fix hf mf sim

* use DMA to receive reader command
* switch earlier from send to listen mode
* move ADC initializer to iso14443_setup
* remove remainders of incomplete Mifare 10Byte UID simulation
* show 'short' bytes (7Bits or 8Bits without parity) in 'hf list mf' and 'hf list 14a'
* whitespace
This commit is contained in:
pwpiwi 2019-04-18 17:22:00 +02:00
commit 8578ea82cc
7 changed files with 618 additions and 597 deletions

File diff suppressed because it is too large Load diff

View file

@ -41,7 +41,6 @@ extern void ReaderMifare(bool first_try);
extern int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity); extern int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity);
extern int EmSendCmd(uint8_t *resp, uint16_t respLen); extern int EmSendCmd(uint8_t *resp, uint16_t respLen);
extern int EmSendCmdEx(uint8_t *resp, uint16_t respLen);
extern int EmSend4bit(uint8_t resp); extern int EmSend4bit(uint8_t resp);
extern int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par); extern int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
extern int EmSendPrecompiledCmd(tag_response_info_t *response_info); extern int EmSendPrecompiledCmd(tag_response_info_t *response_info);

View file

@ -25,19 +25,19 @@
#include "apps.h" #include "apps.h"
//mifare emulator states //mifare emulator states
#define MFEMUL_NOFIELD 0 #define MFEMUL_NOFIELD 0
#define MFEMUL_IDLE 1 #define MFEMUL_IDLE 1
#define MFEMUL_SELECT1 2 #define MFEMUL_SELECT1 2
#define MFEMUL_SELECT2 3 #define MFEMUL_SELECT2 3
#define MFEMUL_SELECT3 4 #define MFEMUL_SELECT3 4
#define MFEMUL_AUTH1 5 #define MFEMUL_AUTH1 5
#define MFEMUL_AUTH2 6 #define MFEMUL_AUTH2 6
#define MFEMUL_WORK 7 #define MFEMUL_WORK 7
#define MFEMUL_WRITEBL2 8 #define MFEMUL_WRITEBL2 8
#define MFEMUL_INTREG_INC 9 #define MFEMUL_INTREG_INC 9
#define MFEMUL_INTREG_DEC 10 #define MFEMUL_INTREG_DEC 10
#define MFEMUL_INTREG_REST 11 #define MFEMUL_INTREG_REST 11
#define MFEMUL_HALTED 12 #define MFEMUL_HALTED 12
#define AC_DATA_READ 0 #define AC_DATA_READ 0
#define AC_DATA_WRITE 1 #define AC_DATA_WRITE 1
@ -277,7 +277,7 @@ static void MifareSimInit(uint8_t flags, uint8_t *datain, tag_response_info_t **
}; };
// Prepare ("precompile") the responses of the anticollision phase. There will be not enough time to do this at the moment the reader sends its REQA or SELECT // Prepare ("precompile") the responses of the anticollision phase. There will be not enough time to do this at the moment the reader sends its REQA or SELECT
// There are 7 predefined responses with a total of 18 bytes data to transmit. Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) // There are 5 predefined responses with a total of 18 bytes data to transmit. Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
// 18 * 8 data bits, 18 * 1 parity bits, 5 start bits, 5 stop bits, 5 correction bits -> need 177 bytes buffer // 18 * 8 data bits, 18 * 1 parity bits, 5 start bits, 5 stop bits, 5 correction bits -> need 177 bytes buffer
#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 177 // number of bytes required for precompiled responses #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 177 // number of bytes required for precompiled responses
@ -313,7 +313,6 @@ static bool HasValidCRC(uint8_t *receivedCmd, uint16_t receivedCmd_len) {
* FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
* FLAG_4B_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that * FLAG_4B_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
* FLAG_7B_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that * FLAG_7B_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
* FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section not finished
* FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
* FLAG_RANDOM_NONCE - means we should generate some pseudo-random nonce data (only allows moebius attack) * FLAG_RANDOM_NONCE - means we should generate some pseudo-random nonce data (only allows moebius attack)
*@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ... *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ...
@ -335,18 +334,15 @@ void MifareSim(uint8_t flags, uint8_t exitAfterNReads, uint8_t cardsize, uint8_t
uint32_t cardINTREG = 0; uint32_t cardINTREG = 0;
uint8_t cardINTBLOCK = 0; uint8_t cardINTBLOCK = 0;
struct Crypto1State mpcs = {0, 0}; struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs; struct Crypto1State *pcs = &mpcs;
pcs = &mpcs; uint32_t numReads = 0; //Counts numer of times reader reads a block
uint32_t numReads = 0;//Counts numer of times reader reads a block
uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedCmd_dec[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedCmd_dec[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE]; uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
uint16_t receivedCmd_len; uint16_t receivedCmd_len;
uint8_t response[MAX_MIFARE_FRAME_SIZE]; uint8_t response[MAX_MIFARE_FRAME_SIZE];
uint8_t response_par[MAX_MIFARE_PARITY_SIZE]; uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
uint8_t fixed_nonce[] = {0x01, 0x02, 0x03, 0x04};
uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
int num_blocks = ParamCardSizeBlocks(cardsize); int num_blocks = ParamCardSizeBlocks(cardsize);
@ -371,7 +367,7 @@ void MifareSim(uint8_t flags, uint8_t exitAfterNReads, uint8_t cardsize, uint8_t
if (flags & FLAG_RANDOM_NONCE) { if (flags & FLAG_RANDOM_NONCE) {
nonce = prand(); nonce = prand();
} else { } else {
nonce = bytes_to_num(rAUTH_NT, 4); nonce = bytes_to_num(fixed_nonce, 4);
} }
// free eventually allocated BigBuf memory but keep Emulator Memory // free eventually allocated BigBuf memory but keep Emulator Memory
@ -394,8 +390,8 @@ void MifareSim(uint8_t flags, uint8_t exitAfterNReads, uint8_t cardsize, uint8_t
while (!button_pushed && !finished && !usb_poll_validate_length()) { while (!button_pushed && !finished && !usb_poll_validate_length()) {
WDT_HIT(); WDT_HIT();
// find reader field
if (cardSTATE == MFEMUL_NOFIELD) { if (cardSTATE == MFEMUL_NOFIELD) {
// wait for reader HF field
int vHf = (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10; int vHf = (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10;
if (vHf > MF_MINFIELDV) { if (vHf > MF_MINFIELDV) {
LED_D_ON(); LED_D_ON();
@ -409,7 +405,7 @@ void MifareSim(uint8_t flags, uint8_t exitAfterNReads, uint8_t cardsize, uint8_t
FpgaEnableTracing(); FpgaEnableTracing();
int res = EmGetCmd(receivedCmd, &receivedCmd_len, receivedCmd_par); int res = EmGetCmd(receivedCmd, &receivedCmd_len, receivedCmd_par);
if (res == 2) { //Field is off! if (res == 2) { // Reader has dropped the HF field. Power off.
