Streamline some code, tidy up redundant functions, no change in functionality.

This commit is contained in:
d18c7db 2010-03-05 04:14:04 +00:00
commit 72934aa313

View file

@ -20,14 +20,20 @@ static int traceLen = 0;
static int rsamples = 0; static int rsamples = 0;
static int tracing = TRUE; static int tracing = TRUE;
typedef enum { // CARD TO READER
SEC_D = 1, // Sequence D: 11110000 modulation with subcarrier during first half
SEC_E = 2, // Sequence E: 00001111 modulation with subcarrier during second half
SEC_F = 3, // Sequence F: 00000000 no modulation with subcarrier
SEC_X = 4, // READER TO CARD
SEC_Y = 5, // Sequence X: 00001100 drop after half a period
SEC_Z = 6 // Sequence Y: 00000000 no drop
} SecType; // Sequence Z: 11000000 drop at start
#define SEC_D 0xf0
#define SEC_E 0x0f
#define SEC_F 0x00
#define SEC_X 0x0c
#define SEC_Y 0x00
#define SEC_Z 0xc0
static const uint8_t OddByteParity[256] = { static const uint8_t OddByteParity[256] = {
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
@ -101,11 +107,6 @@ int LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity,
return TRUE; return TRUE;
} }
int LogTraceInfo(byte_t* data, size_t len)
{
return LogTrace(data,len,0,GetParity(data,len),TRUE);
}
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
// The software UART that receives commands from the reader, and its state // The software UART that receives commands from the reader, and its state
// variables. // variables.
@ -686,32 +687,29 @@ void SnoopIso14443a(void)
} }
samples += 4; samples += 4;
#define HANDLE_BIT_IF_BODY \
LED_C_ON(); \
if(triggered) { \
trace[traceLen++] = ((rsamples >> 0) & 0xff); \
trace[traceLen++] = ((rsamples >> 8) & 0xff); \
trace[traceLen++] = ((rsamples >> 16) & 0xff); \
trace[traceLen++] = ((rsamples >> 24) & 0xff); \
trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); \
trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); \
trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); \
trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); \
trace[traceLen++] = Uart.byteCnt; \
memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \
traceLen += Uart.byteCnt; \
if(traceLen > TRACE_LENGTH) break; \
} \
/* And ready to receive another command. */ \
Uart.state = STATE_UNSYNCD; \
/* And also reset the demod code, which might have been */ \
/* false-triggered by the commands from the reader. */ \
Demod.state = DEMOD_UNSYNCD; \
LED_B_OFF(); \
if(MillerDecoding((smpl & 0xF0) >> 4)) { if(MillerDecoding((smpl & 0xF0) >> 4)) {
rsamples = samples - Uart.samples; rsamples = samples - Uart.samples;
HANDLE_BIT_IF_BODY LED_C_ON();
if(triggered) {
trace[traceLen++] = ((rsamples >> 0) & 0xff);
trace[traceLen++] = ((rsamples >> 8) & 0xff);
trace[traceLen++] = ((rsamples >> 16) & 0xff);
trace[traceLen++] = ((rsamples >> 24) & 0xff);
trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff);
trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff);
trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff);
trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff);
