Implemented new FPGA mode for iclass tag simulation. Reduces arm-side size of transfer/memory by a factor of 8. Makes for easier arm-side encoding of messages, for when we start needing to do that on the fly instead of using precalculated messages

This commit is contained in:
Martin Holst Swende 2015-01-15 15:16:34 +01:00
parent 55eaed8f2a
commit 645c960f61
4 changed files with 118 additions and 59 deletions

View file

@ -134,6 +134,8 @@ void SetAdcMuxFor(uint32_t whichGpio);
#define FPGA_HF_SIMULATOR_MODULATE_BPSK (1<<0)
#define FPGA_HF_SIMULATOR_MODULATE_212K (2<<0)
#define FPGA_HF_SIMULATOR_MODULATE_424K (4<<0)
#define FPGA_HF_SIMULATOR_MODULATE_424K_8BIT 0x5//101
// Options for ISO14443A
#define FPGA_HF_ISO14443A_SNIFFER (0<<0)
#define FPGA_HF_ISO14443A_TAGSIM_LISTEN (1<<0)

View file

@ -857,57 +857,93 @@ static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen)
}
}
static uint8_t encode4Bits(const uint8_t b)
{
uint8_t c = b & 0xF;
// OTA, the least significant bits first
// The columns are
// 1 - Bit value to send
// 2 - Reversed (big-endian)
// 3 - Encoded
// 4 - Hex values
switch(c){
// 1 2 3 4
case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
}
}
//-----------------------------------------------------------------------------
// Prepare tag messages
//-----------------------------------------------------------------------------
static void CodeIClassTagAnswer(const uint8_t *cmd, int len)
{
//So far a dummy implementation, not used
//int lastProxToAirDuration =0;
/*
* SOF comprises 3 parts;
* * An unmodulated time of 56.64 us
* * 24 pulses of 423.75 KHz (fc/32)
* * A logic 1, which starts with an unmodulated time of 18.88us
* followed by 8 pulses of 423.75kHz (fc/32)
*
*
* EOF comprises 3 parts:
* - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
* time of 18.88us.
* - 24 pulses of fc/32
* - An unmodulated time of 56.64 us
*
*
* A logic 0 starts with 8 pulses of fc/32
* followed by an unmodulated time of 256/fc (~18,88us).
*
* A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
* 8 pulses of fc/32 (also 18.88us)
*
* The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
* works like this.
* - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
* - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us
*
* In thist mode the SOF can be written as 00011101 = 0x1D
* The EOF can be written as 10111000 = 0xb8
* A logic 1 is 01
* A logic 0 is 10
*
* */
int i;
ToSendReset();
// Send SOF
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0xff;//Proxtoair duration starts here
ToSend[++ToSendMax] = 0xff;
ToSend[++ToSendMax] = 0xff;
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0xff;
ToSend[++ToSendMax] = 0x1D;
for(i = 0; i < len; i++) {
int j;
uint8_t b = cmd[i];
// Data bits
for(j = 0; j < 8; j++) {
if(b & 1) {
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0xff;
} else {
ToSend[++ToSendMax] = 0xff;
ToSend[++ToSendMax] = 0x00;
}
b >>= 1;
}
ToSend[++ToSendMax] = encode4Bits(b & 0xF); //Least significant half
ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF);//Most significant half
}
// Send EOF
ToSend[++ToSendMax] = 0xff;
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0xff;
ToSend[++ToSendMax] = 0xff;
ToSend[++ToSendMax] = 0xff;
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0xB8;
//lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
// Convert from last byte pos to length
ToSendMax++;
}
@ -920,18 +956,9 @@ static void CodeIClassTagSOF()
ToSendReset();
// Send SOF
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0xff;
ToSend[++ToSendMax] = 0xff;
ToSend[++ToSendMax] = 0xff;
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0xff;
ToSend[++ToSendMax] = 0x1D;
// lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
// Convert from last byte pos to length
ToSendMax++;
}
@ -984,6 +1011,7 @@ void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain
memcpy(csn_crc, datain+(i*8), 8);
if(doIClassSimulation(csn_crc,1,mac_responses+i*8))
{
cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
return; // Button pressed
}
}
@ -1036,23 +1064,23 @@ int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader
int trace_data_size = 0;
//uint8_t sof = 0x0f;
// Respond SOF -- takes 8 bytes
// Respond SOF -- takes 1 bytes
uint8_t *resp1 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
int resp1Len;
// Anticollision CSN (rotated CSN)
// 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit)
uint8_t *resp2 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 10);
// 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
uint8_t *resp2 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 2);
int resp2Len;
// CSN
// 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit)
uint8_t *resp3 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 190);
// 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
uint8_t *resp3 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 30);
int resp3Len;
// e-Purse
// 144: Takes 16 bytes for SOF/EOF and 8 * 16 = 128 bytes (2 bytes/bit)
uint8_t *resp4 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 370);
// 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/byte)
uint8_t *resp4 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 60);
int resp4Len;
// + 1720..
@ -1195,7 +1223,7 @@ int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader
A legit tag has about 380us.
**/
if(modulated_response_size > 0) {
SendIClassAnswer(modulated_response, modulated_response_size, timeout);
SendIClassAnswer(modulated_response, modulated_response_size, 1);
t2r_time = GetCountSspClk();
}
@ -1232,7 +1260,8 @@ static int SendIClassAnswer(uint8_t *resp, int respLen, int delay)
int i = 0, d=0;//, u = 0, d = 0;
uint8_t b = 0;
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
//FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT);
AT91C_BASE_SSC->SSC_THR = 0x00;
FpgaSetupSsc();
@ -1256,7 +1285,8 @@ static int SendIClassAnswer(uint8_t *resp, int respLen, int delay)
AT91C_BASE_SSC->SSC_THR = b;
}
if (i > respLen +4) break;
// if (i > respLen +4) break;
if (i > respLen +1) break;
}
return 0;

