fix 'hf iclass sim'

* fix tag response timing. iClass differs from ISO15693 in this respect.
* speedup CodeIso15693AsTag()
* TransmitTo15693Tag(): don't send unmodulated start of SOF
* reduce modulation depth in hi_simulate.v
* calculate CRC for configuration block when simulating
* Show real response time instead of planned response time in 'hf list iclass'
This commit is contained in:
pwpiwi 2019-10-05 17:57:16 +02:00
commit 8efd0b80f2
5 changed files with 59 additions and 43 deletions

View file

@ -59,6 +59,13 @@
static int timeout = 4096;
// iCLASS has a slightly different timing compared to ISO15693. According to the picopass data sheet the tag response is expected 330us after
// the reader command. This is measured from end of reader EOF to first modulation of the tag's SOF which starts with a 56,64us unmodulated period.
// 330us = 140 ssp_clk cycles @ 423,75kHz when simulating.
// 56,64us = 24 ssp_clk_cycles
#define DELAY_ICLASS_VCD_TO_VICC_SIM 140
#define TAG_SOF_UNMODULATED 24
//-----------------------------------------------------------------------------
// The software UART that receives commands from the reader, and its state
// variables.
@ -783,7 +790,7 @@ int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) {
State cipher_state_KC[8];
State cipher_state_KD[8];
State *cipher_state = &cipher_state_KD[0];
uint8_t *emulator = BigBuf_get_EM_addr();
uint8_t *csn = emulator;
@ -800,13 +807,12 @@ int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) {
AppendCrc(anticoll_data, 8);
AppendCrc(csn_data, 8);
uint8_t diversified_key_d[8];
uint8_t diversified_key_c[8];
uint8_t diversified_key_d[8] = { 0x00 };
uint8_t diversified_key_c[8] = { 0x00 };
uint8_t *diversified_key = diversified_key_d;
// configuration block
uint8_t conf_block[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00};
AppendCrc(conf_block, 8);
// e-Purse
uint8_t card_challenge_data[8] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
@ -819,6 +825,8 @@ int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) {
memcpy(diversified_key_c, emulator + 8 * 4, 8); // Kc
}
AppendCrc(conf_block, 8);
// save card challenge for sim2,4 attack
if (reader_mac_buf != NULL) {
memcpy(reader_mac_buf, card_challenge_data, 8);
@ -836,7 +844,7 @@ int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) {
// chip memory may be divided in 8 pages
uint8_t max_page = conf_block[4] & 0x10 ? 0 : 7;
// Precalculate the cipher states, feeding it the CC
cipher_state_KD[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
cipher_state_KC[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
@ -849,7 +857,7 @@ int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) {
cipher_state_KC[i] = opt_doTagMAC_1(epurse, Kc);
}
}
int exitLoop = 0;
// Reader 0a
// Tag 0f
@ -1073,7 +1081,7 @@ int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) {
cipher_state = &cipher_state_KD[current_page];
diversified_key = diversified_key_d;
} else {
cipher_state = &cipher_state_KC[current_page];
cipher_state = &cipher_state_KC[current_page];
diversified_key = diversified_key_c;
}
modulated_response = resp_cc;
@ -1082,7 +1090,7 @@ int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) {
trace_data_size = sizeof(card_challenge_data);
}
} else if ((receivedCmd[0] == ICLASS_CMD_CHECK_KC
} else if ((receivedCmd[0] == ICLASS_CMD_CHECK_KC
|| receivedCmd[0] == ICLASS_CMD_CHECK_KD) && len == 9) {
// Reader random and reader MAC!!!
if (chip_state == SELECTED) {
@ -1148,22 +1156,22 @@ int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) {
} else if (blockNo == 3) { // update Kd
for (int i = 0; i < 8; i++) {
if (personalization_mode) {
diversified_key_d[i] = receivedCmd[2 + i];
diversified_key_d[i] = receivedCmd[2 + i];
} else {
diversified_key_d[i] ^= receivedCmd[2 + i];
}
}
}
cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
if (simulationMode == ICLASS_SIM_MODE_FULL) {
memcpy(emulator + current_page*page_size + 8*3, diversified_key_d, 8);
}
} else if (blockNo == 4) { // update Kc
} else if (blockNo == 4) { // update Kc
for (int i = 0; i < 8; i++) {
if (personalization_mode) {
diversified_key_c[i] = receivedCmd[2 + i];
diversified_key_c[i] = receivedCmd[2 + i];
} else {
diversified_key_c[i] ^= receivedCmd[2 + i];
}
}
}
cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
if (simulationMode == ICLASS_SIM_MODE_FULL) {
@ -1171,7 +1179,7 @@ int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) {
}
} else if (simulationMode == ICLASS_SIM_MODE_FULL) { // update any other data block
memcpy(emulator + current_page*page_size + 8*blockNo, receivedCmd+2, 8);
}
}
memcpy(data_generic_trace, receivedCmd + 2, 8);
AppendCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
@ -1185,20 +1193,20 @@ int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) {
} else if (receivedCmd[0] == ICLASS_CMD_PAGESEL && len == 4) {
// Pagesel
// Chips with a single page will not answer to this command
// Otherwise, we should answer 8bytes (block) + 2bytes CRC
// Otherwise, we should answer 8bytes (conf block 1) + 2bytes CRC
if (chip_state == SELECTED) {
if (simulationMode == ICLASS_SIM_MODE_FULL && max_page > 0) {
current_page = receivedCmd[1];
memcpy(data_generic_trace, emulator + current_page*page_size + 8*1, 8);
memcpy(diversified_key_d, emulator + current_page*page_size + 8*3, 8);
memcpy(diversified_key_c, emulator + current_page*page_size + 8*4, 8);
memcpy(diversified_key_c, emulator + current_page*page_size + 8*4, 8);
cipher_state = &cipher_state_KD[current_page];
personalization_mode = data_generic_trace[7] & 0x80;
AppendCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
trace_data_size = 10;
CodeIso15693AsTag(trace_data, trace_data_size);
memcpy(data_response, ToSend, ToSendMax);
memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
}
@ -1219,11 +1227,11 @@ int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) {
}
/**
A legit tag has about 311,5us delay between reader EOT and tag SOF.
A legit tag has about 273,4us delay between reader EOT and tag SOF.
**/
if (modulated_response_size > 0) {
uint32_t response_time = reader_eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM - DELAY_ARM_TO_READER_SIM;
TransmitTo15693Reader(modulated_response, modulated_response_size, response_time, false);
uint32_t response_time = reader_eof_time + DELAY_ICLASS_VCD_TO_VICC_SIM - TAG_SOF_UNMODULATED - DELAY_ARM_TO_READER_SIM;
TransmitTo15693Reader(modulated_response, modulated_response_size, &response_time, 0, false);
LogTrace(trace_data, trace_data_size, response_time + DELAY_ARM_TO_READER_SIM, response_time + (modulated_response_size << 6) + DELAY_ARM_TO_READER_SIM, NULL, false);
}
@ -1249,9 +1257,9 @@ int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) {
* @param datain
*/
void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) {
LED_A_ON();
uint32_t simType = arg0;
uint32_t numberOfCSNS = arg1;
@ -1559,6 +1567,7 @@ static uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key) {
ReaderTransmitIClass(act_all, 1);
// Card present?
if (!ReaderReceiveIClass(resp)) return read_status;//Fail
//Send Identify
ReaderTransmitIClass(identify, 1);
//We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC