished");
if (field_off) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
}
@ -978,13 +987,14 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *dat
memcpy(buf+16, &target_ks[1], 4);
memcpy(buf+20, &authentication_timeout, 4);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
if (MF_DBGLEVEL >= 3) DbpString("NESTED FINISHED");
LED_B_ON();
cmd_send(CMD_ACK, isOK, 0, targetBlockNo + (targetKeyType * 0x100), buf, sizeof(buf));
LED_B_OFF();
if (MF_DBGLEVEL >= 3) DbpString("NESTED FINISHED");
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
@ -1352,13 +1362,14 @@ void MifareCWipe(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain){
break;
}
// reset fpga
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
// send USB response
LED_B_ON();
cmd_send(CMD_ACK,isOK,0,0,NULL,0);
LED_B_OFF();
// reset fpga
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
return;
@ -1490,14 +1501,15 @@ void MifareCSetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai
break;
}
if ((workFlags & 0x10) || (!isOK)) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
}
LED_B_ON();
cmd_send(CMD_ACK,isOK,0,0,uid,4);
LED_B_OFF();
if ((workFlags & 0x10) || (!isOK)) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
LEDsoff();
}
@ -1574,6 +1586,10 @@ void MifareCGetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai
break;
}
if ((workFlags & 0x10) || (!isOK)) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
}
LED_B_ON();
if (workFlags & 0x20) {
if (isOK)
@ -1583,10 +1599,7 @@ void MifareCGetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai
cmd_send(CMD_ACK,isOK,0,0,data,18);
LED_B_OFF();
if ((workFlags & 0x10) || (!isOK)) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
LEDsoff();
}
void MifareCIdent(){
@ -1622,11 +1635,12 @@ void MifareCIdent(){
// From iceman1001: removed the if, since some magic tags misbehavies and send an answer to it.
mifare_classic_halt(NULL, 0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_B_ON();
cmd_send(CMD_ACK,isOK,0,0,0,0);
LED_B_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
@ -1657,7 +1671,8 @@ void Mifare_DES_Auth1(uint8_t arg0, uint8_t *datain){
}
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) DbpString("AUTH 1 FINISHED");
cmd_send(CMD_ACK,1,cuid,0,dataout, sizeof(dataout));
cmd_send(CMD_ACK, 1, cuid, 0, dataout, sizeof(dataout));
}
void Mifare_DES_Auth2(uint32_t arg0, uint8_t *datain){
@ -1671,16 +1686,17 @@ void Mifare_DES_Auth2(uint32_t arg0, uint8_t *datain){
isOK = mifare_desfire_des_auth2(cuid, key, dataout);
if( isOK) {
if (isOK) {
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Authentication part2: Failed");
OnError(4);
return;
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) DbpString("AUTH 2 FINISHED");
cmd_send(CMD_ACK, isOK, 0, 0, dataout, sizeof(dataout));
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}

View file

@ -152,7 +152,7 @@ bool intMfSniffSend() {
while (pckLen > 0) {
pckSize = MIN(USB_CMD_DATA_SIZE, pckLen);
LED_B_ON();
cmd_send(CMD_ACK, 1, BigBuf_get_traceLen(), pckSize, trace + BigBuf_get_traceLen() - pckLen, pckSize);
cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 1, BigBuf_get_traceLen(), pckSize, trace + BigBuf_get_traceLen() - pckLen, pckSize);
LED_B_OFF();
pckLen -= pckSize;
@ -160,7 +160,7 @@ bool intMfSniffSend() {
}
LED_B_ON();
cmd_send(CMD_ACK,2,0,0,0,0);
cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,2,0,0,0,0);
LED_B_OFF();
clear_trace();

View file

@ -46,28 +46,28 @@ int CmdHF14AList(const char *Cmd)
return 0;
}
int Hf14443_4aGetCardData(iso14a_card_select_t * card) {
int Hf14443_4aGetCardData(iso14a_card_select_t *card) {
UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_CONNECT, 0, 0}};
SendCommand(&c);
UsbCommand resp;
WaitForResponse(CMD_ACK,&resp);
WaitForResponse(CMD_NACK, &resp);
memcpy(card, (iso14a_card_select_t *)resp.d.asBytes, sizeof(iso14a_card_select_t));
uint64_t select_status = resp.arg[0]; // 0: couldn't read, 1: OK, with ATS, 2: OK, no ATS, 3: proprietary Anticollision
if(select_status == 0) {
if (select_status == 0) {
PrintAndLog("E->iso14443a card select failed");
return 1;
}
if(select_status == 2) {
if (select_status == 2) {
PrintAndLog("E->Card doesn't support iso14443-4 mode");
return 1;
}
if(select_status == 3) {
if (select_status == 3) {
PrintAndLog("E->Card doesn't support standard iso14443-3 anticollision");
PrintAndLog("\tATQA : %02x %02x", card->atqa[1], card->atqa[0]);
return 1;
@ -156,20 +156,24 @@ int CmdHF14AReader(const char *Cmd) {
return 0;
}
int CmdHF14AInfo(const char *Cmd)
{
int CmdHF14AInfo(const char *Cmd) {
UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_CONNECT | ISO14A_NO_DISCONNECT, 0, 0}};
SendCommand(&c);
UsbCommand resp;
WaitForResponse(CMD_ACK,&resp);
if (!WaitForResponseTimeout(CMD_NACK, &resp, 500)) {
if (Cmd[0] != 's') PrintAndLog("Error: No response from Proxmark.\n");
return 0;
}
iso14a_card_select_t card;
memcpy(&card, (iso14a_card_select_t *)resp.d.asBytes, sizeof(iso14a_card_select_t));
uint64_t select_status = resp.arg[0]; // 0: couldn't read, 1: OK, with ATS, 2: OK, no ATS, 3: proprietary Anticollision
if(select_status == 0) {
if (select_status == 0) {
if (Cmd[0] != 's') PrintAndLog("iso14443a card select failed");
// disconnect
c.arg[0] = 0;
@ -217,13 +221,13 @@ int CmdHF14AInfo(const char *Cmd)
SendCommand(&c);
UsbCommand resp;
WaitForResponse(CMD_ACK,&resp);
WaitForResponse(CMD_NACK,&resp);
memcpy(&card, (iso14a_card_select_t *)resp.d.asBytes, sizeof(iso14a_card_select_t));
select_status = resp.arg[0]; // 0: couldn't read, 1: OK, with ATS, 2: OK, no ATS
if(select_status == 0) {
if (select_status == 0) {
//PrintAndLog("iso14443a card select failed");
// disconnect
c.arg[0] = 0;
@ -272,7 +276,7 @@ int CmdHF14AInfo(const char *Cmd)
// Double & triple sized UID, can be mapped to a manufacturer.
// HACK: does this apply for Ultralight cards?
if ( card.uidlen > 4 ) {
if (card.uidlen > 4) {
PrintAndLog("MANUFACTURER : %s", getManufacturerName(card.uid[0]));
}
@ -430,7 +434,7 @@ int CmdHF14AInfo(const char *Cmd)
(void)mfCIdentify();
if (isMifareClassic) {
switch(DetectClassicPrng()) {
switch (DetectClassicPrng()) {
case 0:
PrintAndLog("Prng detection: HARDENED (hardnested)");
break;
@ -462,7 +466,7 @@ int CmdHF14ACUIDs(const char *Cmd)
SendCommand(&c);
UsbCommand resp;
WaitForResponse(CMD_ACK,&resp);
WaitForResponse(CMD_NACK,&resp);
iso14a_card_select_t *card = (iso14a_card_select_t *) resp.d.asBytes;