FpgaDisableTracing(); FpgaDisableTracing();
LED_D_OFF(); LED_D_OFF();
cardSTATE = MFEMUL_NOFIELD; cardSTATE = MFEMUL_NOFIELD;
@ -522,8 +518,8 @@ void MifareSim(uint8_t flags, uint8_t exitAfterNReads, uint8_t cardsize, uint8_t
crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
if (!encrypted_data) { // first authentication if (!encrypted_data) { // first authentication
crypto1_word(pcs, cuid ^ nonce, 0); // Update crypto state crypto1_word(pcs, cuid ^ nonce, 0); // Update crypto state
num_to_bytes(nonce, 4, rAUTH_AT); // Send unencrypted nonce num_to_bytes(nonce, 4, response); // Send unencrypted nonce
EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); EmSendCmd(response, sizeof(nonce));
FpgaDisableTracing(); FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d", receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY); if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d", receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY);
} else { // nested authentication } else { // nested authentication
@ -545,7 +541,7 @@ void MifareSim(uint8_t flags, uint8_t exitAfterNReads, uint8_t cardsize, uint8_t
cardSTATE = MFEMUL_HALTED; cardSTATE = MFEMUL_HALTED;
break; break;
} }
if(receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK if(receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK
|| receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK || receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK
|| receivedCmd_dec[0] == MIFARE_CMD_INC || receivedCmd_dec[0] == MIFARE_CMD_INC
@ -645,8 +641,10 @@ void MifareSim(uint8_t flags, uint8_t exitAfterNReads, uint8_t cardsize, uint8_t
} }
// command not allowed // command not allowed
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Received command not allowed, nacking");
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Received command not allowed, nacking");
cardSTATE = MFEMUL_IDLE;
break; break;
} }
@ -727,6 +725,7 @@ void MifareSim(uint8_t flags, uint8_t exitAfterNReads, uint8_t cardsize, uint8_t
// test if auth OK // test if auth OK
if (cardRr != prng_successor(nonce, 64)){ if (cardRr != prng_successor(nonce, 64)){
FpgaDisableTracing();
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x", if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
cardAUTHSC, cardAUTHKEY == AUTHKEYA ? 'A' : 'B', cardAUTHSC, cardAUTHKEY == AUTHKEYA ? 'A' : 'B',
cardRr, prng_successor(nonce, 64)); cardRr, prng_successor(nonce, 64));
@ -787,8 +786,8 @@ void MifareSim(uint8_t flags, uint8_t exitAfterNReads, uint8_t cardsize, uint8_t
break; break;
} }
cardINTREG = cardINTREG + ans; cardINTREG = cardINTREG + ans;
cardSTATE = MFEMUL_WORK;
} }
cardSTATE = MFEMUL_WORK;
break; break;
} }
@ -800,9 +799,9 @@ void MifareSim(uint8_t flags, uint8_t exitAfterNReads, uint8_t cardsize, uint8_t
cardSTATE = MFEMUL_IDLE; cardSTATE = MFEMUL_IDLE;
break; break;
} }
cardINTREG = cardINTREG - ans;
cardSTATE = MFEMUL_WORK;
} }
cardINTREG = cardINTREG - ans;
cardSTATE = MFEMUL_WORK;
break; break;
} }
@ -818,6 +817,7 @@ void MifareSim(uint8_t flags, uint8_t exitAfterNReads, uint8_t cardsize, uint8_t
} }
} // end of switch } // end of switch
FpgaDisableTracing(); FpgaDisableTracing();
button_pushed = BUTTON_PRESS(); button_pushed = BUTTON_PRESS();

View file

@ -27,9 +27,9 @@ int MF_DBGLEVEL = MF_DBG_INFO;
// crypto1 helpers // crypto1 helpers
void mf_crypto1_decryptEx(struct Crypto1State *pcs, uint8_t *data_in, int len, uint8_t *data_out){ void mf_crypto1_decryptEx(struct Crypto1State *pcs, uint8_t *data_in, int len, uint8_t *data_out){
uint8_t bt = 0; uint8_t bt = 0;
int i; int i;
if (len != 1) { if (len != 1) {
for (i = 0; i < len; i++) for (i = 0; i < len; i++)
data_out[i] = crypto1_byte(pcs, 0x00, 0) ^ data_in[i]; data_out[i] = crypto1_byte(pcs, 0x00, 0) ^ data_in[i];
@ -37,7 +37,7 @@ void mf_crypto1_decryptEx(struct Crypto1State *pcs, uint8_t *data_in, int len, u
bt = 0; bt = 0;
for (i = 0; i < 4; i++) for (i = 0; i < 4; i++)
bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data_in[0], i)) << i; bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data_in[0], i)) << i;
data_out[0] = bt; data_out[0] = bt;
} }
return; return;
@ -51,14 +51,14 @@ void mf_crypto1_encryptEx(struct Crypto1State *pcs, uint8_t *data, uint8_t *in,
uint8_t bt = 0; uint8_t bt = 0;
int i; int i;
par[0] = 0; par[0] = 0;
for (i = 0; i < len; i++) { for (i = 0; i < len; i++) {
bt = data[i]; bt = data[i];
data[i] = crypto1_byte(pcs, in==NULL?0x00:in[i], 0) ^ data[i]; data[i] = crypto1_byte(pcs, in==NULL?0x00:in[i], 0) ^ data[i];
if((i&0x0007) == 0) if((i&0x0007) == 0)
par[i>>3] = 0; par[i>>3] = 0;
par[i>>3] |= (((filter(pcs->odd) ^ oddparity8(bt)) & 0x01)<<(7-(i&0x0007))); par[i>>3] |= (((filter(pcs->odd) ^ oddparity8(bt)) & 0x01)<<(7-(i&0x0007)));
} }
return; return;
} }
@ -72,7 +72,7 @@ uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data) {
for (i = 0; i < 4; i++) for (i = 0; i < 4; i++)
bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data, i)) << i; bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data, i)) << i;
return bt; return bt;
} }
@ -98,20 +98,20 @@ int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd,
{ {
uint8_t dcmd[4], ecmd[4]; uint8_t dcmd[4], ecmd[4];
uint16_t pos, res; uint16_t pos, res;
uint8_t par[1]; // 1 Byte parity is enough here uint8_t par[1]; // 1 Byte parity is enough here
dcmd[0] = cmd; dcmd[0] = cmd;
dcmd[1] = data; dcmd[1] = data;
AppendCrc14443a(dcmd, 2); AppendCrc14443a(dcmd, 2);
memcpy(ecmd, dcmd, sizeof(dcmd)); memcpy(ecmd, dcmd, sizeof(dcmd));
if (crypted) { if (crypted) {
par[0] = 0; par[0] = 0;
for (pos = 0; pos < 4; pos++) for (pos = 0; pos < 4; pos++)
{ {
ecmd[pos] = crypto1_byte(pcs, 0x00, 0) ^ dcmd[pos]; ecmd[pos] = crypto1_byte(pcs, 0x00, 0) ^ dcmd[pos];
par[0] |= (((filter(pcs->odd) ^ oddparity8(dcmd[pos])) & 0x01) << (7-pos)); par[0] |= (((filter(pcs->odd) ^ oddparity8(dcmd[pos])) & 0x01) << (7-pos));
} }
ReaderTransmitPar(ecmd, sizeof(ecmd), par, timing); ReaderTransmitPar(ecmd, sizeof(ecmd), par, timing);
@ -120,17 +120,17 @@ int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd,
} }
int len = ReaderReceive(answer, par); int len = ReaderReceive(answer, par);
if (answer_parity) *answer_parity = par[0]; if (answer_parity) *answer_parity = par[0];
if (crypted == CRYPT_ALL) { if (crypted == CRYPT_ALL) {
if (len == 1) { if (len == 1) {
res = 0; res = 0;
for (pos = 0; pos < 4; pos++) for (pos = 0; pos < 4; pos++)
res |= (crypto1_bit(pcs, 0, 0) ^ BIT(answer[0], pos)) << pos; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(answer[0], pos)) << pos;
answer[0] = res; answer[0] = res;
} else { } else {
for (pos = 0; pos < len; pos++) for (pos = 0; pos < len; pos++)
{ {
@ -138,41 +138,41 @@ int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd,
} }
