Added ATR decoding (RfidResearchGroup PRs 67/68 by @merlokk) (#749)

... and fixed merge errors in cmdsmartcard.c
This commit is contained in:
pwpiwi 2019-01-12 13:24:22 +01:00 committed by GitHub
commit 6b6c3be6b9
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -20,6 +20,7 @@
#include "cmdhf.h" // CmdHFlist
#include "emv/apduinfo.h" // APDUcode description
#include "emv/emvcore.h" // decodeTVL
#include "emv/dump.h" // dump_buffer
static int CmdHelp(const char *Cmd);
@ -90,6 +91,193 @@ static int usage_sm_brute(void) {
return 0;
}
uint8_t GetATRTA1(uint8_t *atr, size_t atrlen) {
if (atrlen > 2) {
uint8_t T0 = atr[1];
if (T0 & 0x10)
return atr[2];
}
return 0x11; // default value is 0x11, corresponding to fmax=5 MHz, Fi=372, Di=1.
}
int DiArray[] = {
0, // b0000 RFU
1, // b0001
2,
4,
8,
16,
32, // b0110
64, // b0111. This was RFU in ISO/IEC 7816-3:1997 and former. Some card readers or drivers may erroneously reject cards using this value
12,
20,
0, // b1010 RFU
0,
0, // ...
0,
0,
0 // b1111 RFU
};
int FiArray[] = {
372, // b0000 Historical note: in ISO/IEC 7816-3:1989, this was assigned to cards with internal clock
372, // b0001
558, // b0010
744, // b0011
1116, // b0100
1488, // b0101
1860, // b0110
0, // b0111 RFU
0, // b1000 RFU
512, // b1001
768, // b1010
1024, // b1011
1536, // b1100
2048, // b1101
0, // b1110 RFU
0 // b1111 RFU
};
float FArray[] = {
4, // b0000 Historical note: in ISO/IEC 7816-3:1989, this was assigned to cards with internal clock
5, // b0001
6, // b0010
8, // b0011
12, // b0100
16, // b0101
20, // b0110
0, // b0111 RFU
0, // b1000 RFU
5, // b1001
7.5, // b1010
10, // b1011
15, // b1100
20, // b1101
0, // b1110 RFU
0 // b1111 RFU
};
int GetATRDi(uint8_t *atr, size_t atrlen) {
uint8_t TA1 = GetATRTA1(atr, atrlen);
return DiArray[TA1 & 0x0f]; // The 4 low-order bits of TA1 (4th MSbit to 1st LSbit) encode Di
}
int GetATRFi(uint8_t *atr, size_t atrlen) {
uint8_t TA1 = GetATRTA1(atr, atrlen);
return FiArray[TA1 >> 4]; // The 4 high-order bits of TA1 (8th MSbit to 5th LSbit) encode fmax and Fi
}
float GetATRF(uint8_t *atr, size_t atrlen) {
uint8_t TA1 = GetATRTA1(atr, atrlen);
return FArray[TA1 >> 4]; // The 4 high-order bits of TA1 (8th MSbit to 5th LSbit) encode fmax and Fi
}
static int PrintATR(uint8_t *atr, size_t atrlen) {
uint8_t vxor = 0;
for (int i = 1; i < atrlen; i++)
vxor ^= atr[i];
if (vxor)
PrintAndLogEx(WARNING, "Check summ error. Must be 0 but: 0x%02x", vxor);
else
PrintAndLogEx(INFO, "Check summ OK.");
if (atr[0] != 0x3b)
PrintAndLogEx(WARNING, "Not a direct convention: 0x%02x", atr[0]);
uint8_t T0 = atr[1];
uint8_t K = T0 & 0x0F;
uint8_t TD1 = 0;
uint8_t T1len = 0;
uint8_t TD1len = 0;
uint8_t TDilen = 0;
if (T0 & 0x10) {
PrintAndLog("TA1 (Maximum clock frequency, proposed bit duration): 0x%02x", atr[2 + T1len]);
T1len++;
}
if (T0 & 0x20) {
PrintAndLog("TB1 (Deprecated: VPP requirements): 0x%02x", atr[2 + T1len]);
T1len++;
}
if (T0 & 0x40) {
PrintAndLog("TC1 (Extra delay between bytes required by card): 0x%02x", atr[2 + T1len]);
T1len++;
}
if (T0 & 0x80) {
TD1 = atr[2 + T1len];
PrintAndLog("TD1 (First offered transmission protocol, presence of TA2..TD2): 0x%02x. Protocol T=%d", TD1, TD1 & 0x0f);
T1len++;