View file

@ -333,7 +333,7 @@ int HFiClassReader(bool loop, bool verbose) {
while (!ukbhit()) {
SendCommand(&c);
if (WaitForResponseTimeout(CMD_ACK,&resp, 4500)) {
if (WaitForResponseTimeout(CMD_ACK, &resp, 1000)) {
uint8_t readStatus = resp.arg[0] & 0xff;
uint8_t *data = resp.d.asBytes;
@ -368,7 +368,8 @@ int HFiClassReader(bool loop, bool verbose) {
if (tagFound && !loop) return 1;
} else {
if (verbose) PrintAndLog("Command execute timeout");
if (verbose) PrintAndLog("Error: No response from Proxmark.");
break;
}
if (!loop) break;
}

View file

@ -2672,7 +2672,7 @@ int CmdHF14AMfSniff(const char *Cmd){
}
UsbCommand resp;
if (WaitForResponseTimeoutW(CMD_ACK, &resp, 2000, false)) {
if (WaitForResponseTimeoutW(CMD_UNKNOWN, &resp, 2000, false)) {
res = resp.arg[0] & 0xff;
uint16_t traceLen = resp.arg[1];
len = resp.arg[2];

View file

@ -11,11 +11,12 @@
#include "comms.h"
#include <stdio.h>
#include <pthread.h>
#include <inttypes.h>
#if defined(__linux__) && !defined(NO_UNLINK)
#include <unistd.h> // for unlink()
#include <unistd.h> // for unlink()
#endif
#include "uart.h"
#include "ui.h"
@ -33,7 +34,6 @@ static bool offline;
typedef struct {
bool run; // If TRUE, continue running the uart_communication thread
bool block_after_ACK; // if true, block after receiving an ACK package
} communication_arg_t;
static communication_arg_t conn;
@ -78,11 +78,11 @@ void SendCommand(UsbCommand *c) {
if (offline) {
PrintAndLog("Sending bytes to proxmark failed - offline");
return;
}
}
pthread_mutex_lock(&txBufferMutex);
/**
This causes hangups at times, when the pm3 unit is unresponsive or disconnected. The main console thread is alive,
This causes hangups at times, when the pm3 unit is unresponsive or disconnected. The main console thread is alive,
but comm thread just spins here. Not good.../holiman
**/
while (txBuffer_pending) {
@ -183,7 +183,7 @@ static void UsbCommandReceived(UsbCommand *UC)
} break;
default:
storeCommand(UC);
storeCommand(UC);
break;
}
@ -195,21 +195,23 @@ static bool receive_from_serial(serial_port sp, uint8_t *rx_buf, size_t len, siz
*received_len = 0;
// we eventually need to call uart_receive several times if it times out in the middle of a transfer
while (uart_receive(sp, rx_buf + *received_len, len - *received_len, &bytes_read) && bytes_read && *received_len < len) {
#ifdef COMMS_DEBUG
if (bytes_read != len - *received_len) {
printf("uart_receive() returned true but not enough bytes could be received. received: %d, wanted to receive: %d, already received before: %d\n",
bytes_read, len - *received_len, *received_len);
}
#endif
*received_len += bytes_read;
bytes_read = 0;
}
return (*received_len == len);
}
static void
#ifdef __has_attribute
#if __has_attribute(force_align_arg_pointer)
__attribute__((force_align_arg_pointer))
__attribute__((force_align_arg_pointer))
#endif
#endif
*uart_communication(void *targ) {
@ -231,12 +233,12 @@ __attribute__((force_align_arg_pointer))
if (receive_from_serial(sp, prx, bytes_to_read, &rxlen)) {
prx += rxlen;
if (response->cmd & CMD_VARIABLE_SIZE_FLAG) { // new style response with variable size
// printf("received new style response %04" PRIx16 ", datalen = %d, arg[0] = %08" PRIx32 ", arg[1] = %08" PRIx32 ", arg[2] = %08" PRIx32 "\n",
// PrintAndLog("received new style response %04" PRIx16 ", datalen = %d, arg[0] = %08" PRIx32 ", arg[1] = %08" PRIx32 ", arg[2] = %08" PRIx32 "\n",
// response->cmd, response->datalen, response->arg[0], response->arg[1], response->arg[2]);
bytes_to_read = response->datalen;
if (receive_from_serial(sp, prx, bytes_to_read, &rxlen)) {
UsbCommand resp;
resp.cmd = response->cmd & ~CMD_VARIABLE_SIZE_FLAG;
resp.cmd = response->cmd & ~CMD_VARIABLE_SIZE_FLAG; // remove the flag
resp.arg[0] = response->arg[0];
resp.arg[1] = response->arg[1];
resp.arg[2] = response->arg[2];
@ -247,9 +249,9 @@ __attribute__((force_align_arg_pointer))
}
}
} else { // old style response uses same data structure as commands. Fixed size.
// printf("received old style response %016" PRIx64 ", arg[0] = %016" PRIx64 "\n", command->cmd, command->arg[0]);
// PrintAndLog("received old style response %016" PRIx64 ", arg[0] = %016" PRIx64 "\n", command->cmd, command->arg[0]);
bytes_to_read = sizeof(UsbCommand) - bytes_to_read;
if (receive_from_serial(sp, prx, bytes_to_read, &rxlen)) {
if (receive_from_serial(sp, prx, bytes_to_read, &rxlen)) {
UsbCommandReceived(command);
if (command->cmd == CMD_ACK) {
ACK_received = true;
@ -257,26 +259,23 @@ __attribute__((force_align_arg_pointer))
}
}
}
pthread_mutex_lock(&txBufferMutex);
if (conn->block_after_ACK) {
// if we just received an ACK, wait here until a new command is to be transmitted
if (ACK_received) {
while (!txBuffer_pending) {
pthread_cond_wait(&txBufferSig, &txBufferMutex);
}
pthread_mutex_lock(&txBufferMutex);
// if we received an ACK the PM has done its job and waits for another command.
// We therefore can wait here as well until a new command is to be transmitted.
// The advantage is that the next command will be transmitted immediately without the need to wait for a receive timeout
if (ACK_received) {
while (!txBuffer_pending) {
pthread_cond_wait(&txBufferSig, &txBufferMutex);
}
}
if(txBuffer_pending) {
if (txBuffer_pending) {
if (!uart_send(sp, (uint8_t*) &txBuffer, sizeof(UsbCommand))) {
PrintAndLog("Sending bytes to proxmark failed");
}
txBuffer_pending = false;
pthread_cond_signal(&txBufferSig); // tell main thread that txBuffer is empty
}
pthread_cond_signal(&txBufferSig); // tell main thread that txBuffer is empty
pthread_mutex_unlock(&txBufferMutex);
}
@ -309,7 +308,7 @@ bool GetFromBigBuf(uint8_t *dest, int bytes, int start_index, UsbCommand *respon
uint64_t start_time = msclock();
UsbCommand resp;
if (response == NULL) {
if (response == NULL) {
response = &resp;
}
@ -339,7 +338,7 @@ bool GetFromBigBuf(uint8_t *dest, int bytes, int start_index, UsbCommand *respon
return false;
}
bool GetFromFpgaRAM(uint8_t *dest, int bytes)
{
UsbCommand c = {CMD_HF_PLOT, {0, 0, 0}};
@ -348,7 +347,7 @@ bool GetFromFpgaRAM(uint8_t *dest, int bytes)
uint64_t start_time = msclock();
UsbCommand response;
int bytes_completed = 0;
bool show_warning = true;
while(true) {
@ -373,7 +372,7 @@ bool GetFromFpgaRAM(uint8_t *dest, int bytes)
}
bool OpenProxmark(void *port, bool wait_for_port, int timeout, bool flash_mode) {
bool OpenProxmark(void *port, bool wait_for_port, int timeout) {
char *portname = (char *)port;
if (!wait_for_port) {
sp = uart_open(portname);
@ -405,7 +404,6 @@ bool OpenProxmark(void *port, bool wait_for_port, int timeout, bool flash_mode)
// start the USB communication thread
serial_port_name = portname;
conn.run = true;
conn.block_after_ACK = flash_mode;
pthread_create(&USB_communication_thread, NULL, &uart_communication, &conn);
return true;
}
@ -477,7 +475,7 @@ bool WaitForResponseTimeoutW(uint32_t cmd, UsbCommand* response, size_t ms_timeo
// Wait until the command is received
while (true) {
while(getCommand(response)) {
while (getCommand(response)) {
if (cmd == CMD_UNKNOWN || response->cmd == cmd) {
return true;
}