} }
} }
return len; return len;
} }
// mifare classic commands // mifare classic commands
int mifare_classic_auth(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested) int mifare_classic_auth(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested)
{ {
return mifare_classic_authex(pcs, uid, blockNo, keyType, ui64Key, isNested, NULL, NULL); return mifare_classic_authex(pcs, uid, blockNo, keyType, ui64Key, isNested, NULL, NULL);
} }
int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested, uint32_t *ntptr, uint32_t *timing) int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested, uint32_t *ntptr, uint32_t *timing)
{ {
// variables // variables
int len; int len;
uint32_t pos; uint32_t pos;
uint8_t tmp4[4]; uint8_t tmp4[4];
uint8_t par[1] = {0x00}; uint8_t par[1] = {0x00};
byte_t nr[4]; byte_t nr[4];
uint32_t nt, ntpp; // Supplied tag nonce uint32_t nt, ntpp; // Supplied tag nonce
uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
// Transmit MIFARE_CLASSIC_AUTH // Transmit MIFARE_CLASSIC_AUTH
len = mifare_sendcmd_short(pcs, isNested, 0x60 + (keyType & 0x01), blockNo, receivedAnswer, receivedAnswerPar, timing); len = mifare_sendcmd_short(pcs, isNested, 0x60 + (keyType & 0x01), blockNo, receivedAnswer, receivedAnswerPar, timing);
if (MF_DBGLEVEL >= 4) Dbprintf("rand tag nonce len: %x", len); if (MF_DBGLEVEL >= 4) Dbprintf("rand tag nonce len: %x", len);
if (len != 4) return 1; if (len != 4) return 1;
// "random" reader nonce: // "random" reader nonce:
nr[0] = 0x55; nr[0] = 0x55;
nr[1] = 0x41; nr[1] = 0x41;
nr[2] = 0x49; nr[2] = 0x49;
nr[3] = 0x92; nr[3] = 0x92;
// Save the tag nonce (nt) // Save the tag nonce (nt)
nt = bytes_to_num(receivedAnswer, 4); nt = bytes_to_num(receivedAnswer, 4);
@ -184,7 +184,7 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
crypto1_create(pcs, ui64Key); crypto1_create(pcs, ui64Key);
if (isNested == AUTH_NESTED) { if (isNested == AUTH_NESTED) {
// decrypt nt with help of new key // decrypt nt with help of new key
nt = crypto1_word(pcs, nt ^ uid, 1) ^ nt; nt = crypto1_word(pcs, nt ^ uid, 1) ^ nt;
} else { } else {
// Load (plain) uid^nt into the cipher // Load (plain) uid^nt into the cipher
@ -193,8 +193,8 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
// some statistic // some statistic
if (!ntptr && (MF_DBGLEVEL >= 3)) if (!ntptr && (MF_DBGLEVEL >= 3))
Dbprintf("auth uid: %08x nt: %08x", uid, nt); Dbprintf("auth uid: %08x nt: %08x", uid, nt);
// save Nt // save Nt
if (ntptr) if (ntptr)
*ntptr = nt; *ntptr = nt;
@ -205,8 +205,8 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
{ {
mf_nr_ar[pos] = crypto1_byte(pcs, nr[pos], 0) ^ nr[pos]; mf_nr_ar[pos] = crypto1_byte(pcs, nr[pos], 0) ^ nr[pos];
par[0] |= (((filter(pcs->odd) ^ oddparity8(nr[pos])) & 0x01) << (7-pos)); par[0] |= (((filter(pcs->odd) ^ oddparity8(nr[pos])) & 0x01) << (7-pos));
} }
// Skip 32 bits in pseudo random generator // Skip 32 bits in pseudo random generator
nt = prng_successor(nt,32); nt = prng_successor(nt,32);
@ -216,8 +216,8 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
nt = prng_successor(nt,8); nt = prng_successor(nt,8);
mf_nr_ar[pos] = crypto1_byte(pcs,0x00,0) ^ (nt & 0xff); mf_nr_ar[pos] = crypto1_byte(pcs,0x00,0) ^ (nt & 0xff);
par[0] |= (((filter(pcs->odd) ^ oddparity8(nt)) & 0x01) << (7-pos)); par[0] |= (((filter(pcs->odd) ^ oddparity8(nt)) & 0x01) << (7-pos));
} }
// Transmit reader nonce and reader answer // Transmit reader nonce and reader answer
ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL); ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
@ -225,48 +225,48 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
len = ReaderReceive(receivedAnswer, receivedAnswerPar); len = ReaderReceive(receivedAnswer, receivedAnswerPar);
if (!len) if (!len)
{ {
if (MF_DBGLEVEL >= 1) Dbprintf("Authentication failed. Card timeout."); if (MF_DBGLEVEL >= 1) Dbprintf("Authentication failed. Card timeout.");
return 2; return 2;
} }
memcpy(tmp4, receivedAnswer, 4); memcpy(tmp4, receivedAnswer, 4);
ntpp = prng_successor(nt, 32) ^ crypto1_word(pcs, 0,0); ntpp = prng_successor(nt, 32) ^ crypto1_word(pcs, 0,0);
if (ntpp != bytes_to_num(tmp4, 4)) { if (ntpp != bytes_to_num(tmp4, 4)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Authentication failed. Error card response."); if (MF_DBGLEVEL >= 1) Dbprintf("Authentication failed. Error card response.");
return 3; return 3;
} }
return 0; return 0;
} }
int mifare_classic_readblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData) int mifare_classic_readblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData)
{ {
// variables // variables
int len; int len;
uint8_t bt[2]; uint8_t bt[2];
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
// command MIFARE_CLASSIC_READBLOCK // command MIFARE_CLASSIC_READBLOCK
len = mifare_sendcmd_short(pcs, 1, 0x30, blockNo, receivedAnswer, receivedAnswerPar, NULL); len = mifare_sendcmd_short(pcs, 1, 0x30, blockNo, receivedAnswer, receivedAnswerPar, NULL);
if (len == 1) { if (len == 1) {
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: %02x", receivedAnswer[0]); if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: %02x", receivedAnswer[0]);
return 1; return 1;
} }
if (len != 18) { if (len != 18) {
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: card timeout. len: %x", len); if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: card timeout. len: %x", len);
return 2; return 2;
} }
memcpy(bt, receivedAnswer + 16, 2); memcpy(bt, receivedAnswer + 16, 2);
AppendCrc14443a(receivedAnswer, 16); AppendCrc14443a(receivedAnswer, 16);
if (bt[0] != receivedAnswer[16] || bt[1] != receivedAnswer[17]) { if (bt[0] != receivedAnswer[16] || bt[1] != receivedAnswer[17]) {
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd CRC response error."); if (MF_DBGLEVEL >= 1) Dbprintf("Cmd CRC response error.");
return 3; return 3;
} }
memcpy(blockData, receivedAnswer, 16); memcpy(blockData, receivedAnswer, 16);
return 0; return 0;
} }
@ -281,7 +281,7 @@ int mifare_ul_ev1_auth(uint8_t *keybytes, uint8_t *pack){
memcpy(key, keybytes, 4); memcpy(key, keybytes, 4);
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) if (MF_DBGLEVEL >= MF_DBG_EXTENDED)
Dbprintf("EV1 Auth : %02x%02x%02x%02x", key[0], key[1], key[2], key[3]); Dbprintf("EV1 Auth : %02x%02x%02x%02x", key[0], key[1], key[2], key[3]);
len = mifare_sendcmd(0x1B, key, sizeof(key), resp, respPar, NULL); len = mifare_sendcmd(0x1B, key, sizeof(key), resp, respPar, NULL);
//len = mifare_sendcmd_short_mfuev1auth(NULL, 0, 0x1B, key, resp, respPar, NULL); //len = mifare_sendcmd_short_mfuev1auth(NULL, 0, 0x1B, key, resp, respPar, NULL);
if (len != 4) { if (len != 4) {
@ -326,12 +326,12 @@ int mifare_ultra_auth(uint8_t *keybytes){
// decrypt nonce. // decrypt nonce.
