Major refactoring of lfops, removed a lot of duplicate code

This commit is contained in:
Martin Holst Swende 2014-03-30 15:59:54 +02:00
commit 69d88ec463

View file

@ -15,32 +15,8 @@
#include "crc16.h"
#include "string.h"
void AcquireRawAdcSamples125k(int divisor)
{
if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
else if (divisor == 0)
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
else
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
// Connect the A/D to the peak-detected low-frequency path.
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
// Give it a bit of time for the resonant antenna to settle.
SpinDelay(50);
// Now set up the SSC to get the ADC samples that are now streaming at us.
FpgaSetupSsc();
// Now call the acquisition routine
DoAcquisition125k();
}
// split into two routines so we can avoid timing issues after sending commands //
void DoAcquisition125k(void)
void DoAcquisition125k_internal(bool silent)
{
uint8_t *dest = (uint8_t *)BigBuf;
int n = sizeof(BigBuf);
@ -60,8 +36,44 @@ void DoAcquisition125k(void)
if (i >= n) break;
}
}
Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
if( ! silent)
{
Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
}
}
void DoAcquisition125k(void)
{
DoAcquisition125k_internal(false);
}
void SetupToAcquireRawAdcSamples(int divisor)
{
if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
else if (divisor == 0)
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
else
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
// Connect the A/D to the peak-detected low-frequency path.
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
// Give it a bit of time for the resonant antenna to settle.
SpinDelay(50);
// Now set up the SSC to get the ADC samples that are now streaming at us.
FpgaSetupSsc();
}
void AcquireRawAdcSamples125k(int divisor)
{
SetupToAcquireRawAdcSamples(divisor);
// Now call the acquisition routine
DoAcquisition125k_internal(false);
}
void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
@ -593,15 +605,8 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
if (ledcontrol)
LED_A_OFF();
}
// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
void setup_for_125khz()
{
uint8_t *dest = (uint8_t *)BigBuf;
int m=0, n=0, i=0, idx=0, found=0, lastval=0;
uint32_t hi2=0, hi=0, lo=0;
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
@ -614,6 +619,115 @@ void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
// Now set up the SSC to get the ADC samples that are now streaming at us.
FpgaSetupSsc();
}
void get_samples(int ledcontrol, uint8_t* dest, int size)
{
int i = 0;
memset(dest,128,size);
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x43;
if (ledcontrol) LED_D_ON();
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
// we don't care about actual value, only if it's more or less than a
// threshold essentially we capture zero crossings for later analysis
if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
i++;
if (ledcontrol) LED_D_OFF();
if(i >= size) {
break;
}
}
}
}
uint8_t fsk_demod(uint8_t * dest, int size)
{
uint8_t last_transition = 0;
uint8_t idx = 1;
// we don't care about actual value, only if it's more or less than a
// threshold essentially we capture zero crossings for later analysis
uint8_t threshold_value = 127;
WDT_HIT();
// sync to first lo-hi transition, and threshold
//Need to threshold first sample
if(dest[0] < threshold_value) dest[0] = 0;
else dest[0] = 1;
uint8_t numBits = 0;
// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
// or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
for(idx = 1; idx < size; idx++) {
// threshold current value
if (dest[idx] < threshold_value) dest[idx] = 0;
else dest[idx] = 1;
// Check for 0->1 transition
if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
if (idx-last_transition < 9) {
dest[numBits]=1;
} else {
dest[numBits]=0;
}
last_transition = idx;