View file

@ -17,7 +17,7 @@
extern void SetOffline(bool new_offline);
extern bool IsOffline();
extern bool OpenProxmark(void *port, bool wait_for_port, int timeout, bool flash_mode);
extern bool OpenProxmark(void *port, bool wait_for_port, int timeout);
extern void CloseProxmark(void);
extern void SendCommand(UsbCommand *c);
extern void clearCommandBuffer();

View file

@ -336,7 +336,7 @@ static int enter_bootloader(char *serial_port_name)
msleep(100);
CloseProxmark();
bool opened = OpenProxmark(serial_port_name, true, 120, true); // wait for 2 minutes
bool opened = OpenProxmark(serial_port_name, true, 120); // wait for 2 minutes
if (opened) {
fprintf(stderr," Found.\n");
return 0;

View file

@ -83,7 +83,7 @@ int main(int argc, char **argv)
char* serial_port_name = argv[1];
if (!OpenProxmark(serial_port_name, true, 120, true)) { // wait for 2 minutes
if (!OpenProxmark(serial_port_name, true, 120)) { // wait for 2 minutes
fprintf(stderr, "Could not find Proxmark on %s.\n\n", serial_port_name);
return -1;
} else {

View file

@ -1164,7 +1164,7 @@ int DetectClassicPrng(void){
clearCommandBuffer();
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) {
if (!WaitForResponseTimeout(CMD_NACK, &resp, 2000)) {
PrintAndLog("PRNG UID: Reply timeout.");
return -1;
}

View file

@ -286,7 +286,7 @@ int main(int argc, char* argv[]) {
set_my_executable_path();
// try to open USB connection to Proxmark
usb_present = OpenProxmark(argv[1], waitCOMPort, 20, false);
usb_present = OpenProxmark(argv[1], waitCOMPort, 20);
#ifdef HAVE_GUI
#ifdef _WIN32
@ -309,8 +309,10 @@ int main(int argc, char* argv[]) {
main_loop(script_cmds_file, script_cmd, usb_present);
#endif
// Clean up the port
// Switch off field and clean up the port
if (usb_present) {
UsbCommand c = {CMD_FPGA_MAJOR_MODE_OFF};
SendCommand(&c);
CloseProxmark();
}