// tdes_2key_dec(random_b, enc_random_b, sizeof(random_b), key, IV ); // tdes_2key_dec(random_b, enc_random_b, sizeof(random_b), key, IV );
mbedtls_des3_set2key_dec(&ctx, key); mbedtls_des3_set2key_dec(&ctx, key);
mbedtls_des3_crypt_cbc(&ctx // des3_context mbedtls_des3_crypt_cbc(&ctx // des3_context
, MBEDTLS_DES_DECRYPT // int mode , MBEDTLS_DES_DECRYPT // int mode
, sizeof(random_b) // length , sizeof(random_b) // length
, IV // iv[8] , IV // iv[8]
, enc_random_b // input , enc_random_b // input
, random_b // output , random_b // output
); );
rol(random_b,8); rol(random_b,8);
@ -355,12 +355,12 @@ int mifare_ultra_auth(uint8_t *keybytes){
// encrypt out, in, length, key, iv // encrypt out, in, length, key, iv
//tdes_2key_enc(rnd_ab, rnd_ab, sizeof(rnd_ab), key, enc_random_b); //tdes_2key_enc(rnd_ab, rnd_ab, sizeof(rnd_ab), key, enc_random_b);
mbedtls_des3_set2key_enc(&ctx, key); mbedtls_des3_set2key_enc(&ctx, key);
mbedtls_des3_crypt_cbc(&ctx // des3_context mbedtls_des3_crypt_cbc(&ctx // des3_context
, MBEDTLS_DES_ENCRYPT // int mode , MBEDTLS_DES_ENCRYPT // int mode
, sizeof(rnd_ab) // length , sizeof(rnd_ab) // length
, enc_random_b // iv[8] , enc_random_b // iv[8]
, rnd_ab // input , rnd_ab // input
, rnd_ab // output , rnd_ab // output
); );
//len = mifare_sendcmd_short_mfucauth(NULL, 1, 0xAF, rnd_ab, resp, respPar, NULL); //len = mifare_sendcmd_short_mfucauth(NULL, 1, 0xAF, rnd_ab, resp, respPar, NULL);
@ -374,15 +374,15 @@ int mifare_ultra_auth(uint8_t *keybytes){
uint8_t resp_random_a[8] = { 0,0,0,0,0,0,0,0 }; uint8_t resp_random_a[8] = { 0,0,0,0,0,0,0,0 };
memcpy(enc_resp, resp+1, 8); memcpy(enc_resp, resp+1, 8);
// decrypt out, in, length, key, iv // decrypt out, in, length, key, iv
// tdes_2key_dec(resp_random_a, enc_resp, 8, key, enc_random_b); // tdes_2key_dec(resp_random_a, enc_resp, 8, key, enc_random_b);
mbedtls_des3_set2key_dec(&ctx, key); mbedtls_des3_set2key_dec(&ctx, key);
mbedtls_des3_crypt_cbc(&ctx // des3_context mbedtls_des3_crypt_cbc(&ctx // des3_context
, MBEDTLS_DES_DECRYPT // int mode , MBEDTLS_DES_DECRYPT // int mode
, 8 // length , 8 // length
, enc_random_b // iv[8] , enc_random_b // iv[8]
, enc_resp // input , enc_resp // input
, resp_random_a // output , resp_random_a // output
); );
if ( memcmp(resp_random_a, random_a, 8) != 0 ) { if ( memcmp(resp_random_a, random_a, 8) != 0 ) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("failed authentication"); if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("failed authentication");
@ -390,7 +390,7 @@ int mifare_ultra_auth(uint8_t *keybytes){
} }
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {
Dbprintf("e_AB: %02x %02x %02x %02x %02x %02x %02x %02x", Dbprintf("e_AB: %02x %02x %02x %02x %02x %02x %02x %02x",
rnd_ab[0],rnd_ab[1],rnd_ab[2],rnd_ab[3], rnd_ab[0],rnd_ab[1],rnd_ab[2],rnd_ab[3],
rnd_ab[4],rnd_ab[5],rnd_ab[6],rnd_ab[7]); rnd_ab[4],rnd_ab[5],rnd_ab[6],rnd_ab[7]);
@ -414,7 +414,7 @@ int mifare_ultra_auth(uint8_t *keybytes){
int mifare_ultra_readblock(uint8_t blockNo, uint8_t *blockData) int mifare_ultra_readblock(uint8_t blockNo, uint8_t *blockData)
{ {
uint16_t len; uint16_t len;
uint8_t bt[2]; uint8_t bt[2];
uint8_t receivedAnswer[MAX_FRAME_SIZE]; uint8_t receivedAnswer[MAX_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_PARITY_SIZE];
uint8_t retries; uint8_t retries;
@ -455,55 +455,55 @@ int mifare_ultra_readblock(uint8_t blockNo, uint8_t *blockData)
return 0; return 0;
} }
int mifare_classic_writeblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData) int mifare_classic_writeblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData)
{ {
// variables // variables
uint16_t len, i; uint16_t len, i;
uint32_t pos; uint32_t pos;
uint8_t par[3] = {0}; // enough for 18 Bytes to send uint8_t par[3] = {0}; // enough for 18 Bytes to send
byte_t res; byte_t res;
uint8_t d_block[18], d_block_enc[18]; uint8_t d_block[18], d_block_enc[18];
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
// command MIFARE_CLASSIC_WRITEBLOCK // command MIFARE_CLASSIC_WRITEBLOCK
len = mifare_sendcmd_short(pcs, 1, 0xA0, blockNo, receivedAnswer, receivedAnswerPar, NULL); len = mifare_sendcmd_short(pcs, 1, 0xA0, blockNo, receivedAnswer, receivedAnswerPar, NULL);
if ((len != 1) || (receivedAnswer[0] != 0x0A)) { // 0x0a - ACK if ((len != 1) || (receivedAnswer[0] != 0x0A)) { // 0x0a - ACK
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: %02x", receivedAnswer[0]); if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: %02x", receivedAnswer[0]);
return 1; return 1;
} }
memcpy(d_block, blockData, 16); memcpy(d_block, blockData, 16);
AppendCrc14443a(d_block, 16); AppendCrc14443a(d_block, 16);
// crypto // crypto
for (pos = 0; pos < 18; pos++) for (pos = 0; pos < 18; pos++)
{ {
d_block_enc[pos] = crypto1_byte(pcs, 0x00, 0) ^ d_block[pos]; d_block_enc[pos] = crypto1_byte(pcs, 0x00, 0) ^ d_block[pos];
par[pos>>3] |= (((filter(pcs->odd) ^ oddparity8(d_block[pos])) & 0x01) << (7 - (pos&0x0007))); par[pos>>3] |= (((filter(pcs->odd) ^ oddparity8(d_block[pos])) & 0x01) << (7 - (pos&0x0007)));
} }
ReaderTransmitPar(d_block_enc, sizeof(d_block_enc), par, NULL); ReaderTransmitPar(d_block_enc, sizeof(d_block_enc), par, NULL);
// Receive the response // Receive the response
len = ReaderReceive(receivedAnswer, receivedAnswerPar); len = ReaderReceive(receivedAnswer, receivedAnswerPar);
res = 0; res = 0;
for (i = 0; i < 4; i++) for (i = 0; i < 4; i++)