numBits++;
}
}
return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
}
uint8_t aggregate_bits(uint8_t *dest,uint8_t size, uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, uint8_t maxConsequtiveBits )
{
uint8_t lastval=dest[0];
uint8_t idx=0;
uint8_t numBits=0;
uint8_t n=1, i=0;
for( idx=1; idx < size; idx++) {
if (dest[idx]==lastval) {
n++;
continue;
}
//if lastval was 1, we have a 1->0 crossing
if ( lastval ) {
n=(n+1)/7;
} else {// 0->1 crossing
n=(n+1)/6;
}
if(n < 13)
{
memset(dest+i, lastval ^ 1, n);
numBits += n;
}
n=0;
lastval=dest[idx];
}//end for
return numBits;
}
// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = (uint8_t *)BigBuf;
int size=0, idx=0, found=0;
uint32_t hi2=0, hi=0, lo=0;
// Configure to go in 125Khz listen mode
SetupToAcquireRawAdcSamples(0);
for(;;) {
WDT_HIT();
if (ledcontrol)
@ -625,170 +739,64 @@ void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
return;
}
i = 0;
m = sizeof(BigBuf);
memset(dest,128,m);
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x43;
if (ledcontrol)
LED_D_ON();
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
// we don't care about actual value, only if it's more or less than a
// threshold essentially we capture zero crossings for later analysis
if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
i++;
if (ledcontrol)
LED_D_OFF();
if(i >= m) {
break;
}
}
}
DoAcquisition125k_internal(true);
size = sizeof(BigBuf);
// FSK demodulator
size = fsk_demod(dest, size);
// sync to first lo-hi transition
for( idx=1; idx<m; idx++) {
if (dest[idx-1]<dest[idx])
lastval=idx;
break;
}
WDT_HIT();
// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
// or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
for( i=0; idx<m; idx++) {
if (dest[idx-1]<dest[idx]) {
dest[i]=idx-lastval;
if (dest[i] <= 8) {
dest[i]=1;
} else {
dest[i]=0;
}
lastval=idx;
i++;
}
}
m=i;
WDT_HIT();
// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
lastval=dest[0];
idx=0;
i=0;
n=0;
for( idx=0; idx<m; idx++) {
if (dest[idx]==lastval) {
n++;
} else {
// a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
// an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
// swallowed up by rounding
// expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
// special start of frame markers use invalid manchester states (no transitions) by using sequences
// like 111000
if (dest[idx-1]) {
n=(n+1)/6; // fc/8 in sets of 6
} else {
n=(n+1)/5; // fc/10 in sets of 5
}
switch (n) { // stuff appropriate bits in buffer
case 0:
case 1: // one bit
dest[i++]=dest[idx-1];
break;
case 2: // two bits
dest[i++]=dest[idx-1];
dest[i++]=dest[idx-1];
break;
case 3: // 3 bit start of frame markers
dest[i++]=dest[idx-1];
dest[i++]=dest[idx-1];
dest[i++]=dest[idx-1];
break;
// When a logic 0 is immediately followed by the start of the next transmisson
// (special pattern) a pattern of 4 bit duration lengths is created.
case 4:
dest[i++]=dest[idx-1];
dest[i++]=dest[idx-1];
dest[i++]=dest[idx-1];
dest[i++]=dest[idx-1];
break;
default: // this shouldn't happen, don't stuff any bits
break;
}
n=0;
lastval=dest[idx];
}
}
m=i;
// 1->0 : fc/8 in sets of 6
// 0->1 : fc/10 in sets of 5
size = aggregate_bits(dest,size, 6,5,5);
WDT_HIT();
// final loop, go over previously decoded manchester data and decode into usable tag ID
// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
for( idx=0; idx<m-6; idx++) {
// search for a start of frame marker
if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
{
found=1;
idx+=6;
if (found && (hi2|hi|lo)) {
if (hi2 != 0){
Dbprintf("TAG ID: %x%08x%08x (%d)",
(unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
}
else {
Dbprintf("TAG ID: %x%08x (%d)",
(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
}
/* if we're only looking for one tag */
if (findone)
{
*high = hi;
*low = lo;
return;
}
hi2=0;
hi=0;
lo=0;
found=0;
}
}
uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