View file

@ -222,28 +222,26 @@ static const char* getStringDescriptor(uint8_t idx) {
// Bitmap for all status bits in CSR which must be written as 1 to cause no effect
#define REG_NO_EFFECT_1_ALL AT91C_UDP_RX_DATA_BK0 | AT91C_UDP_RX_DATA_BK1 \
|AT91C_UDP_STALLSENT | AT91C_UDP_RXSETUP \
|AT91C_UDP_TXCOMP
#define REG_NO_EFFECT_1_ALL (AT91C_UDP_RX_DATA_BK0 | AT91C_UDP_RX_DATA_BK1 | AT91C_UDP_STALLSENT | AT91C_UDP_RXSETUP | AT91C_UDP_TXCOMP)
// Clear flags in the UDP_CSR register
#define UDP_CLEAR_EP_FLAGS(endpoint, flags) { \
volatile unsigned int reg; \
reg = pUdp->UDP_CSR[(endpoint)]; \
reg = AT91C_BASE_UDP->UDP_CSR[(endpoint)]; \
reg |= REG_NO_EFFECT_1_ALL; \
reg &= ~(flags); \
pUdp->UDP_CSR[(endpoint)] = reg; \
AT91C_BASE_UDP->UDP_CSR[(endpoint)] = reg; \
}
// Set flags in the UDP_CSR register
#define UDP_SET_EP_FLAGS(endpoint, flags) { \
volatile unsigned int reg; \
reg = pUdp->UDP_CSR[(endpoint)]; \
reg = AT91C_BASE_UDP->UDP_CSR[(endpoint)]; \
reg |= REG_NO_EFFECT_1_ALL; \
reg |= (flags); \
pUdp->UDP_CSR[(endpoint)] = reg; \
AT91C_BASE_UDP->UDP_CSR[(endpoint)] = reg; \
}
@ -283,19 +281,16 @@ typedef struct {
} AT91S_CDC_LINE_CODING, *AT91PS_CDC_LINE_CODING;
AT91S_CDC_LINE_CODING line = {
static AT91S_CDC_LINE_CODING line = {
115200, // baudrate
0, // 1 Stop Bit
0, // None Parity
8}; // 8 Data bits
static void AT91F_CDC_Enumerate();
AT91PS_UDP pUdp = AT91C_BASE_UDP;
uint8_t btConfiguration = 0;
uint8_t btConnection = 0;
uint8_t btReceiveBank = AT91C_UDP_RX_DATA_BK0;
static uint8_t btConfiguration = 0;
static uint8_t btConnection = 0;
static uint8_t btReceiveBank = AT91C_UDP_RX_DATA_BK0;
//*----------------------------------------------------------------------------
@ -307,8 +302,8 @@ void usb_disable() {
AT91C_BASE_PIOA->PIO_ODR = GPIO_USB_PU;
// Clear all lingering interrupts
if (pUdp->UDP_ISR & AT91C_UDP_ENDBUSRES) {
pUdp->UDP_ICR = AT91C_UDP_ENDBUSRES;
if (AT91C_BASE_UDP->UDP_ISR & AT91C_UDP_ENDBUSRES) {
AT91C_BASE_UDP->UDP_ICR = AT91C_UDP_ENDBUSRES;
}
}
@ -346,24 +341,233 @@ void usb_enable() {
}
//*----------------------------------------------------------------------------
//* \fn AT91F_USB_SendZlp
//* \brief Send zero length packet through an endpoint
//*----------------------------------------------------------------------------
static void AT91F_USB_SendZlp(uint8_t endpoint) {
UDP_SET_EP_FLAGS(endpoint, AT91C_UDP_TXPKTRDY);
while (!(AT91C_BASE_UDP->UDP_CSR[endpoint] & AT91C_UDP_TXCOMP))
/* wait */;
UDP_CLEAR_EP_FLAGS(endpoint, AT91C_UDP_TXCOMP);
while (AT91C_BASE_UDP->UDP_CSR[endpoint] & AT91C_UDP_TXCOMP)
/* wait */;
}
//*----------------------------------------------------------------------------
//* \fn AT91F_USB_SendData
//* \brief Send Data through the control endpoint
//*----------------------------------------------------------------------------
static void AT91F_USB_SendData(const char *pData, uint32_t length) {
uint32_t cpt = 0;
AT91_REG csr;
do {
cpt = MIN(length, 8);
length -= cpt;
while (cpt--)
AT91C_BASE_UDP->UDP_FDR[0] = *pData++;
if (AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_TXCOMP) {
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_TXCOMP);
while (AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_TXCOMP)
/* wait */;
}
UDP_SET_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_TXPKTRDY);
do {
csr = AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL];
// Data IN stage has been stopped by a status OUT
if (csr & AT91C_UDP_RX_DATA_BK0) {
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_RX_DATA_BK0);
return;
}
} while (!(csr & AT91C_UDP_TXCOMP));
} while (length);
if (AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_TXCOMP) {
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_TXCOMP);
while (AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_TXCOMP)
/* wait */;
}
}
//*----------------------------------------------------------------------------
//* \fn AT91F_USB_SendStall
//* \brief Stall the control endpoint
//*----------------------------------------------------------------------------
static void AT91F_USB_SendStall(void) {
UDP_SET_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_FORCESTALL);
while (!(AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_ISOERROR))
/* wait */;
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_FORCESTALL | AT91C_UDP_ISOERROR);
while (AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL] & (AT91C_UDP_FORCESTALL | AT91C_UDP_ISOERROR))
/* wait */;
}
//*----------------------------------------------------------------------------
//* \fn AT91F_CDC_Enumerate
//* \brief This function is a callback invoked when a SETUP packet is received
//*----------------------------------------------------------------------------
static void AT91F_CDC_Enumerate() {
uint8_t bmRequestType, bRequest;
uint16_t wValue, wIndex, wLength, wStatus;
if (!(AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_RXSETUP))
return;
bmRequestType = AT91C_BASE_UDP->UDP_FDR[AT91C_EP_CONTROL];
bRequest = AT91C_BASE_UDP->UDP_FDR[AT91C_EP_CONTROL];
wValue = (AT91C_BASE_UDP->UDP_FDR[AT91C_EP_CONTROL] & 0xFF);
wValue |= (AT91C_BASE_UDP->UDP_FDR[AT91C_EP_CONTROL] << 8);
wIndex = (AT91C_BASE_UDP->UDP_FDR[AT91C_EP_CONTROL] & 0xFF);
wIndex |= (AT91C_BASE_UDP->UDP_FDR[AT91C_EP_CONTROL] << 8);
wLength = (AT91C_BASE_UDP->UDP_FDR[AT91C_EP_CONTROL] & 0xFF);
wLength |= (AT91C_BASE_UDP->UDP_FDR[AT91C_EP_CONTROL] << 8);
if (bmRequestType & 0x80) { // Data Phase Transfer Direction Device to Host
UDP_SET_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_DIR);
while (!(AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_DIR))
/* wait */;
}
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_RXSETUP);
while (AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_RXSETUP)
/* wait */;
// Handle supported standard device request Cf Table 9-3 in USB specification Rev 1.1
switch ((bRequest << 8) | bmRequestType) {
case STD_GET_DESCRIPTOR:
if (wValue == 0x100) // Return Device Descriptor
AT91F_USB_SendData(devDescriptor, MIN(sizeof(devDescriptor), wLength));
else if (wValue == 0x200) // Return Configuration Descriptor
AT91F_USB_SendData(cfgDescriptor, MIN(sizeof(cfgDescriptor), wLength));
else if ((wValue & 0xF00) == 0x300) { // Return String Descriptor
const char *strDescriptor = getStringDescriptor(wValue & 0xff);
if (strDescriptor != NULL) {
AT91F_USB_SendData(strDescriptor, MIN(strDescriptor[0], wLength));
} else {
AT91F_USB_SendStall();
}
}
else
AT91F_USB_SendStall();
break;
case STD_SET_ADDRESS:
AT91F_USB_SendZlp(AT91C_EP_CONTROL);
AT91C_BASE_UDP->UDP_FADDR = (AT91C_UDP_FEN | wValue);
AT91C_BASE_UDP->UDP_GLBSTATE = (wValue) ? AT91C_UDP_FADDEN : 0;
break;
case STD_SET_CONFIGURATION:
btConfiguration = wValue;
AT91F_USB_SendZlp(AT91C_EP_CONTROL);
AT91C_BASE_UDP->UDP_GLBSTATE = (wValue) ? AT91C_UDP_CONFG : AT91C_UDP_FADDEN;
AT91C_BASE_UDP->UDP_CSR[AT91C_EP_OUT] = (wValue) ? (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_BULK_OUT) : 0;
AT91C_BASE_UDP->UDP_CSR[AT91C_EP_IN] = (wValue) ? (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_BULK_IN) : 0;
AT91C_BASE_UDP->UDP_CSR[AT91C_EP_NOTIFY] = (wValue) ? (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_INT_IN) : 0;
break;
case STD_GET_CONFIGURATION:
AT91F_USB_SendData((char *) &(btConfiguration), sizeof(btConfiguration));
break;
case STD_GET_STATUS_ZERO:
wStatus = 0; // Device is Bus powered, remote wakeup disabled
AT91F_USB_SendData((char *) &wStatus, sizeof(wStatus));
break;
case STD_GET_STATUS_INTERFACE:
wStatus = 0; // reserved for future use
AT91F_USB_SendData((char *) &wStatus, sizeof(wStatus));
break;
case STD_GET_STATUS_ENDPOINT:
wStatus = 0;
wIndex &= 0x0F;
if ((AT91C_BASE_UDP->UDP_GLBSTATE & AT91C_UDP_CONFG) && (wIndex <= AT91C_EP_NOTIFY)) {
wStatus = (AT91C_BASE_UDP->UDP_CSR[wIndex] & AT91C_UDP_EPEDS) ? 0 : 1;
AT91F_USB_SendData((char *) &wStatus, sizeof(wStatus));
} else if ((AT91C_BASE_UDP->UDP_GLBSTATE & AT91C_UDP_FADDEN) && (wIndex == AT91C_EP_CONTROL)) {
wStatus = (AT91C_BASE_UDP->UDP_CSR[wIndex] & AT91C_UDP_EPEDS) ? 0 : 1;
AT91F_USB_SendData((char *) &wStatus, sizeof(wStatus));
} else
AT91F_USB_SendStall();
break;
case STD_SET_FEATURE_ZERO:
AT91F_USB_SendStall();
break;
case STD_SET_FEATURE_INTERFACE:
AT91F_USB_SendZlp(AT91C_EP_CONTROL);
break;
case STD_SET_FEATURE_ENDPOINT:
wIndex &= 0x0F;
if ((wValue == 0) && (wIndex >= AT91C_EP_OUT) && (wIndex <= AT91C_EP_NOTIFY)) {
AT91C_BASE_UDP->UDP_CSR[wIndex] = 0;
AT91F_USB_SendZlp(AT91C_EP_CONTROL);
} else
AT91F_USB_SendStall();
break;
case STD_CLEAR_FEATURE_ZERO:
AT91F_USB_SendStall();
break;
case STD_CLEAR_FEATURE_INTERFACE:
AT91F_USB_SendZlp(AT91C_EP_CONTROL);
break;
case STD_CLEAR_FEATURE_ENDPOINT:
wIndex &= 0x0F;
if ((wValue == 0) && (wIndex >= AT91C_EP_OUT) && (wIndex <= AT91C_EP_NOTIFY)) {
if (wIndex == AT91C_EP_OUT)
AT91C_BASE_UDP->UDP_CSR[AT91C_EP_OUT] = (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_BULK_OUT);
else if (wIndex == AT91C_EP_IN)
AT91C_BASE_UDP->UDP_CSR[AT91C_EP_IN] = (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_BULK_IN);
else if (wIndex == AT91C_EP_NOTIFY)
AT91C_BASE_UDP->UDP_CSR[AT91C_EP_NOTIFY] = (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_INT_IN);
AT91F_USB_SendZlp(AT91C_EP_CONTROL);
}
else
AT91F_USB_SendStall();
break;
// handle CDC class requests
case SET_LINE_CODING:
while (!(AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_RX_DATA_BK0))
/* wait */;
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_RX_DATA_BK0);
AT91F_USB_SendZlp(AT91C_EP_CONTROL);
break;
case GET_LINE_CODING:
AT91F_USB_SendData((char *) &line, MIN(sizeof(line), wLength));
break;
case SET_CONTROL_LINE_STATE:
btConnection = wValue;
AT91F_USB_SendZlp(AT91C_EP_CONTROL);
break;
default:
AT91F_USB_SendStall();
break;
}
}
//*----------------------------------------------------------------------------
//* \fn usb_check
//* \brief Test if the device is configured and handle enumeration
//*----------------------------------------------------------------------------
static bool usb_check() {
AT91_REG isr = pUdp->UDP_ISR;
AT91_REG isr = AT91C_BASE_UDP->UDP_ISR;
if (isr & AT91C_UDP_ENDBUSRES) {
pUdp->UDP_ICR = AT91C_UDP_ENDBUSRES;
AT91C_BASE_UDP->UDP_ICR = AT91C_UDP_ENDBUSRES;
// reset all endpoints
pUdp->UDP_RSTEP = (unsigned int)-1;
pUdp->UDP_RSTEP = 0;
AT91C_BASE_UDP->UDP_RSTEP = (unsigned int)-1;
AT91C_BASE_UDP->UDP_RSTEP = 0;
// Enable the function
pUdp->UDP_FADDR = AT91C_UDP_FEN;
AT91C_BASE_UDP->UDP_FADDR = AT91C_UDP_FEN;
// Configure endpoint 0
pUdp->UDP_CSR[AT91C_EP_CONTROL] = (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_CTRL);
AT91C_BASE_UDP->UDP_CSR[AT91C_EP_CONTROL] = (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_CTRL);
} else if (isr & AT91C_UDP_EPINT0) {
pUdp->UDP_ICR = AT91C_UDP_EPINT0;
AT91C_BASE_UDP->UDP_ICR = AT91C_UDP_EPINT0;
AT91F_CDC_Enumerate();
}
return (btConfiguration) ? true : false;
@ -372,7 +576,7 @@ static bool usb_check() {
bool usb_poll() {
if (!usb_check()) return false;
return (pUdp->UDP_CSR[AT91C_EP_OUT] & btReceiveBank);
return (AT91C_BASE_UDP->UDP_CSR[AT91C_EP_OUT] & btReceiveBank);
}
@ -386,8 +590,8 @@ bool usb_poll() {
**/
bool usb_poll_validate_length() {
if (!usb_check()) return false;
if (!(pUdp->UDP_CSR[AT91C_EP_OUT] & btReceiveBank)) return false;
return (pUdp->UDP_CSR[AT91C_EP_OUT] >> 16) > 0;
if (!(AT91C_BASE_UDP->UDP_CSR[AT91C_EP_OUT] & btReceiveBank)) return false;
return (AT91C_BASE_UDP->UDP_CSR[AT91C_EP_OUT] >> 16) > 0;
}
@ -403,11 +607,11 @@ static uint32_t usb_read(uint8_t* data, size_t len) {
while (len) {
if (!usb_check()) break;
if ( pUdp->UDP_CSR[AT91C_EP_OUT] & bank ) {
packetSize = MIN(pUdp->UDP_CSR[AT91C_EP_OUT] >> 16, len);
if ( AT91C_BASE_UDP->UDP_CSR[AT91C_EP_OUT] & bank ) {
packetSize = MIN(AT91C_BASE_UDP->UDP_CSR[AT91C_EP_OUT] >> 16, len);
len -= packetSize;
while (packetSize--)
data[nbBytesRcv++] = pUdp->UDP_FDR[AT91C_EP_OUT];
data[nbBytesRcv++] = AT91C_BASE_UDP->UDP_FDR[AT91C_EP_OUT];
UDP_CLEAR_EP_FLAGS(AT91C_EP_OUT, bank);
if (bank == AT91C_UDP_RX_DATA_BK0) {
bank = AT91C_UDP_RX_DATA_BK1;
@ -438,249 +642,47 @@ static uint32_t usb_write(const uint8_t* data, const size_t len) {
cpt = MIN(length, AT91C_EP_IN_SIZE);
length -= cpt;
while (cpt--) {
pUdp->UDP_FDR[AT91C_EP_IN] = *data++;
AT91C_BASE_UDP->UDP_FDR[AT91C_EP_IN] = *data++;
}
UDP_SET_EP_FLAGS(AT91C_EP_IN, AT91C_UDP_TXPKTRDY);
while (!(AT91C_BASE_UDP->UDP_CSR[AT91C_EP_IN] & AT91C_UDP_TXPKTRDY))
/* wait */;
while (length) {
// Fill the next bank
cpt = MIN(length, AT91C_EP_IN_SIZE);
length -= cpt;
while (cpt--) {
pUdp->UDP_FDR[AT91C_EP_IN] = *data++;
AT91C_BASE_UDP->UDP_FDR[AT91C_EP_IN] = *data++;
}
// Wait for the previous bank to be sent
while (!(pUdp->UDP_CSR[AT91C_EP_IN] & AT91C_UDP_TXCOMP)) {
while (!(AT91C_BASE_UDP->UDP_CSR[AT91C_EP_IN] & AT91C_UDP_TXCOMP)) {
if (!usb_check()) return length;
}
UDP_CLEAR_EP_FLAGS(AT91C_EP_IN, AT91C_UDP_TXCOMP);
while (pUdp->UDP_CSR[AT91C_EP_IN] & AT91C_UDP_TXCOMP)
/* wait */;
UDP_SET_EP_FLAGS(AT91C_EP_IN, AT91C_UDP_TXPKTRDY);
while (!(AT91C_BASE_UDP->UDP_CSR[AT91C_EP_IN] & AT91C_UDP_TXPKTRDY))
/* wait */;
UDP_CLEAR_EP_FLAGS(AT91C_EP_IN, AT91C_UDP_TXCOMP);
while (AT91C_BASE_UDP->UDP_CSR[AT91C_EP_IN] & AT91C_UDP_TXCOMP)
/* wait */;
}
// Wait for the end of transfer
while (!(pUdp->UDP_CSR[AT91C_EP_IN] & AT91C_UDP_TXCOMP)) {
while (!(AT91C_BASE_UDP->UDP_CSR[AT91C_EP_IN] & AT91C_UDP_TXCOMP)) {
if (!usb_check()) return length;
}
UDP_CLEAR_EP_FLAGS(AT91C_EP_IN, AT91C_UDP_TXCOMP);
while (pUdp->UDP_CSR[AT91C_EP_IN] & AT91C_UDP_TXCOMP)
while (AT91C_BASE_UDP->UDP_CSR[AT91C_EP_IN] & AT91C_UDP_TXCOMP)
/* wait */;
if (len % AT91C_EP_IN_SIZE == 0) { // need to send a zero length packet to complete the transfer
AT91F_USB_SendZlp(AT91C_EP_IN);
}
return length;
}
//*----------------------------------------------------------------------------
//* \fn AT91F_USB_SendData
//* \brief Send Data through the control endpoint
//*----------------------------------------------------------------------------
static void AT91F_USB_SendData(AT91PS_UDP pUdp, const char *pData, uint32_t length) {
uint32_t cpt = 0;
AT91_REG csr;
do {
cpt = MIN(length, 8);
length -= cpt;
while (cpt--)
pUdp->UDP_FDR[0] = *pData++;
if (pUdp->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_TXCOMP) {
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_TXCOMP);
while (pUdp->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_TXCOMP)
/* wait */;
}
UDP_SET_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_TXPKTRDY);
do {