res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], i)) << i; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], i)) << i;
if ((len != 1) || (res != 0x0A)) { if ((len != 1) || (res != 0x0A)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd send data2 Error: %02x", res); if (MF_DBGLEVEL >= 1) Dbprintf("Cmd send data2 Error: %02x", res);
return 2; return 2;
} }
return 0; return 0;
} }
/* // command not needed, but left for future testing /* // command not needed, but left for future testing
int mifare_ultra_writeblock_compat(uint8_t blockNo, uint8_t *blockData) int mifare_ultra_writeblock_compat(uint8_t blockNo, uint8_t *blockData)
{ {
uint16_t len; uint16_t len;
uint8_t par[3] = {0}; // enough for 18 parity bits uint8_t par[3] = {0}; // enough for 18 parity bits
@ -557,16 +557,16 @@ int mifare_ultra_writeblock(uint8_t blockNo, uint8_t *blockData)
return 0; return 0;
} }
int mifare_classic_halt(struct Crypto1State *pcs, uint32_t uid) int mifare_classic_halt(struct Crypto1State *pcs, uint32_t uid)
{ {
uint16_t len; uint16_t len;
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
len = mifare_sendcmd_short(pcs, pcs == NULL ? false:true, 0x50, 0x00, receivedAnswer, receivedAnswerPar, NULL); len = mifare_sendcmd_short(pcs, pcs == NULL ? false:true, 0x50, 0x00, receivedAnswer, receivedAnswerPar, NULL);
if (len != 0) { if (len != 0) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) if (MF_DBGLEVEL >= MF_DBG_ERROR)
Dbprintf("halt error. response len: %x", len); Dbprintf("halt error. response len: %x", len);
return 1; return 1;
} }
@ -578,7 +578,7 @@ int mifare_ultra_halt()
uint16_t len; uint16_t len;
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
len = mifare_sendcmd_short(NULL, true, 0x50, 0x00, receivedAnswer, receivedAnswerPar, NULL); len = mifare_sendcmd_short(NULL, true, 0x50, 0x00, receivedAnswer, receivedAnswerPar, NULL);
if (len != 0) { if (len != 0) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) if (MF_DBGLEVEL >= MF_DBG_ERROR)
@ -591,21 +591,21 @@ int mifare_ultra_halt()
// Mifare Memory Structure: up to 32 Sectors with 4 blocks each (1k and 2k cards), // Mifare Memory Structure: up to 32 Sectors with 4 blocks each (1k and 2k cards),
// plus evtl. 8 sectors with 16 blocks each (4k cards) // plus evtl. 8 sectors with 16 blocks each (4k cards)
uint8_t NumBlocksPerSector(uint8_t sectorNo) uint8_t NumBlocksPerSector(uint8_t sectorNo)
{ {
if (sectorNo < 32) if (sectorNo < 32)
return 4; return 4;
else else
return 16; return 16;
} }
uint8_t FirstBlockOfSector(uint8_t sectorNo) uint8_t FirstBlockOfSector(uint8_t sectorNo)
{ {
if (sectorNo < 32) if (sectorNo < 32)
return sectorNo * 4; return sectorNo * 4;
else else
return 32*4 + (sectorNo - 32) * 16; return 32*4 + (sectorNo - 32) * 16;
} }
uint8_t SectorTrailer(uint8_t blockNo) uint8_t SectorTrailer(uint8_t blockNo)
@ -648,7 +648,7 @@ int emlCheckValBl(int blockNum) {
(data[3] != (data[7] ^ 0xff)) || (data[3] != data[11]) || (data[3] != (data[7] ^ 0xff)) || (data[3] != data[11]) ||
(data[12] != (data[13] ^ 0xff)) || (data[12] != data[14]) || (data[12] != (data[13] ^ 0xff)) || (data[12] != data[14]) ||
(data[12] != (data[15] ^ 0xff)) (data[12] != (data[15] ^ 0xff))
) )
return 1; return 1;
return 0; return 0;
} }
@ -656,11 +656,11 @@ int emlCheckValBl(int blockNum) {
int emlGetValBl(uint32_t *blReg, uint8_t *blBlock, int blockNum) { int emlGetValBl(uint32_t *blReg, uint8_t *blBlock, int blockNum) {
uint8_t* emCARD = BigBuf_get_EM_addr(); uint8_t* emCARD = BigBuf_get_EM_addr();
uint8_t* data = emCARD + blockNum * 16; uint8_t* data = emCARD + blockNum * 16;
if (emlCheckValBl(blockNum)) { if (emlCheckValBl(blockNum)) {
return 1; return 1;
} }
memcpy(blReg, data, 4); memcpy(blReg, data, 4);
*blBlock = data[12]; *blBlock = data[12];
return 0; return 0;
@ -669,41 +669,41 @@ int emlGetValBl(uint32_t *blReg, uint8_t *blBlock, int blockNum) {
int emlSetValBl(uint32_t blReg, uint8_t blBlock, int blockNum) { int emlSetValBl(uint32_t blReg, uint8_t blBlock, int blockNum) {
uint8_t* emCARD = BigBuf_get_EM_addr(); uint8_t* emCARD = BigBuf_get_EM_addr();
uint8_t* data = emCARD + blockNum * 16; uint8_t* data = emCARD + blockNum * 16;
memcpy(data + 0, &blReg, 4); memcpy(data + 0, &blReg, 4);
memcpy(data + 8, &blReg, 4); memcpy(data + 8, &blReg, 4);
blReg = blReg ^ 0xffffffff; blReg = blReg ^ 0xffffffff;
memcpy(data + 4, &blReg, 4); memcpy(data + 4, &blReg, 4);
data[12] = blBlock; data[12] = blBlock;
data[13] = blBlock ^ 0xff; data[13] = blBlock ^ 0xff;
data[14] = blBlock; data[14] = blBlock;
data[15] = blBlock ^ 0xff; data[15] = blBlock ^ 0xff;
return 0; return 0;
} }
uint64_t emlGetKey(int sectorNum, int keyType) { uint64_t emlGetKey(int sectorNum, int keyType) {
uint8_t key[6]; uint8_t key[6];
uint8_t* emCARD = BigBuf_get_EM_addr(); uint8_t* emCARD = BigBuf_get_EM_addr();
memcpy(key, emCARD + 16 * (FirstBlockOfSector(sectorNum) + NumBlocksPerSector(sectorNum) - 1) + keyType * 10, 6); memcpy(key, emCARD + 16 * (FirstBlockOfSector(sectorNum) + NumBlocksPerSector(sectorNum) - 1) + keyType * 10, 6);
return bytes_to_num(key, 6); return bytes_to_num(key, 6);
} }
void emlClearMem(void) { void emlClearMem(void) {
int b; int b;
const uint8_t trailer[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07, 0x80, 0x69, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; const uint8_t trailer[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07, 0x80, 0x69, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
