Improve 'Magic' Mifare tags generation detection & hf mf c* commands magic 4k compatibility (#349)

* Improve 'Magic' Mifare tags detection

* Magic Mifare tags detection and version printing

* Magic s50/1k tag halt error correction for cload and csave

* hf mf c* commands for gen1b

* Use |= for bitwise operation

* gen1b: don't issue wipe command and don't expect response from WUPC1 magic command after a SELECT_UID: old UID display works in hf mf csetuid

* hf mf cgetsc compatibility for 4k

* hf mf csave compatibility for 4k

* hf mf cload compatibility for 4k, suppress halt errors messages for debug level 2

* Revert to MF_DBG_ERROR level in mifare_classic_halt() and don't issue the halt command for gen1b

* Improve 'Magic' Mifare tags generation detection & hf mf c* commands magic 4k compatibility
This commit is contained in:
Fl0-0 2017-07-12 15:58:32 +02:00 committed by pwpiwi
commit 7906cb41ff
6 changed files with 644 additions and 479 deletions

View file

@ -11,7 +11,7 @@
#include "mifarehost.h"
#include <stdio.h>
#include <stdlib.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
@ -23,6 +23,8 @@
#include "util.h"
#include "iso14443crc.h"
#include "mifare.h"
// mifare tracer flags used in mfTraceDecode()
#define TRACE_IDLE 0x00
#define TRACE_AUTH1 0x01
@ -52,7 +54,7 @@ static uint32_t intersection(uint64_t *list1, uint64_t *list2)
return 0;
}
uint64_t *p1, *p2, *p3;
p1 = p3 = list1;
p1 = p3 = list1;
p2 = list2;
while ( *p1 != -1 && *p2 != -1 ) {
@ -98,7 +100,7 @@ static uint32_t nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_i
}
keylist = (uint64_t*)states;
for (i = 0; keylist[i]; i++) {
lfsr_rollback_word(states+i, uid^nt, 0);
crypto1_get_lfsr(states+i, &key_recovered);
@ -128,16 +130,16 @@ int mfDarkside(uint64_t *key)
printf("Press button on the proxmark3 device to abort both proxmark3 and client.\n");
printf("-------------------------------------------------------------------------\n");
while (true) {
clearCommandBuffer();
SendCommand(&c);
//flush queue
while (ukbhit()) {
int c = getchar(); (void) c;
}
// wait cycle
while (true) {
printf(".");
@ -146,7 +148,7 @@ int mfDarkside(uint64_t *key)
return -5;
break;
}
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, 1000)) {
isOK = resp.arg[0];
@ -160,7 +162,7 @@ int mfDarkside(uint64_t *key)
nr = bytes_to_num(resp.d.asBytes + 24, 4);
break;
}
}
}
if (par_list == 0 && c.arg[0] == true) {
PrintAndLog("Parity is all zero. Most likely this card sends NACK on every failed authentication.");
@ -171,7 +173,7 @@ int mfDarkside(uint64_t *key)
keycount = nonce2key(uid, nt, nr, par_list, ks_list, &keylist);
if (keycount == 0) {
PrintAndLog("Key not found (lfsr_common_prefix list is null). Nt=%08x", nt);
PrintAndLog("Key not found (lfsr_common_prefix list is null). Nt=%08x", nt);
PrintAndLog("This is expected to happen in 25%% of all cases. Trying again with a different reader nonce...");
continue;
}
@ -188,7 +190,7 @@ int mfDarkside(uint64_t *key)
PrintAndLog("Found %u possible keys. Trying to authenticate with each of them ...\n", keycount);
} else {
PrintAndLog("Found a possible key. Trying to authenticate...\n");
}
}
*key = -1;
uint8_t keyBlock[USB_CMD_DATA_SIZE];
@ -205,8 +207,8 @@ int mfDarkside(uint64_t *key)
if (!mfCheckKeys(0, 0, false, size, keyBlock, key)) {
break;
}
}
}
if (*key != -1) {
free(last_keylist);
free(keylist);
@ -217,7 +219,7 @@ int mfDarkside(uint64_t *key)
last_keylist = keylist;
}
}
return 0;
}
@ -244,7 +246,7 @@ int Compare16Bits(const void * a, const void * b) {
else return -1;
}
typedef
typedef
struct {
union {
struct Crypto1State *slhead;
@ -274,11 +276,11 @@ void* nested_worker_thread(void *arg)
statelist->len = p1 - statelist->head.slhead;
statelist->tail.sltail = --p1;
qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits);
return statelist->head.slhead;
}
int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *resultKey, bool calibrate)
int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *resultKey, bool calibrate)
{
uint16_t i;
uint32_t uid;
@ -286,10 +288,10 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo,
StateList_t statelists[2];
struct Crypto1State *p1, *p2, *p3, *p4;
// flush queue
WaitForResponseTimeout(CMD_ACK, NULL, 100);
UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
memcpy(c.d.asBytes, key, 6);
SendCommand(&c);
@ -301,10 +303,10 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo,
if (resp.arg[0]) {
return resp.arg[0]; // error during nested
}
memcpy(&uid, resp.d.asBytes, 4);
PrintAndLog("uid:%08x trgbl=%d trgkey=%x", uid, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8);
for (i = 0; i < 2; i++) {
statelists[i].blockNo = resp.arg[2] & 0xff;
statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
@ -312,16 +314,16 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo,
memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
}
// calc keys
pthread_t thread_id[2];
// create and run worker threads
for (i = 0; i < 2; i++) {
pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
}
// wait for threads to terminate:
for (i = 0; i < 2; i++) {
pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
@ -331,7 +333,7 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo,
// the first 16 Bits of the cryptostate already contain part of our key.
// Create the intersection of the two lists based on these 16 Bits and
// roll back the cryptostate
p1 = p3 = statelists[0].head.slhead;
p1 = p3 = statelists[0].head.slhead;
p2 = p4 = statelists[1].head.slhead;
while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) {
if (Compare16Bits(p1, p2) == 0) {
@ -382,10 +384,10 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo,
break;
}
}
free(statelists[0].head.slhead);
free(statelists[1].head.slhead);
return 0;
}
@ -403,7 +405,7 @@ int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, 0}};
memcpy(c.d.asBytes, data, blocksCount * 16);
memcpy(c.d.asBytes, data, blocksCount * 16);
SendCommand(&c);
return 0;
}
@ -432,15 +434,15 @@ int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, bool wantWipe, uin
uint8_t isOK = 0;
UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
memcpy(c.d.asBytes, data, 16);
memcpy(c.d.asBytes, data, 16);
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
isOK = resp.arg[0] & 0xff;
if (uid != NULL)
if (uid != NULL)
memcpy(uid, resp.d.asBytes, 4);
if (!isOK)
if (!isOK)
return 2;
} else {
PrintAndLog("Command execute timeout");
@ -452,8 +454,18 @@ int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, bool wantWipe, uin
int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, bool wantWipe) {
uint8_t oldblock0[16] = {0x00};
uint8_t block0[16] = {0x00};
int old, gen = 0;
gen = mfCIdentify();
if (gen == 2) {
/* generation 1b magic card */
old = mfCGetBlock(0, oldblock0, CSETBLOCK_SINGLE_OPER | CSETBLOCK_MAGIC_1B);
} else {
/* generation 1a magic card by default */
old = mfCGetBlock(0, oldblock0, CSETBLOCK_SINGLE_OPER);
}
int old = mfCGetBlock(0, oldblock0, CSETBLOCK_SINGLE_OPER);
if (old == 0) {
memcpy(block0, oldblock0, 16);
PrintAndLog("old block 0: %s", sprint_hex(block0,16));
@ -463,7 +475,7 @@ int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, bool w
// fill in the new values
// UID
memcpy(block0, uid, 4);
memcpy(block0, uid, 4);
// Mifare UID BCC