csr = pUdp->UDP_CSR[AT91C_EP_CONTROL];
// Data IN stage has been stopped by a status OUT
if (csr & AT91C_UDP_RX_DATA_BK0) {
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_RX_DATA_BK0);
return;
}
} while (!(csr & AT91C_UDP_TXCOMP));
} while (length);
if (pUdp->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_TXCOMP) {
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_TXCOMP);
while (pUdp->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_TXCOMP)
/* wait */;
}
}
//*----------------------------------------------------------------------------
//* \fn AT91F_USB_SendZlp
//* \brief Send zero length packet through the control endpoint
//*----------------------------------------------------------------------------
static void AT91F_USB_SendZlp(AT91PS_UDP pUdp) {
UDP_SET_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_TXPKTRDY);
while (!(pUdp->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_TXCOMP))
/* wait */;
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_TXCOMP);
while (pUdp->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_TXCOMP)
/* wait */;
}
//*----------------------------------------------------------------------------
//* \fn AT91F_USB_SendStall
//* \brief Stall the control endpoint
//*----------------------------------------------------------------------------
static void AT91F_USB_SendStall(AT91PS_UDP pUdp) {
UDP_SET_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_FORCESTALL);
while (!(pUdp->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_ISOERROR))
/* wait */;
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_FORCESTALL | AT91C_UDP_ISOERROR);
while (pUdp->UDP_CSR[AT91C_EP_CONTROL] & (AT91C_UDP_FORCESTALL | AT91C_UDP_ISOERROR))
/* wait */;
}
//*----------------------------------------------------------------------------
//* \fn AT91F_CDC_Enumerate
//* \brief This function is a callback invoked when a SETUP packet is received
//*----------------------------------------------------------------------------
static void AT91F_CDC_Enumerate() {
uint8_t bmRequestType, bRequest;
uint16_t wValue, wIndex, wLength, wStatus;
if (!(pUdp->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_RXSETUP))
return;
bmRequestType = pUdp->UDP_FDR[AT91C_EP_CONTROL];
bRequest = pUdp->UDP_FDR[AT91C_EP_CONTROL];
wValue = (pUdp->UDP_FDR[AT91C_EP_CONTROL] & 0xFF);
wValue |= (pUdp->UDP_FDR[AT91C_EP_CONTROL] << 8);
wIndex = (pUdp->UDP_FDR[AT91C_EP_CONTROL] & 0xFF);
wIndex |= (pUdp->UDP_FDR[AT91C_EP_CONTROL] << 8);
wLength = (pUdp->UDP_FDR[AT91C_EP_CONTROL] & 0xFF);
wLength |= (pUdp->UDP_FDR[AT91C_EP_CONTROL] << 8);
if (bmRequestType & 0x80) { // Data Phase Transfer Direction Device to Host
UDP_SET_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_DIR);
while (!(pUdp->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_DIR))
/* wait */;
}
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_RXSETUP);
while (pUdp->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_RXSETUP)
/* wait */;
// Handle supported standard device request Cf Table 9-3 in USB specification Rev 1.1
switch ((bRequest << 8) | bmRequestType) {
case STD_GET_DESCRIPTOR:
if (wValue == 0x100) // Return Device Descriptor
AT91F_USB_SendData(pUdp, devDescriptor, MIN(sizeof(devDescriptor), wLength));
else if (wValue == 0x200) // Return Configuration Descriptor
AT91F_USB_SendData(pUdp, cfgDescriptor, MIN(sizeof(cfgDescriptor), wLength));
else if ((wValue & 0xF00) == 0x300) { // Return String Descriptor
const char *strDescriptor = getStringDescriptor(wValue & 0xff);
if (strDescriptor != NULL) {
AT91F_USB_SendData(pUdp, strDescriptor, MIN(strDescriptor[0], wLength));
} else {
AT91F_USB_SendStall(pUdp);
}
}
else
AT91F_USB_SendStall(pUdp);
break;
case STD_SET_ADDRESS:
AT91F_USB_SendZlp(pUdp);
pUdp->UDP_FADDR = (AT91C_UDP_FEN | wValue);
pUdp->UDP_GLBSTATE = (wValue) ? AT91C_UDP_FADDEN : 0;
break;
case STD_SET_CONFIGURATION:
btConfiguration = wValue;
AT91F_USB_SendZlp(pUdp);
pUdp->UDP_GLBSTATE = (wValue) ? AT91C_UDP_CONFG : AT91C_UDP_FADDEN;
pUdp->UDP_CSR[AT91C_EP_OUT] = (wValue) ? (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_BULK_OUT) : 0;
pUdp->UDP_CSR[AT91C_EP_IN] = (wValue) ? (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_BULK_IN) : 0;
pUdp->UDP_CSR[AT91C_EP_NOTIFY] = (wValue) ? (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_INT_IN) : 0;
break;
case STD_GET_CONFIGURATION:
AT91F_USB_SendData(pUdp, (char *) &(btConfiguration), sizeof(btConfiguration));
break;
case STD_GET_STATUS_ZERO:
wStatus = 0; // Device is Bus powered, remote wakeup disabled
AT91F_USB_SendData(pUdp, (char *) &wStatus, sizeof(wStatus));
break;
case STD_GET_STATUS_INTERFACE:
wStatus = 0; // reserved for future use
AT91F_USB_SendData(pUdp, (char *) &wStatus, sizeof(wStatus));
break;
case STD_GET_STATUS_ENDPOINT:
wStatus = 0;
wIndex &= 0x0F;
if ((pUdp->UDP_GLBSTATE & AT91C_UDP_CONFG) && (wIndex <= AT91C_EP_NOTIFY)) {
wStatus = (pUdp->UDP_CSR[wIndex] & AT91C_UDP_EPEDS) ? 0 : 1;
AT91F_USB_SendData(pUdp, (char *) &wStatus, sizeof(wStatus));
} else if ((pUdp->UDP_GLBSTATE & AT91C_UDP_FADDEN) && (wIndex == AT91C_EP_CONTROL)) {
wStatus = (pUdp->UDP_CSR[wIndex] & AT91C_UDP_EPEDS) ? 0 : 1;
AT91F_USB_SendData(pUdp, (char *) &wStatus, sizeof(wStatus));
} else
AT91F_USB_SendStall(pUdp);
break;
case STD_SET_FEATURE_ZERO:
AT91F_USB_SendStall(pUdp);
break;
case STD_SET_FEATURE_INTERFACE:
AT91F_USB_SendZlp(pUdp);
break;
case STD_SET_FEATURE_ENDPOINT:
wIndex &= 0x0F;
if ((wValue == 0) && (wIndex >= AT91C_EP_OUT) && (wIndex <= AT91C_EP_NOTIFY)) {
pUdp->UDP_CSR[wIndex] = 0;
AT91F_USB_SendZlp(pUdp);
} else
AT91F_USB_SendStall(pUdp);
break;
case STD_CLEAR_FEATURE_ZERO:
AT91F_USB_SendStall(pUdp);
break;
case STD_CLEAR_FEATURE_INTERFACE:
AT91F_USB_SendZlp(pUdp);
break;
case STD_CLEAR_FEATURE_ENDPOINT:
wIndex &= 0x0F;
if ((wValue == 0) && (wIndex >= AT91C_EP_OUT) && (wIndex <= AT91C_EP_NOTIFY)) {
if (wIndex == AT91C_EP_OUT)
pUdp->UDP_CSR[AT91C_EP_OUT] = (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_BULK_OUT);
else if (wIndex == AT91C_EP_IN)
pUdp->UDP_CSR[AT91C_EP_IN] = (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_BULK_IN);
else if (wIndex == AT91C_EP_NOTIFY)
pUdp->UDP_CSR[AT91C_EP_NOTIFY] = (AT91C_UDP_EPEDS | AT91C_UDP_EPTYPE_INT_IN);
AT91F_USB_SendZlp(pUdp);
}
else
AT91F_USB_SendStall(pUdp);
break;
// handle CDC class requests
case SET_LINE_CODING:
while (!(pUdp->UDP_CSR[AT91C_EP_CONTROL] & AT91C_UDP_RX_DATA_BK0))
/* wait */;
UDP_CLEAR_EP_FLAGS(AT91C_EP_CONTROL, AT91C_UDP_RX_DATA_BK0);
AT91F_USB_SendZlp(pUdp);
break;
case GET_LINE_CODING:
AT91F_USB_SendData(pUdp, (char *) &line, MIN(sizeof(line), wLength));
break;
case SET_CONTROL_LINE_STATE:
btConnection = wValue;
AT91F_USB_SendZlp(pUdp);
break;
default:
AT91F_USB_SendStall(pUdp);
break;
}
}
//***************************************************************************
// Interface to the main program
//***************************************************************************
@ -752,7 +754,7 @@ bool cmd_send_old(uint16_t cmd, uint32_t arg0, uint32_t arg1, uint32_t arg2, voi
txcmd.d.asBytes[i] = ((uint8_t*)data)[i];
}
}
// Send frame and make sure all bytes are transmitted
if (usb_write((uint8_t*)&txcmd, sizeof(UsbCommand)) != 0) return false;

View file

@ -29,24 +29,21 @@
* @file uart.h
*/
#ifndef _PM3_UART_H_
#define _PM3_UART_H_
#ifndef PM3_UART_H__
#define PM3_UART_H__
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
/* Used to substitute for an example serial port path on each platform.
*/
#ifdef _WIN32
#define SERIAL_PORT_H "com3"
#define SERIAL_PORT_H "com3"
#elif __APPLE__
#define SERIAL_PORT_H "/dev/tty.usbmodem*"
#define SERIAL_PORT_H "/dev/tty.usbmodem*"
#else
#define SERIAL_PORT_H "/dev/ttyACM0"
#define SERIAL_PORT_H "/dev/ttyACM0"
#endif
/* serial_port is declared as a void*, which you should cast to whatever type
@ -69,11 +66,11 @@ typedef void* serial_port;
*
* On errors, this method returns INVALID_SERIAL_PORT or CLAIMED_SERIAL_PORT.
*/
serial_port uart_open(const char* pcPortName);
extern serial_port uart_open(const char* pcPortName);
/* Closes the given port.
*/
void uart_close(const serial_port sp);
extern void uart_close(const serial_port sp);
/* Reads from the given serial port for up to 30ms.
* pbtRx: A pointer to a buffer for the returned data to be written to.
@ -84,15 +81,15 @@ void uart_close(const serial_port sp);
*
* Returns FALSE if there was an error reading from the device. Note that a
* partial read may have completed into the buffer by the corresponding
* implementation, so pszRxLen should be checked to see if any data was written.
* implementation, so pszRxLen should be checked to see if any data was written.
*/
bool uart_receive(const serial_port sp, uint8_t* pbtRx, size_t pszMaxRxLen, size_t* pszRxLen);
extern bool uart_receive(const serial_port sp, uint8_t* pbtRx, size_t pszMaxRxLen, size_t* pszRxLen);
/* Sends a buffer to a given serial port.
* pbtTx: A pointer to a buffer containing the data to send.
* szTxLen: The amount of data to be sent.
*/
bool uart_send(const serial_port sp, const uint8_t* pbtTx, const size_t szTxLen);
extern bool uart_send(const serial_port sp, const uint8_t* pbtTx, const size_t szTxLen);
/* Sets the current speed of the serial port, in baud.
*/
@ -100,7 +97,7 @@ bool uart_set_speed(serial_port sp, const uint32_t uiPortSpeed);
/* Gets the current speed of the serial port, in baud.
*/
uint32_t uart_get_speed(const serial_port sp);
extern uint32_t uart_get_speed(const serial_port sp);
#endif // _PM3_UART_H_