const uint8_t uid[] = {0xe6, 0x84, 0x87, 0xf3, 0x16, 0x88, 0x04, 0x00, 0x46, 0x8e, 0x45, 0x55, 0x4d, 0x70, 0x41, 0x04}; const uint8_t uid[] = {0xe6, 0x84, 0x87, 0xf3, 0x16, 0x88, 0x04, 0x00, 0x46, 0x8e, 0x45, 0x55, 0x4d, 0x70, 0x41, 0x04};
uint8_t* emCARD = BigBuf_get_EM_addr(); uint8_t* emCARD = BigBuf_get_EM_addr();
memset(emCARD, 0, CARD_MEMORY_SIZE); memset(emCARD, 0, CARD_MEMORY_SIZE);
// fill sectors trailer data // fill sectors trailer data
for(b = 3; b < 256; b<127?(b+=4):(b+=16)) { for(b = 3; b < 256; b<127?(b+=4):(b+=16)) {
emlSetMem((uint8_t *)trailer, b , 1); emlSetMem((uint8_t *)trailer, b , 1);
} }
// uid // uid
emlSetMem((uint8_t *)uid, 0, 1); emlSetMem((uint8_t *)uid, 0, 1);
@ -714,35 +714,35 @@ void emlClearMem(void) {
// Mifare desfire commands // Mifare desfire commands
int mifare_sendcmd_special(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t* data, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing) int mifare_sendcmd_special(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t* data, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing)
{ {
uint8_t dcmd[5] = {0x00}; uint8_t dcmd[5] = {0x00};
dcmd[0] = cmd; dcmd[0] = cmd;
memcpy(dcmd+1,data,2); memcpy(dcmd+1,data,2);
AppendCrc14443a(dcmd, 3); AppendCrc14443a(dcmd, 3);
ReaderTransmit(dcmd, sizeof(dcmd), NULL); ReaderTransmit(dcmd, sizeof(dcmd), NULL);
int len = ReaderReceive(answer, answer_parity); int len = ReaderReceive(answer, answer_parity);
if(!len) { if(!len) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) if (MF_DBGLEVEL >= MF_DBG_ERROR)
Dbprintf("Authentication failed. Card timeout."); Dbprintf("Authentication failed. Card timeout.");
return 1; return 1;
} }
return len; return len;
} }
int mifare_sendcmd_special2(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t* data, uint8_t* answer,uint8_t *answer_parity, uint32_t *timing) int mifare_sendcmd_special2(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t* data, uint8_t* answer,uint8_t *answer_parity, uint32_t *timing)
{ {
uint8_t dcmd[20] = {0x00}; uint8_t dcmd[20] = {0x00};
dcmd[0] = cmd; dcmd[0] = cmd;
memcpy(dcmd+1,data,17); memcpy(dcmd+1,data,17);
AppendCrc14443a(dcmd, 18); AppendCrc14443a(dcmd, 18);
ReaderTransmit(dcmd, sizeof(dcmd), NULL); ReaderTransmit(dcmd, sizeof(dcmd), NULL);
int len = ReaderReceive(answer, answer_parity); int len = ReaderReceive(answer, answer_parity);
if(!len){ if(!len){
if (MF_DBGLEVEL >= MF_DBG_ERROR) if (MF_DBGLEVEL >= MF_DBG_ERROR)
Dbprintf("Authentication failed. Card timeout."); Dbprintf("Authentication failed. Card timeout.");
return 1; return 1;
} }
return len; return len;
} }
@ -753,23 +753,23 @@ int mifare_desfire_des_auth1(uint32_t uid, uint8_t *blockData){
uint8_t data[2]={0x0a, 0x00}; uint8_t data[2]={0x0a, 0x00};
uint8_t receivedAnswer[MAX_FRAME_SIZE]; uint8_t receivedAnswer[MAX_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_PARITY_SIZE];
len = mifare_sendcmd_special(NULL, 1, 0x02, data, receivedAnswer,receivedAnswerPar,NULL); len = mifare_sendcmd_special(NULL, 1, 0x02, data, receivedAnswer,receivedAnswerPar,NULL);
if (len == 1) { if (len == 1) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) if (MF_DBGLEVEL >= MF_DBG_ERROR)
Dbprintf("Cmd Error: %02x", receivedAnswer[0]); Dbprintf("Cmd Error: %02x", receivedAnswer[0]);
return 1; return 1;
} }
if (len == 12) { if (len == 12) {
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {
Dbprintf("Auth1 Resp: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", Dbprintf("Auth1 Resp: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x",
receivedAnswer[0],receivedAnswer[1],receivedAnswer[2],receivedAnswer[3],receivedAnswer[4], receivedAnswer[0],receivedAnswer[1],receivedAnswer[2],receivedAnswer[3],receivedAnswer[4],
receivedAnswer[5],receivedAnswer[6],receivedAnswer[7],receivedAnswer[8],receivedAnswer[9], receivedAnswer[5],receivedAnswer[6],receivedAnswer[7],receivedAnswer[8],receivedAnswer[9],
receivedAnswer[10],receivedAnswer[11]); receivedAnswer[10],receivedAnswer[11]);
} }
memcpy(blockData, receivedAnswer, 12); memcpy(blockData, receivedAnswer, 12);
return 0; return 0;
} }
return 1; return 1;
} }
@ -780,18 +780,18 @@ int mifare_desfire_des_auth2(uint32_t uid, uint8_t *key, uint8_t *blockData){
uint8_t data[17] = {0x00}; uint8_t data[17] = {0x00};
data[0] = 0xAF; data[0] = 0xAF;
memcpy(data+1,key,16); memcpy(data+1,key,16);
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
len = mifare_sendcmd_special2(NULL, 1, 0x03, data, receivedAnswer, receivedAnswerPar ,NULL); len = mifare_sendcmd_special2(NULL, 1, 0x03, data, receivedAnswer, receivedAnswerPar ,NULL);
if ((receivedAnswer[0] == 0x03) && (receivedAnswer[1] == 0xae)) { if ((receivedAnswer[0] == 0x03) && (receivedAnswer[1] == 0xae)) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) if (MF_DBGLEVEL >= MF_DBG_ERROR)
Dbprintf("Auth Error: %02x %02x", receivedAnswer[0], receivedAnswer[1]); Dbprintf("Auth Error: %02x %02x", receivedAnswer[0], receivedAnswer[1]);
return 1; return 1;
} }
if (len == 12){ if (len == 12){
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {
Dbprintf("Auth2 Resp: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", Dbprintf("Auth2 Resp: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x",
@ -820,7 +820,7 @@ int MifareChkBlockKey(uint8_t *uid, uint32_t *cuid, uint8_t *cascade_levels, uin
if (*cascade_levels == 0) { // need a full select cycle to get the uid first if (*cascade_levels == 0) { // need a full select cycle to get the uid first