trace[traceLen++] = Uart.byteCnt;
memcpy(trace+traceLen, receivedCmd, Uart.byteCnt);
traceLen += Uart.byteCnt;
if(traceLen > TRACE_LENGTH) break;
}
/* And ready to receive another command. */
Uart.state = STATE_UNSYNCD;
/* And also reset the demod code, which might have been */
/* false-triggered by the commands from the reader. */
Demod.state = DEMOD_UNSYNCD;
LED_B_OFF();
} }
if(ManchesterDecoding(smpl & 0x0F)) { if(ManchesterDecoding(smpl & 0x0F)) {
rsamples = samples - Demod.samples; rsamples = samples - Demod.samples;
@ -762,47 +760,6 @@ done:
LED_D_OFF(); LED_D_OFF();
} }
// Prepare communication bits to send to FPGA
void Sequence(SecType seq)
{
ToSendMax++;
switch(seq) {
// CARD TO READER
case SEC_D:
// Sequence D: 11110000
// modulation with subcarrier during first half
ToSend[ToSendMax] = 0xf0;
break;
case SEC_E:
// Sequence E: 00001111
// modulation with subcarrier during second half
ToSend[ToSendMax] = 0x0f;
break;
case SEC_F:
// Sequence F: 00000000
// no modulation with subcarrier
ToSend[ToSendMax] = 0x00;
break;
// READER TO CARD
case SEC_X:
// Sequence X: 00001100
// drop after half a period
ToSend[ToSendMax] = 0x0c;
break;
case SEC_Y:
default:
// Sequence Y: 00000000
// no drop
ToSend[ToSendMax] = 0x00;
break;
case SEC_Z:
// Sequence Z: 11000000
// drop at start
ToSend[ToSendMax] = 0xc0;
break;
}
}
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
// Prepare tag messages // Prepare tag messages
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
@ -824,7 +781,7 @@ static void CodeIso14443aAsTag(const uint8_t *cmd, int len)
ToSendStuffBit(0); ToSendStuffBit(0);
// Send startbit // Send startbit
Sequence(SEC_D); ToSend[++ToSendMax] = SEC_D;
for(i = 0; i < len; i++) { for(i = 0; i < len; i++) {
int j; int j;
@ -835,27 +792,27 @@ static void CodeIso14443aAsTag(const uint8_t *cmd, int len)
for(j = 0; j < 8; j++) { for(j = 0; j < 8; j++) {
oddparity ^= (b & 1); oddparity ^= (b & 1);
if(b & 1) { if(b & 1) {
Sequence(SEC_D); ToSend[++ToSendMax] = SEC_D;
} else { } else {
Sequence(SEC_E); ToSend[++ToSendMax] = SEC_E;
} }
b >>= 1; b >>= 1;
} }
// Parity bit // Parity bit
if(oddparity) { if(oddparity) {
Sequence(SEC_D); ToSend[++ToSendMax] = SEC_D;
} else { } else {
Sequence(SEC_E); ToSend[++ToSendMax] = SEC_E;
} }
} }
// Send stopbit // Send stopbit
Sequence(SEC_F); ToSend[++ToSendMax] = SEC_F;
// Flush the buffer in FPGA!! // Flush the buffer in FPGA!!
for(i = 0; i < 5; i++) { for(i = 0; i < 5; i++) {
Sequence(SEC_F); ToSend[++ToSendMax] = SEC_F;
} }
// Convert from last byte pos to length // Convert from last byte pos to length
@ -887,23 +844,23 @@ static void CodeStrangeAnswer()
ToSendStuffBit(0); ToSendStuffBit(0);
// Send startbit // Send startbit
Sequence(SEC_D); ToSend[++ToSendMax] = SEC_D;
// 0 // 0
Sequence(SEC_E); ToSend[++ToSendMax] = SEC_E;
// 0 // 0
Sequence(SEC_E); ToSend[++ToSendMax] = SEC_E;
// 1 // 1
Sequence(SEC_D); ToSend[++ToSendMax] = SEC_D;
// Send stopbit // Send stopbit
Sequence(SEC_F); ToSend[++ToSendMax] = SEC_F;
// Flush the buffer in FPGA!! // Flush the buffer in FPGA!!