View file

@ -38,97 +38,109 @@
#include "uart.h"
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
// The windows serial port implementation
#ifdef _WIN32
#include <windows.h>
typedef struct {
HANDLE hPort; // Serial port handle
DCB dcb; // Device control settings
COMMTIMEOUTS ct; // Serial port time-out configuration
HANDLE hPort; // Serial port handle
DCB dcb; // Device control settings
COMMTIMEOUTS ct; // Serial port time-out configuration
} serial_port_windows;
void upcase(char *p) {
while(*p != '\0') {
if(*p >= 97 && *p <= 122) {
*p -= 32;
}
++p;
}
while(*p != '\0') {
if(*p >= 97 && *p <= 122) {
*p -= 32;
}
++p;
}
}
serial_port uart_open(const char* pcPortName) {
char acPortName[255];
serial_port_windows* sp = malloc(sizeof(serial_port_windows));
// Copy the input "com?" to "\\.\COM?" format
sprintf(acPortName,"\\\\.\\%s",pcPortName);
upcase(acPortName);
// Try to open the serial port
sp->hPort = CreateFileA(acPortName,GENERIC_READ|GENERIC_WRITE,0,NULL,OPEN_EXISTING,0,NULL);
if (sp->hPort == INVALID_HANDLE_VALUE) {
uart_close(sp);
return INVALID_SERIAL_PORT;
}
// Prepare the device control
memset(&sp->dcb, 0, sizeof(DCB));
sp->dcb.DCBlength = sizeof(DCB);
if(!BuildCommDCBA("baud=9600 data=8 parity=N stop=1",&sp->dcb)) {
uart_close(sp);
return INVALID_SERIAL_PORT;
}
// Update the active serial port
if(!SetCommState(sp->hPort,&sp->dcb)) {
uart_close(sp);
return INVALID_SERIAL_PORT;
}
sp->ct.ReadIntervalTimeout = 0;
sp->ct.ReadTotalTimeoutMultiplier = 0;
sp->ct.ReadTotalTimeoutConstant = 30;
sp->ct.WriteTotalTimeoutMultiplier = 0;
sp->ct.WriteTotalTimeoutConstant = 30;
if(!SetCommTimeouts(sp->hPort,&sp->ct)) {
uart_close(sp);
return INVALID_SERIAL_PORT;
}
PurgeComm(sp->hPort, PURGE_RXABORT | PURGE_RXCLEAR);
return sp;
}
void uart_close(const serial_port sp) {
CloseHandle(((serial_port_windows*)sp)->hPort);
free(sp);
CloseHandle(((serial_port_windows*)sp)->hPort);
free(sp);
}
serial_port uart_open(const char* pcPortName) {
char acPortName[255];
serial_port_windows* sp = malloc(sizeof(serial_port_windows));
// Copy the input "com?" to "\\.\COM?" format
sprintf(acPortName,"\\\\.\\%s",pcPortName);
upcase(acPortName);
// Try to open the serial port
sp->hPort = CreateFileA(acPortName, GENERIC_READ | GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0, NULL);
if (sp->hPort == INVALID_HANDLE_VALUE) {
uart_close(sp);
return INVALID_SERIAL_PORT;
}
// Prepare the device control
memset(&sp->dcb, 0, sizeof(DCB));
sp->dcb.DCBlength = sizeof(DCB);
if (!BuildCommDCBA("baud=9600 data=8 parity=N stop=1",&sp->dcb)) {
uart_close(sp);
return INVALID_SERIAL_PORT;
}
// Update the active serial port
if (!SetCommState(sp->hPort,&sp->dcb)) {
uart_close(sp);
return INVALID_SERIAL_PORT;
}
sp->ct.ReadIntervalTimeout = 0;
sp->ct.ReadTotalTimeoutMultiplier = 0;
sp->ct.ReadTotalTimeoutConstant = 30;
sp->ct.WriteTotalTimeoutMultiplier = 0;
sp->ct.WriteTotalTimeoutConstant = 30;
if (!SetCommTimeouts(sp->hPort, &sp->ct)) {
uart_close(sp);
return INVALID_SERIAL_PORT;
}
PurgeComm(sp->hPort, PURGE_RXABORT | PURGE_RXCLEAR);
return sp;
}
bool uart_receive(const serial_port sp, uint8_t *pbtRx, size_t pszMaxRxLen, size_t *pszRxLen) {
return ReadFile(((serial_port_windows*)sp)->hPort, pbtRx, pszMaxRxLen, (LPDWORD)pszRxLen, NULL);
return ReadFile(((serial_port_windows*)sp)->hPort, pbtRx, pszMaxRxLen, (LPDWORD)pszRxLen, NULL);
}
bool uart_send(const serial_port sp, const uint8_t* pbtTx, const size_t szTxLen) {
DWORD dwTxLen = 0;
return WriteFile(((serial_port_windows*)sp)->hPort, pbtTx, szTxLen, &dwTxLen, NULL);
DWORD dwTxLen = 0;
return WriteFile(((serial_port_windows*)sp)->hPort, pbtTx, szTxLen, &dwTxLen, NULL);
}
bool uart_set_speed(serial_port sp, const uint32_t uiPortSpeed) {
serial_port_windows* spw;
spw = (serial_port_windows*)sp;
spw->dcb.BaudRate = uiPortSpeed;
return SetCommState(spw->hPort, &spw->dcb);
serial_port_windows* spw;
spw = (serial_port_windows*)sp;
spw->dcb.BaudRate = uiPortSpeed;
return SetCommState(spw->hPort, &spw->dcb);
}
uint32_t uart_get_speed(const serial_port sp) {
const serial_port_windows* spw = (serial_port_windows*)sp;
if (!GetCommState(spw->hPort, (serial_port)&spw->dcb)) {
return spw->dcb.BaudRate;
}
return 0;
const serial_port_windows* spw = (serial_port_windows*)sp;
if (!GetCommState(spw->hPort, (serial_port)&spw->dcb)) {
return spw->dcb.BaudRate;
}
return 0;
}
#endif