iso14a_card_select_t card_info; iso14a_card_select_t card_info;
if(!iso14443a_select_card(uid, &card_info, cuid, true, 0, true)) { if(!iso14443a_select_card(uid, &card_info, cuid, true, 0, true)) {
if (debugLevel >= 1) Dbprintf("ChkKeys: Can't select card"); if (debugLevel >= 1) Dbprintf("ChkKeys: Can't select card");
return 1; return 1;
} }
switch (card_info.uidlen) { switch (card_info.uidlen) {
@ -831,26 +831,26 @@ int MifareChkBlockKey(uint8_t *uid, uint32_t *cuid, uint8_t *cascade_levels, uin
} }
} else { // no need for anticollision. We can directly select the card } else { // no need for anticollision. We can directly select the card
if(!iso14443a_select_card(uid, NULL, NULL, false, *cascade_levels, true)) { if(!iso14443a_select_card(uid, NULL, NULL, false, *cascade_levels, true)) {
if (debugLevel >= 1) Dbprintf("ChkKeys: Can't select card (UID) lvl=%d", *cascade_levels); if (debugLevel >= 1) Dbprintf("ChkKeys: Can't select card (UID) lvl=%d", *cascade_levels);
return 1; return 1;
} }
} }
if(mifare_classic_auth(pcs, *cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) { if(mifare_classic_auth(pcs, *cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) {
// SpinDelayUs(AUTHENTICATION_TIMEOUT); // it not needs because mifare_classic_auth have timeout from iso14a_set_timeout() // SpinDelayUs(AUTHENTICATION_TIMEOUT); // it not needs because mifare_classic_auth have timeout from iso14a_set_timeout()
return 2; return 2;
} else { } else {
/* // let it be here. it like halt command, but maybe it will work in some strange cases /* // let it be here. it like halt command, but maybe it will work in some strange cases
uint8_t dummy_answer = 0; uint8_t dummy_answer = 0;
ReaderTransmit(&dummy_answer, 1, NULL); ReaderTransmit(&dummy_answer, 1, NULL);
int timeout = GetCountSspClk() + AUTHENTICATION_TIMEOUT; int timeout = GetCountSspClk() + AUTHENTICATION_TIMEOUT;
// wait for the card to become ready again // wait for the card to become ready again
while(GetCountSspClk() < timeout) {}; while(GetCountSspClk() < timeout) {};
*/ */
// it needs after success authentication // it needs after success authentication
mifare_classic_halt(pcs, *cuid); mifare_classic_halt(pcs, *cuid);
} }
return 0; return 0;
} }
@ -865,14 +865,14 @@ int MifareChkBlockKeys(uint8_t *keys, uint8_t keyCount, uint8_t blockNo, uint8_t
for (uint8_t i = 0; i < keyCount; i++) { for (uint8_t i = 0; i < keyCount; i++) {
// Allow button press / usb cmd to interrupt device // Allow button press / usb cmd to interrupt device
if (BUTTON_PRESS() && !usb_poll_validate_length()) { if (BUTTON_PRESS() && !usb_poll_validate_length()) {
Dbprintf("ChkKeys: Cancel operation. Exit..."); Dbprintf("ChkKeys: Cancel operation. Exit...");
return -2; return -2;
} }
ui64Key = bytes_to_num(keys + i * 6, 6); ui64Key = bytes_to_num(keys + i * 6, 6);
int res = MifareChkBlockKey(uid, &cuid, &cascade_levels, ui64Key, blockNo, keyType, debugLevel); int res = MifareChkBlockKey(uid, &cuid, &cascade_levels, ui64Key, blockNo, keyType, debugLevel);
// can't select // can't select
if (res == 1) { if (res == 1) {
retryCount++; retryCount++;
@ -883,10 +883,10 @@ int MifareChkBlockKeys(uint8_t *keys, uint8_t keyCount, uint8_t blockNo, uint8_t
--i; // try the same key once again --i; // try the same key once again
SpinDelay(20); SpinDelay(20);
// Dbprintf("ChkKeys: block=%d key=%d. Try the same key once again...", blockNo, keyType); // Dbprintf("ChkKeys: block=%d key=%d. Try the same key once again...", blockNo, keyType);
continue; continue;
} }
// can't authenticate // can't authenticate
if (res == 2) { if (res == 2) {
retryCount = 0; retryCount = 0;
@ -895,15 +895,15 @@ int MifareChkBlockKeys(uint8_t *keys, uint8_t keyCount, uint8_t blockNo, uint8_t
return i + 1; return i + 1;
} }
return 0; return 0;
} }
// multisector multikey check // multisector multikey check
int MifareMultisectorChk(uint8_t *keys, uint8_t keyCount, uint8_t SectorCount, uint8_t keyType, uint8_t debugLevel, TKeyIndex *keyIndex) { int MifareMultisectorChk(uint8_t *keys, uint8_t keyCount, uint8_t SectorCount, uint8_t keyType, uint8_t debugLevel, TKeyIndex *keyIndex) {
int res = 0; int res = 0;
// int clk = GetCountSspClk(); // int clk = GetCountSspClk();
for(int sc = 0; sc < SectorCount; sc++){ for(int sc = 0; sc < SectorCount; sc++){
WDT_HIT(); WDT_HIT();
@ -919,9 +919,9 @@ int MifareMultisectorChk(uint8_t *keys, uint8_t keyCount, uint8_t SectorCount, u
} }
} while(--keyAB > 0); } while(--keyAB > 0);
} }
// Dbprintf("%d %d", GetCountSspClk() - clk, (GetCountSspClk() - clk)/(SectorCount*keyCount*(keyType==2?2:1))); // Dbprintf("%d %d", GetCountSspClk() - clk, (GetCountSspClk() - clk)/(SectorCount*keyCount*(keyType==2?2:1)));
return 0; return 0;
} }

View file

@ -937,7 +937,6 @@ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, ui
char line[16][110]; char line[16][110];
for (int j = 0; j < data_len && j/16 < 16; j++) { for (int j = 0; j < data_len && j/16 < 16; j++) {
uint8_t parityBits = parityBytes[j>>3]; uint8_t parityBits = parityBytes[j>>3];
if (protocol != ISO_14443B if (protocol != ISO_14443B
&& protocol != ISO_15693 && protocol != ISO_15693
@ -948,7 +947,6 @@ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, ui
} else { } else {
snprintf(line[j/16]+(( j % 16) * 4), 110, " %02x ", frame[j]); snprintf(line[j/16]+(( j % 16) * 4), 110, " %02x ", frame[j]);
} }
} }