for(i = 0; i < 5; i++) { for(i = 0; i < 5; i++) {
Sequence(SEC_F); ToSend[++ToSendMax] = SEC_F;
} }
// Convert from last byte pos to length // Convert from last byte pos to length
@ -974,8 +931,6 @@ void SimulateIso14443aTag(int tagType, int TagUid)
// static const uint8_t cmd2[] = { 0x93, 0x20 }; // static const uint8_t cmd2[] = { 0x93, 0x20 };
//static const uint8_t response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg //static const uint8_t response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg
// my desfire // my desfire
static const uint8_t response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips static const uint8_t response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips
@ -989,7 +944,6 @@ ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
static const uint8_t response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck static const uint8_t response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck
// NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID // NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID
// When reader selects us during cascade2 it will send cmd3a // When reader selects us during cascade2 it will send cmd3a
//uint8_t response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE) //uint8_t response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE)
uint8_t response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire) uint8_t response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire)
@ -1013,7 +967,6 @@ ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
// 166 bytes, since every bit that needs to be send costs us a byte // 166 bytes, since every bit that needs to be send costs us a byte
// //
// Respond with card type // Respond with card type
uint8_t *resp1 = (((uint8_t *)BigBuf) + 800); uint8_t *resp1 = (((uint8_t *)BigBuf) + 800);
int resp1Len; int resp1Len;
@ -1288,86 +1241,6 @@ static void TransmitFor14443a(const uint8_t *cmd, int len, int *samples, int *wa
if (samples) *samples = (c + *wait) << 3; if (samples) *samples = (c + *wait) << 3;
} }
//-----------------------------------------------------------------------------
// To generate an arbitrary stream from reader
//
//-----------------------------------------------------------------------------
void ArbitraryFromReader(const uint8_t *cmd, int parity, int len)
{
int i;
int j;
int last;
uint8_t b;
ToSendReset();
// Start of Communication (Seq. Z)
Sequence(SEC_Z);
last = 0;
for(i = 0; i < len; i++) {
// Data bits
b = cmd[i];
for(j = 0; j < 8; j++) {
if(b & 1) {
// Sequence X
Sequence(SEC_X);
last = 1;
} else {
if(last == 0) {
// Sequence Z
Sequence(SEC_Z);
}
else {
// Sequence Y
Sequence(SEC_Y);
last = 0;
}
}
b >>= 1;
}
// Predefined parity bit, the flipper flips when needed, because of flips in byte sent
if(((parity >> (len - i - 1)) & 1)) {
// Sequence X
Sequence(SEC_X);
last = 1;
} else {
if(last == 0) {
// Sequence Z
Sequence(SEC_Z);
}
else {
// Sequence Y
Sequence(SEC_Y);
last = 0;
}
}
}
// End of Communication
if(last == 0) {
// Sequence Z
Sequence(SEC_Z);
}
else {
// Sequence Y
Sequence(SEC_Y);
last = 0;
}
// Sequence Y
Sequence(SEC_Y);
// Just to be sure!
Sequence(SEC_Y);
Sequence(SEC_Y);
Sequence(SEC_Y);
// Convert from last character reference to length
ToSendMax++;
}
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
// Code a 7-bit command without parity bit // Code a 7-bit command without parity bit
// This is especially for 0x26 and 0x52 (REQA and WUPA) // This is especially for 0x26 and 0x52 (REQA and WUPA)
@ -1381,23 +1254,23 @@ void ShortFrameFromReader(const uint8_t bt)
ToSendReset(); ToSendReset();
// Start of Communication (Seq. Z) // Start of Communication (Seq. Z)
Sequence(SEC_Z); ToSend[++ToSendMax] = SEC_Z;
last = 0; last = 0;
b = bt; b = bt;
for(j = 0; j < 7; j++) { for(j = 0; j < 7; j++) {
if(b & 1) { if(b & 1) {
// Sequence X // Sequence X
Sequence(SEC_X); ToSend[++ToSendMax] = SEC_X;
last = 1; last = 1;
} else { } else {
if(last == 0) { if(last == 0) {
// Sequence Z // Sequence Z
Sequence(SEC_Z); ToSend[++ToSendMax] = SEC_Z;
} }
else { else {
// Sequence Y // Sequence Y
Sequence(SEC_Y); ToSend[++ToSendMax] = SEC_Y;
last = 0; last = 0;
} }
} }
@ -1407,20 +1280,20 @@ void ShortFrameFromReader(const uint8_t bt)
// End of Communication // End of Communication
if(last == 0) { if(last == 0) {
// Sequence Z // Sequence Z
Sequence(SEC_Z); ToSend[++ToSendMax] = SEC_Z;
} }
else { else {
// Sequence Y // Sequence Y
Sequence(SEC_Y); ToSend[++ToSendMax] = SEC_Y;
last = 0; last = 0;
} }
// Sequence Y // Sequence Y
Sequence(SEC_Y); ToSend[++ToSendMax] = SEC_Y;
// Just to be sure! // Just to be sure!