block0[4] = block0[0]^block0[1]^block0[2]^block0[3];
// mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed)
@ -474,7 +486,14 @@ int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, bool w
block0[7]=atqa[0];
}
PrintAndLog("new block 0: %s", sprint_hex(block0,16));
return mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER);
if (gen == 2) {
/* generation 1b magic card */
return mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER | CSETBLOCK_MAGIC_1B);
} else {
/* generation 1a magic card by default */
return mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER);
}
}
// SNIFFER
@ -508,7 +527,7 @@ int isTraceCardEmpty(void) {
}
int isBlockEmpty(int blockN) {
for (int i = 0; i < 16; i++)
for (int i = 0; i < 16; i++)
if (traceCard[blockN * 16 + i] != 0) return 0;
return 1;
@ -520,15 +539,15 @@ int isBlockTrailer(int blockN) {
int saveTraceCard(void) {
FILE * f;
if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0;
f = fopen(traceFileName, "w+");
if ( !f ) return 1;
for (int i = 0; i < 64; i++) { // blocks
for (int j = 0; j < 16; j++) // bytes
fprintf(f, "%02x", *(traceCard + i * 16 + j));
fprintf(f, "%02x", *(traceCard + i * 16 + j));
fprintf(f,"\n");
}
fclose(f);
@ -540,10 +559,10 @@ int loadTraceCard(uint8_t *tuid) {
char buf[64] = {0x00};
uint8_t buf8[64] = {0x00};
int i, blockNum;
if (!isTraceCardEmpty())
if (!isTraceCardEmpty())
saveTraceCard();
memset(traceCard, 0x00, 4096);
memcpy(traceCard, tuid + 3, 4);
@ -551,11 +570,11 @@ int loadTraceCard(uint8_t *tuid) {
f = fopen(traceFileName, "r");
if (!f) return 1;
blockNum = 0;
while(!feof(f)){
memset(buf, 0, sizeof(buf));
if (fgets(buf, sizeof(buf), f) == NULL) {
PrintAndLog("File reading error.");
@ -583,20 +602,20 @@ int loadTraceCard(uint8_t *tuid) {
int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) {
if (traceCrypto1)
if (traceCrypto1)
crypto1_destroy(traceCrypto1);
traceCrypto1 = NULL;
if (wantSaveToEmlFile)
if (wantSaveToEmlFile)
loadTraceCard(tuid);
traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3];
traceCard[5] = sak;
memcpy(&traceCard[6], atqa, 2);
traceCurBlock = 0;
uid = bytes_to_num(tuid + 3, 4);
traceState = TRACE_IDLE;
return 0;
@ -605,7 +624,7 @@ int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFil
void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){
uint8_t bt = 0;
int i;
if (len != 1) {
for (i = 0; i < len; i++)
data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i];
@ -613,7 +632,7 @@ void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool i
bt = 0;
for (i = 0; i < 4; i++)
bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], i)) << i;
data[0] = bt;
}
return;
@ -628,24 +647,24 @@ int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
traceState = TRACE_ERROR;
return 1;
}
memcpy(data, data_src, len);
if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) {
mf_crypto1_decrypt(traceCrypto1, data, len, 0);
PrintAndLog("dec> %s", sprint_hex(data, len));
AddLogHex(logHexFileName, "dec> ", data, len);
AddLogHex(logHexFileName, "dec> ", data, len);
}
switch (traceState) {
case TRACE_IDLE:
case TRACE_IDLE:
// check packet crc16!
if ((len >= 4) && (!CheckCrc14443(CRC_14443_A, data, len))) {
PrintAndLog("dec> CRC ERROR!!!");
AddLogLine(logHexFileName, "dec> ", "CRC ERROR!!!");
AddLogLine(logHexFileName, "dec> ", "CRC ERROR!!!");
traceState = TRACE_ERROR; // do not decrypt the next commands
return 1;
}
// AUTHENTICATION
if ((len ==4) && ((data[0] == 0x60) || (data[0] == 0x61))) {
traceState = TRACE_AUTH1;
@ -673,11 +692,11 @@ int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
traceState = TRACE_ERROR; // do not decrypt the next commands
return 0;