if (markCRCBytes) { if (markCRCBytes) {
@ -961,6 +959,13 @@ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, ui
} }
} }
// mark short bytes (less than 8 Bit + Parity)
if (protocol == ISO_14443A || protocol == PROTO_MIFARE) {
if (duration < 128 * (9 * data_len)) {
line[(data_len-1)/16][((data_len-1)%16) * 4 + 3] = '\'';
}
}
if (data_len == 0) { if (data_len == 0) {
sprintf(line[0]," <empty trace - possible error>"); sprintf(line[0]," <empty trace - possible error>");
} }
@ -990,7 +995,7 @@ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, ui
int num_lines = MIN((data_len - 1)/16 + 1, 16); int num_lines = MIN((data_len - 1)/16 + 1, 16);
for (int j = 0; j < num_lines ; j++) { for (int j = 0; j < num_lines ; j++) {
if (j == 0) { if (j == 0) {
PrintAndLog(" %10d | %10d | %s |%-64s | %s| %s", PrintAndLog(" %10" PRIu32 " | %10" PRIu32 " | %s |%-64s | %s| %s",
(timestamp - first_timestamp), (timestamp - first_timestamp),
(EndOfTransmissionTimestamp - first_timestamp), (EndOfTransmissionTimestamp - first_timestamp),
(isResponse ? "Tag" : "Rdr"), (isResponse ? "Tag" : "Rdr"),
@ -1004,7 +1009,7 @@ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, ui
(j == num_lines-1) ? explanation : ""); (j == num_lines-1) ? explanation : "");
} }
} }
if (DecodeMifareData(frame, data_len, parityBytes, isResponse, mfData, &mfDataLen)) { if (DecodeMifareData(frame, data_len, parityBytes, isResponse, mfData, &mfDataLen)) {
memset(explanation, 0x00, sizeof(explanation)); memset(explanation, 0x00, sizeof(explanation));
if (!isResponse) { if (!isResponse) {
@ -1222,7 +1227,7 @@ int CmdHFList(const char *Cmd)
PrintAndLog("iso14443a - All times are in carrier periods (1/13.56Mhz)"); PrintAndLog("iso14443a - All times are in carrier periods (1/13.56Mhz)");
PrintAndLog("iClass - Timings are not as accurate"); PrintAndLog("iClass - Timings are not as accurate");
PrintAndLog(""); PrintAndLog("");
PrintAndLog(" Start | End | Src | Data (! denotes parity error) | CRC | Annotation |"); PrintAndLog(" Start | End | Src | Data (! denotes parity error, ' denotes short bytes) | CRC | Annotation |");
PrintAndLog("------------|------------|-----|-----------------------------------------------------------------|-----|--------------------|"); PrintAndLog("------------|------------|-----|-----------------------------------------------------------------|-----|--------------------|");
ClearAuthData(); ClearAuthData();

View file

@ -1445,7 +1445,7 @@ int usage_hf14_mfsim(void) {
int CmdHF14AMfSim(const char *Cmd) { int CmdHF14AMfSim(const char *Cmd) {
UsbCommand resp; UsbCommand resp;
uint8_t uid[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; uint8_t uid[7] = {0};
uint8_t exitAfterNReads = 0; uint8_t exitAfterNReads = 0;
uint8_t flags = 0; uint8_t flags = 0;
int uidlen = 0; int uidlen = 0;
@ -1563,7 +1563,6 @@ int CmdHF14AMfSim(const char *Cmd) {
uidlen = strlen(buf)-1; uidlen = strlen(buf)-1;
switch(uidlen) { switch(uidlen) {
case 20: flags |= FLAG_10B_UID_IN_DATA; break; //not complete
case 14: flags |= FLAG_7B_UID_IN_DATA; break; case 14: flags |= FLAG_7B_UID_IN_DATA; break;
case 8: flags |= FLAG_4B_UID_IN_DATA; break; case 8: flags |= FLAG_4B_UID_IN_DATA; break;
default: default:
@ -1581,8 +1580,7 @@ int CmdHF14AMfSim(const char *Cmd) {
cardsize == '2' ? "2K" : cardsize == '2' ? "2K" :
cardsize == '4' ? "4K" : "1K", cardsize == '4' ? "4K" : "1K",
flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4): flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4):
flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): "N/A",
flags & FLAG_10B_UID_IN_DATA ? sprint_hex(uid,10): "N/A",
exitAfterNReads, exitAfterNReads,
flags, flags,
flags); flags);
@ -1592,7 +1590,7 @@ int CmdHF14AMfSim(const char *Cmd) {
clearCommandBuffer(); clearCommandBuffer();
SendCommand(&c); SendCommand(&c);
while(! WaitForResponseTimeout(CMD_ACK,&resp,1500)) { while (! WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
//We're waiting only 1.5 s at a time, otherwise we get the //We're waiting only 1.5 s at a time, otherwise we get the
// annoying message about "Waiting for a response... " // annoying message about "Waiting for a response... "
} }
@ -1609,6 +1607,7 @@ int CmdHF14AMfSim(const char *Cmd) {
count++; count++;
} }
fclose(f); fclose(f);
} else { //not from file } else { //not from file
PrintAndLog("mf sim cardsize: %s, uid: %s, numreads:%d, flags:%d (0x%02x) ", PrintAndLog("mf sim cardsize: %s, uid: %s, numreads:%d, flags:%d (0x%02x) ",
@ -1616,8 +1615,7 @@ int CmdHF14AMfSim(const char *Cmd) {
cardsize == '2' ? "2K" : cardsize == '2' ? "2K" :
cardsize == '4' ? "4K" : "1K", cardsize == '4' ? "4K" : "1K",
flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4): flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4):
flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): "N/A",
flags & FLAG_10B_UID_IN_DATA ? sprint_hex(uid,10): "N/A",
exitAfterNReads, exitAfterNReads,
flags, flags,
flags); flags);

View file

@ -226,12 +226,11 @@ typedef struct{
//Mifare simulation flags //Mifare simulation flags
#define FLAG_INTERACTIVE 0x01 #define FLAG_INTERACTIVE (1<<0)
#define FLAG_4B_UID_IN_DATA 0x02 #define FLAG_4B_UID_IN_DATA (1<<1)
#define FLAG_7B_UID_IN_DATA 0x04 #define FLAG_7B_UID_IN_DATA (1<<2)
#define FLAG_10B_UID_IN_DATA 0x08 #define FLAG_NR_AR_ATTACK (1<<4)
#define FLAG_NR_AR_ATTACK 0x10 #define FLAG_RANDOM_NONCE (1<<5)
#define FLAG_RANDOM_NONCE 0x20
//Iclass reader flags //Iclass reader flags