if (TD1 & 0x10) {
PrintAndLog("TA2 (Specific protocol and parameters to be used after the ATR): 0x%02x", atr[2 + T1len + TD1len]);
TD1len++;
}
if (TD1 & 0x20) {
PrintAndLog("TB2 (Deprecated: VPP precise voltage requirement): 0x%02x", atr[2 + T1len + TD1len]);
TD1len++;
}
if (TD1 & 0x40) {
PrintAndLog("TC2 (Maximum waiting time for protocol T=0): 0x%02x", atr[2 + T1len + TD1len]);
TD1len++;
}
if (TD1 & 0x80) {
uint8_t TDi = atr[2 + T1len + TD1len];
PrintAndLog("TD2 (A supported protocol or more global parameters, presence of TA3..TD3): 0x%02x. Protocol T=%d", TDi, TDi & 0x0f);
TD1len++;
bool nextCycle = true;
uint8_t vi = 3;
while (nextCycle) {
nextCycle = false;
if (TDi & 0x10) {
PrintAndLog("TA%d: 0x%02x", vi, atr[2 + T1len + TD1len + TDilen]);
TDilen++;
}
if (TDi & 0x20) {
PrintAndLog("TB%d: 0x%02x", vi, atr[2 + T1len + TD1len + TDilen]);
TDilen++;
}
if (TDi & 0x40) {
PrintAndLog("TC%d: 0x%02x", vi, atr[2 + T1len + TD1len + TDilen]);
TDilen++;
}
if (TDi & 0x80) {
TDi = atr[2 + T1len + TD1len + TDilen];
PrintAndLog("TD%d: 0x%02x. Protocol T=%d", vi, TDi, TDi & 0x0f);
TDilen++;
nextCycle = true;
vi++;
}
}
}
}
uint8_t calen = 2 + T1len + TD1len + TDilen + K;
if (atrlen != calen && atrlen != calen + 1) // may be CRC
PrintAndLogEx(ERR, "ATR length error. len: %d, T1len: %d, TD1len: %d, TDilen: %d, K: %d", atrlen, T1len, TD1len, TDilen, K);
else
PrintAndLogEx(INFO, "ATR length OK.");
PrintAndLog("Historical bytes len: 0x%02x", K);
if (K > 0)
PrintAndLog("The format of historical bytes: %02x", atr[2 + T1len + TD1len + TDilen]);
if (K > 1) {
PrintAndLog("Historical bytes:");
dump_buffer(&atr[2 + T1len + TD1len + TDilen], K, NULL, 1);
}
return 0;
}
static bool smart_select(bool silent) {
UsbCommand c = {CMD_SMART_ATR, {0, 0, 0}};
clearCommandBuffer();
@ -137,29 +325,55 @@ static int smart_wait(uint8_t *data) {
return len;
}
static int smart_response(uint8_t *data) {
static int smart_response(uint8_t apduINS, uint8_t *data) {
int len = -1;
int datalen = smart_wait(data);
bool needGetData = false;
if ( data[datalen - 2] == 0x61 || data[datalen - 2] == 0x9F ) {
len = data[datalen - 1];
}
if (len == -1 ) {
if (datalen < 2 ) {
goto out;
}
PrintAndLogEx(INFO, "Requesting response. len=0x%x", len);
uint8_t getstatus[] = {ISO7816_GETSTATUS, 0x00, 0x00, len};
UsbCommand cStatus = {CMD_SMART_RAW, {SC_RAW, sizeof(getstatus), 0}};
memcpy(cStatus.d.asBytes, getstatus, sizeof(getstatus) );
clearCommandBuffer();
SendCommand(&cStatus);
if (datalen > 2 && data[0] != apduINS) {
PrintAndLogEx(ERR, "Card ACK error. len=0x%x data[0]=%02x", datalen, data[0]);
datalen = 0;
goto out;
}
datalen = smart_wait(data);
out:
if ( data[datalen - 2] == 0x61 || data[datalen - 2] == 0x9F ) {
needGetData = true;
}
if (needGetData) {
int len = data[datalen - 1];
PrintAndLogEx(INFO, "Requesting response. len=0x%x", len);
uint8_t getstatus[] = {ISO7816_GETSTATUS, 0x00, 0x00, len};
UsbCommand cStatus = {CMD_SMART_RAW, {SC_RAW, sizeof(getstatus), 0}};
memcpy(cStatus.d.asBytes, getstatus, sizeof(getstatus) );
clearCommandBuffer();
SendCommand(&cStatus);
datalen = smart_wait(data);
if (datalen < 2 ) {
goto out;
}
if (datalen > 2 && data[0] != ISO7816_GETSTATUS) {
PrintAndLogEx(ERR, "GetResponse ACK error. len=0x%x data[0]=%02x", len, data[0]);