for( idx=0; idx < size-sizeof(frame_marker_mask); idx++) {
if (found) {
if (dest[idx] && (!dest[idx+1]) ) {
hi2=(hi2<<1)|(hi>>31);
hi=(hi<<1)|(lo>>31);
lo=(lo<<1)|0;
} else if ( (!dest[idx]) && dest[idx+1]) {
hi2=(hi2<<1)|(hi>>31);
hi=(hi<<1)|(lo>>31);
lo=(lo<<1)|1;
} else {
if(dest[idx] == dest[idx+1])
{// 1 1 or 00
found=0;
hi2=0;
hi2=0;
hi=0;
lo=0;
}else
{
//Shift in a bit. Start by shifting high registers
hi2 = (hi2<<1)|(hi>>31);
hi = (hi<<1)|(lo>>31);
//Then, shift in a 0 or one into low
if (dest[idx] && !dest[idx+1]) // 1 0
lo=(lo<<1)|0;
else // 0 1
lo=(lo<<1)|1;
}
idx++;
}
if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
{
// search for a start of frame marker
if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{ // Found start of frame marker
found=1;
idx+=6;
if (found && (hi|lo)) {
if (hi2 != 0){
Dbprintf("TAG ID: %x%08x%08x (%d)",
(unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
}
else {
Dbprintf("TAG ID: %x%08x (%d)",
(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
}
idx+=sizeof(frame_marker_mask);
if (found && (hi2|hi|lo)) {
if (hi2 != 0){
Dbprintf("TAG ID: %x%08x%08x (%d)",
(unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
}
else {
Dbprintf("TAG ID: %x%08x (%d)",
(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
}
/* if we're only looking for one tag */
if (findone)
{
@ -796,7 +804,7 @@ void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
*low = lo;
return;
}
hi2=0;
hi2=0;
hi=0;
lo=0;
found=0;
@ -807,25 +815,26 @@ void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
}
}
uint32_t bytebits_to_byte(uint8_t* src, int numbits)
{
uint32_t num = 0;
for(int i = 0 ; i < numbits ; i++)
{
num = (num << 1) | (*src);
src++;
}
return num;
}
void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = (uint8_t *)BigBuf;
int m=0, n=0, i=0, idx=0, lastval=0;
int found=0;
int size=0, idx=0;
uint32_t code=0, code2=0;
//uint32_t hi2=0, hi=0, lo=0;
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
// Connect the A/D to the peak-detected low-frequency path.
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
// Give it a bit of time for the resonant antenna to settle.
SpinDelay(50);
// Now set up the SSC to get the ADC samples that are now streaming at us.
FpgaSetupSsc();
setup_for_125khz();
for(;;) {
WDT_HIT();
@ -838,170 +847,24 @@ void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
return;
}
i = 0;
m = sizeof(BigBuf);
memset(dest,128,m);
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x43;
if (ledcontrol)
LED_D_ON();
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
// we don't care about actual value, only if it's more or less than a
// threshold essentially we capture zero crossings for later analysis
if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
i++;
if (ledcontrol)
LED_D_OFF();
if(i >= m) {
break;
}
}
}
DoAcquisition125k_internal(true);
size = sizeof(BigBuf);
// FSK demodulator
// sync to first lo-hi transition
for( idx=1; idx<m; idx++) {
if (dest[idx-1]<dest[idx])
lastval=idx;
break;
}
size = fsk_demod(dest, size);
WDT_HIT();
// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
// or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
for( i=0; idx<m; idx++) {
if (dest[idx-1]<dest[idx]) {
dest[i]=idx-lastval;
if (dest[i] <= 8) {
dest[i]=1;
} else {
dest[i]=0;
}
lastval=idx;
i++;
}
}
m=i;
WDT_HIT();
// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
lastval=dest[0];
idx=0;
i=0;
n=0;
for( idx=0; idx<m; idx++) {
if (dest[idx]==lastval) {
n++;
} else {
// a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
// an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
// swallowed up by rounding
// expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
// special start of frame markers use invalid manchester states (no transitions) by using sequences
// like 111000
if (dest[idx-1]) {
n=(n+1)/7; // fc/8 in sets of 7
} else {