Sequence(SEC_Y); ToSend[++ToSendMax] = SEC_Y;
Sequence(SEC_Y); ToSend[++ToSendMax] = SEC_Y;
Sequence(SEC_Y); ToSend[++ToSendMax] = SEC_Y;
// Convert from last character reference to length // Convert from last character reference to length
ToSendMax++; ToSendMax++;
@ -1439,7 +1312,7 @@ void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
ToSendReset(); ToSendReset();
// Start of Communication (Seq. Z) // Start of Communication (Seq. Z)
Sequence(SEC_Z); ToSend[++ToSendMax] = SEC_Z;
last = 0; last = 0;
// Generate send structure for the data bits // Generate send structure for the data bits
@ -1450,15 +1323,15 @@ void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
for (j = 0; j < 8; j++) { for (j = 0; j < 8; j++) {
if (b & 1) { if (b & 1) {
// Sequence X // Sequence X
Sequence(SEC_X); ToSend[++ToSendMax] = SEC_X;
last = 1; last = 1;
} else { } else {
if (last == 0) { if (last == 0) {
// Sequence Z // Sequence Z
Sequence(SEC_Z); ToSend[++ToSendMax] = SEC_Z;
} else { } else {
// Sequence Y // Sequence Y
Sequence(SEC_Y); ToSend[++ToSendMax] = SEC_Y;
last = 0; last = 0;
} }
} }
@ -1468,15 +1341,15 @@ void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
// Get the parity bit // Get the parity bit
if ((dwParity >> i) & 0x01) { if ((dwParity >> i) & 0x01) {
// Sequence X // Sequence X
Sequence(SEC_X); ToSend[++ToSendMax] = SEC_X;
last = 1; last = 1;
} else { } else {
if (last == 0) { if (last == 0) {
// Sequence Z // Sequence Z
Sequence(SEC_Z); ToSend[++ToSendMax] = SEC_Z;
} else { } else {
// Sequence Y // Sequence Y
Sequence(SEC_Y); ToSend[++ToSendMax] = SEC_Y;
last = 0; last = 0;
} }
} }
@ -1485,19 +1358,19 @@ void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
// End of Communication // End of Communication
if (last == 0) { if (last == 0) {
// Sequence Z // Sequence Z
Sequence(SEC_Z); ToSend[++ToSendMax] = SEC_Z;
} else { } else {
// Sequence Y // Sequence Y
Sequence(SEC_Y); ToSend[++ToSendMax] = SEC_Y;
last = 0; last = 0;
} }
// Sequence Y // Sequence Y
Sequence(SEC_Y); ToSend[++ToSendMax] = SEC_Y;
// Just to be sure! // Just to be sure!
Sequence(SEC_Y); ToSend[++ToSendMax] = SEC_Y;
Sequence(SEC_Y); ToSend[++ToSendMax] = SEC_Y;
Sequence(SEC_Y); ToSend[++ToSendMax] = SEC_Y;
// Convert from last character reference to length // Convert from last character reference to length
ToSendMax++; ToSendMax++;
@ -1538,7 +1411,7 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
if(c < 512) { c++; } else { return FALSE; } if(c < 512) { c++; } else { return FALSE; }
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
if(ManchesterDecoding((b & 0xf0) >> 4)) { if(ManchesterDecoding((b>>4) & 0xf)) {
*samples = ((c - 1) << 3) + 4; *samples = ((c - 1) << 3) + 4;
return TRUE; return TRUE;
} }
@ -1625,7 +1498,6 @@ void ReaderIso14443a(uint32_t parameter)
SpinDelay(200); SpinDelay(200);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD); SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
FpgaSetupSsc();
// Now give it time to spin up. // Now give it time to spin up.
// Signal field is on with the appropriate LED // Signal field is on with the appropriate LED
@ -1735,7 +1607,6 @@ void ReaderMifare(uint32_t parameter)
SpinDelay(200); SpinDelay(200);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD); SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
FpgaSetupSsc();
// Now give it time to spin up. // Now give it time to spin up.
// Signal field is on with the appropriate LED // Signal field is on with the appropriate LED
@ -1848,10 +1719,10 @@ void ReaderMifare(uint32_t parameter)
} }
} }
LogTraceInfo(sel_uid+2,4); LogTrace(sel_uid+2,4,0,GetParity(sel_uid+2,4),TRUE);
LogTraceInfo(nt,4); LogTrace(nt,4,0,GetParity(nt,4),TRUE);
LogTraceInfo(par_list,8); LogTrace(par_list,8,0,GetParity(par_list,8),TRUE);
LogTraceInfo(ks_list,8); LogTrace(ks_list,8,0,GetParity(ks_list,8),TRUE);
// Thats it... // Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);