datalen = 0;
goto out;
}
if (datalen != len + 2 + 1) { // 2 - response, 1 - ACK
PrintAndLogEx(WARNING, "GetResponse wrong length. Must be: 0x%02x but: 0x%02x", len, datalen - 3);
}
}
if (datalen > 2) {
datalen--;
memmove(data, &data[1], datalen);
}
out:
return datalen;
}
@ -225,13 +439,13 @@ int CmdSmartRaw(const char *Cmd) {
UsbCommand c = {CMD_SMART_RAW, {0, hexlen, 0}};
if (active || active_select) {
c.arg[0] |= SC_CONNECT;
if (active_select)
c.arg[0] |= SC_SELECT;
}
c.arg[0] |= SC_CONNECT;
if (active_select)
c.arg[0] |= SC_SELECT;
}
if (hexlen > 0) {
c.arg[0] |= SC_RAW;
c.arg[0] |= SC_RAW;
}
memcpy(c.d.asBytes, data, hexlen );
@ -245,7 +459,7 @@ int CmdSmartRaw(const char *Cmd) {
if ( !buf )
return 1;
int len = smart_response(buf);
int len = smart_response(data[1], buf);
if ( len < 0 ) {
free(buf);
return 2;
@ -257,7 +471,7 @@ int CmdSmartRaw(const char *Cmd) {
memcpy(c.d.asBytes, data, sizeof(data) );
clearCommandBuffer();
SendCommand(&c);
len = smart_response(buf);
len = smart_response(data[1], buf);
data[4] = 0;
}
@ -285,12 +499,29 @@ int ExchangeAPDUSC(uint8_t *datain, int datainlen, bool activateCard, bool leave
clearCommandBuffer();
SendCommand(&c);
int len = smart_response(dataout);
int len = smart_response(datain[1], dataout);
if ( len < 0 ) {
return 2;
}
// retry
if (len > 1 && dataout[len - 2] == 0x6c && datainlen > 4) {
UsbCommand c2 = {CMD_SMART_RAW, {SC_RAW, datainlen, 0}};
memcpy(c2.d.asBytes, datain, datainlen);
int vlen = 5 + datain[4];
if (datainlen == vlen)
datainlen++;
c2.d.asBytes[vlen] = dataout[len - 1];
clearCommandBuffer();
SendCommand(&c2);
len = smart_response(datain[1], dataout);
}
*dataoutlen = len;
return 0;
@ -449,6 +680,28 @@ int CmdSmartInfo(const char *Cmd){
PrintAndLogEx(INFO, "ISO76183 ATR : %s", sprint_hex(card.atr, card.atr_len));
PrintAndLogEx(INFO, "look up ATR");
PrintAndLogEx(INFO, "http://smartcard-atr.appspot.com/parse?ATR=%s", sprint_hex_inrow(card.atr, card.atr_len) );
// print ATR
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "* ATR:");
PrintATR(card.atr, card.atr_len);
// print D/F (brom byte TA1 or defaults)
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "* D/F (TA1):");
int Di = GetATRDi(card.atr, card.atr_len);
int Fi = GetATRFi(card.atr, card.atr_len);
float F = GetATRF(card.atr, card.atr_len);
if (GetATRTA1(card.atr, card.atr_len) == 0x11)
PrintAndLogEx(INFO, "Using default values...");
PrintAndLogEx(NORMAL, "Di=%d", Di);
PrintAndLogEx(NORMAL, "Fi=%d", Fi);
PrintAndLogEx(NORMAL, "F=%.1f MHz", F);
PrintAndLogEx(NORMAL, "Cycles/ETU=%d", Fi/Di);
PrintAndLogEx(NORMAL, "%.1f bits/sec at 4MHz", (float)4000000 / (Fi/Di));
PrintAndLogEx(NORMAL, "%.1f bits/sec at Fmax=%.1fMHz", (F * 1000000) / (Fi/Di), F);
return 0;
}
@ -587,7 +840,7 @@ int CmdSmartBruteforceSFI(const char *Cmd) {
clearCommandBuffer();
SendCommand(&c);
smart_response(buf);
smart_response(data[1], buf);
// if 0x6C
if ( buf[0] == 0x6C ) {
@ -596,7 +849,7 @@ int CmdSmartBruteforceSFI(const char *Cmd) {
memcpy(c.d.asBytes, data, sizeof(data) );
clearCommandBuffer();
SendCommand(&c);
uint8_t len = smart_response(buf);
uint8_t len = smart_response(data[1], buf);
// TLV decoder
if (len > 4)