}
return 0;
break;
case TRACE_READ_DATA:
case TRACE_READ_DATA:
if (len == 18) {
traceState = TRACE_IDLE;
@ -694,7 +713,7 @@ int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
}
break;
case TRACE_WRITE_OK:
case TRACE_WRITE_OK:
if ((len == 1) && (data[0] == 0x0a)) {
traceState = TRACE_WRITE_DATA;
@ -705,7 +724,7 @@ int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
}
break;
case TRACE_WRITE_DATA:
case TRACE_WRITE_DATA:
if (len == 18) {
traceState = TRACE_IDLE;
@ -718,7 +737,7 @@ int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
}
break;
case TRACE_AUTH1:
case TRACE_AUTH1:
if (len == 4) {
traceState = TRACE_AUTH2;
nt = bytes_to_num(data, 4);
@ -729,7 +748,7 @@ int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
}
break;
case TRACE_AUTH2:
case TRACE_AUTH2:
if (len == 8) {
traceState = TRACE_AUTH_OK;
@ -742,12 +761,12 @@ int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
}
break;
case TRACE_AUTH_OK:
case TRACE_AUTH_OK:
if (len ==4) {
traceState = TRACE_IDLE;
at_enc = bytes_to_num(data, 4);
// decode key here)
ks2 = ar_enc ^ prng_successor(nt, 64);
ks3 = at_enc ^ prng_successor(nt, 96);
@ -759,11 +778,11 @@ int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
crypto1_get_lfsr(revstate, &lfsr);
printf("key> %x%x\n", (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF));
AddLogUint64(logHexFileName, "key> ", lfsr);
AddLogUint64(logHexFileName, "key> ", lfsr);
int blockShift = ((traceCurBlock & 0xFC) + 3) * 16;
if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4);
if (traceCurKey) {
num_to_bytes(lfsr, 6, traceCard + blockShift + 10);
} else {
@ -774,10 +793,10 @@ int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
if (traceCrypto1) {
crypto1_destroy(traceCrypto1);
}
// set cryptosystem state
traceCrypto1 = lfsr_recovery64(ks2, ks3);
// nt = crypto1_word(traceCrypto1, nt ^ uid, 1) ^ nt;
/* traceCrypto1 = crypto1_create(lfsr); // key in lfsr
@ -785,7 +804,7 @@ int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
crypto1_word(traceCrypto1, ar, 1);
crypto1_word(traceCrypto1, 0, 0);
crypto1_word(traceCrypto1, 0, 0);*/
return 0;
} else {
traceState = TRACE_ERROR;
@ -793,7 +812,7 @@ int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
}
break;
default:
default:
traceState = TRACE_ERROR;
return 1;
}
@ -820,3 +839,50 @@ int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data,
crypto1_destroy(traceCrypto1);
return 0;
}
int mfCIdentify()
{
UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_CONNECT | ISO14A_NO_DISCONNECT, 0, 0}};
SendCommand(&c);
UsbCommand resp;
WaitForResponse(CMD_ACK,&resp);
iso14a_card_select_t card;
memcpy(&card, (iso14a_card_select_t *)resp.d.asBytes, sizeof(iso14a_card_select_t));
uint64_t select_status = resp.arg[0]; // 0: couldn't read, 1: OK, with ATS, 2: OK, no ATS, 3: proprietary Anticollision
if(select_status != 0) {
uint8_t rats[] = { 0xE0, 0x80 }; // FSDI=8 (FSD=256), CID=0
c.arg[0] = ISO14A_RAW | ISO14A_APPEND_CRC | ISO14A_NO_DISCONNECT;
c.arg[1] = 2;
c.arg[2] = 0;
memcpy(c.d.asBytes, rats, 2);
SendCommand(&c);
WaitForResponse(CMD_ACK,&resp);
}
c.cmd = CMD_MIFARE_CIDENT;
c.arg[0] = 0;
c.arg[1] = 0;
c.arg[2] = 0;
SendCommand(&c);
WaitForResponse(CMD_ACK,&resp);
uint8_t isGeneration = resp.arg[0] & 0xff;
switch( isGeneration ){
case 1: PrintAndLog("Chinese magic backdoor commands (GEN 1a) detected"); break;
case 2: PrintAndLog("Chinese magic backdoor command (GEN 1b) detected"); break;
default: PrintAndLog("No chinese magic backdoor command detected"); break;
}
// disconnect
c.cmd = CMD_READER_ISO_14443a;
c.arg[0] = 0;
c.arg[1] = 0;
c.arg[2] = 0;
SendCommand(&c);
return (int) isGeneration;
}