n=(n+1)/6; // fc/10 in sets of 6
}
switch (n) { // stuff appropriate bits in buffer
case 0:
case 1: // one bit
dest[i++]=dest[idx-1]^1;
//Dbprintf("%d",dest[idx-1]);
break;
case 2: // two bits
dest[i++]=dest[idx-1]^1;
dest[i++]=dest[idx-1]^1;
//Dbprintf("%d",dest[idx-1]);
//Dbprintf("%d",dest[idx-1]);
break;
case 3: // 3 bit start of frame markers
for(int j=0; j<3; j++){
dest[i++]=dest[idx-1]^1;
// Dbprintf("%d",dest[idx-1]);
}
break;
case 4:
for(int j=0; j<4; j++){
dest[i++]=dest[idx-1]^1;
// Dbprintf("%d",dest[idx-1]);
}
break;
case 5:
for(int j=0; j<5; j++){
dest[i++]=dest[idx-1]^1;
// Dbprintf("%d",dest[idx-1]);
}
break;
case 6:
for(int j=0; j<6; j++){
dest[i++]=dest[idx-1]^1;
// Dbprintf("%d",dest[idx-1]);
}
break;
case 7:
for(int j=0; j<7; j++){
dest[i++]=dest[idx-1]^1;
// Dbprintf("%d",dest[idx-1]);
}
break;
case 8:
for(int j=0; j<8; j++){
dest[i++]=dest[idx-1]^1;
// Dbprintf("%d",dest[idx-1]);
}
break;
case 9:
for(int j=0; j<9; j++){
dest[i++]=dest[idx-1]^1;
// Dbprintf("%d",dest[idx-1]);
}
break;
case 10:
for(int j=0; j<10; j++){
dest[i++]=dest[idx-1]^1;
// Dbprintf("%d",dest[idx-1]);
}
break;
case 11:
for(int j=0; j<11; j++){
dest[i++]=dest[idx-1]^1;
// Dbprintf("%d",dest[idx-1]);
}
break;
case 12:
for(int j=0; j<12; j++){
dest[i++]=dest[idx-1]^1;
// Dbprintf("%d",dest[idx-1]);
}
break;
default: // this shouldn't happen, don't stuff any bits
//Dbprintf("%d",dest[idx-1]);
break;
}
n=0;
lastval=dest[idx];
}
}//end for
/*for(int j=0; j<64;j+=8){
Dbprintf("%d%d%d%d%d%d%d%d",dest[j],dest[j+1],dest[j+2],dest[j+3],dest[j+4],dest[j+5],dest[j+6],dest[j+7]);
}
Dbprintf("\n");*/
m=i;
// 1->0 : fc/8 in sets of 7
// 0->1 : fc/10 in sets of 6
size = aggregate_bits(dest, size, 7,6,13);
WDT_HIT();
for( idx=0; idx<m-9; idx++) {
if ( !(dest[idx]) && !(dest[idx+1]) && !(dest[idx+2]) && !(dest[idx+3]) && !(dest[idx+4]) && !(dest[idx+5]) && !(dest[idx+6]) && !(dest[idx+7]) && !(dest[idx+8])&& (dest[idx+9])){
found=1;
//idx+=9;
if (found) {
uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
for( idx=0; idx < size - 64; idx++) {
if ( memcmp(dest + idx, mask, sizeof(mask)) ) continue;
Dbprintf("%d%d%d%d%d%d%d%d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7]);
Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+8], dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15]);
Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+16],dest[idx+17],dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23]);
@ -1010,57 +873,23 @@ void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44],dest[idx+45],dest[idx+46],dest[idx+47]);
Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53],dest[idx+54],dest[idx+55]);
Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
short version='\x00';
char unknown='\x00';
uint16_t number=0;
for(int j=14;j<18;j++){
//Dbprintf("%d",dest[idx+j]);
version <<=1;
if (dest[idx+j]) version |= 1;
}
for(int j=19;j<27;j++){
//Dbprintf("%d",dest[idx+j]);
unknown <<=1;
if (dest[idx+j]) unknown |= 1;
}
for(int j=36;j<45;j++){
//Dbprintf("%d",dest[idx+j]);
number <<=1;
if (dest[idx+j]) number |= 1;
}
for(int j=46;j<53;j++){
//Dbprintf("%d",dest[idx+j]);
number <<=1;
if (dest[idx+j]) number |= 1;
}
for(int j=0; j<32; j++){
code <<=1;
if(dest[idx+j]) code |= 1;
}
for(int j=32; j<64; j++){
code2 <<=1;
if(dest[idx+j]) code2 |= 1;
}
code = bytebits_to_byte(dest+idx,32);
code2 = bytebits_to_byte(dest+idx+32,32);
short version = bytebits_to_byte(dest+idx+14,4);
char unknown = bytebits_to_byte(dest+idx+19,8) ;
uint16_t number = bytebits_to_byte(dest+idx+36,9);
Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,unknown,number,code,code2);
if (ledcontrol)
LED_D_OFF();
}
// if we're only looking for one tag
if (findone){
//*high = hi;
//*low = lo;
LED_A_OFF();
return;
}
//hi=0;
//lo=0;
found=0;
}
if (ledcontrol) LED_D_OFF();
}
// if we're only looking for one tag
if (findone){
LED_A_OFF();
return;
}
}
}
WDT_HIT();
}