Binary file not shown.

View file

@ -50,12 +50,38 @@ begin
else if(~(| adc_d[7:5])) after_hysteresis = 1'b0;
end
// Divide 13.56 MHz by 32 to produce the SSP_CLK
// The register is bigger to allow higher division factors of up to /128
reg [6:0] ssp_clk_divider;
reg [10:0] ssp_clk_divider;
always @(posedge adc_clk)
ssp_clk_divider <= (ssp_clk_divider + 1);
assign ssp_clk = ssp_clk_divider[4];
reg ssp_clk;
reg ssp_frame;
always @(negedge adc_clk)
begin
//If we're in 101, we only need a new bit every 8th carrier bit (53Hz). Otherwise, get next bit at 424Khz
if(mod_type == 3'b101)
begin
if(ssp_clk_divider[7:0] == 8'b00000000)
ssp_clk <= 1'b0;
if(ssp_clk_divider[7:0] == 8'b10000000)
ssp_clk <= 1'b1;
end
else
begin
if(ssp_clk_divider[4:0] == 5'd0)//[4:0] == 5'b00000)
ssp_clk <= 1'b1;
if(ssp_clk_divider[4:0] == 5'd16) //[4:0] == 5'b10000)
ssp_clk <= 1'b0;
end
end
//assign ssp_clk = ssp_clk_divider[4];
// Divide SSP_CLK by 8 to produce the byte framing signal; the phase of
// this is arbitrary, because it's just a bitstream.
@ -69,12 +95,13 @@ reg [2:0] ssp_frame_divider_from_arm;
always @(negedge ssp_clk)
ssp_frame_divider_from_arm <= (ssp_frame_divider_from_arm + 1);
reg ssp_frame;
always @(ssp_frame_divider_to_arm or ssp_frame_divider_from_arm or mod_type)
if(mod_type == 3'b000) // not modulating, so listening, to ARM
ssp_frame = (ssp_frame_divider_to_arm == 3'b000);
else
ssp_frame = (ssp_frame_divider_from_arm == 3'b000);
ssp_frame = (ssp_frame_divider_from_arm == 3'b000);
// Synchronize up the after-hysteresis signal, to produce DIN.
reg ssp_din;
@ -90,7 +117,7 @@ always @(mod_type or ssp_clk or ssp_dout)
modulating_carrier <= ssp_dout ^ ssp_clk_divider[3]; // XOR means BPSK
else if(mod_type == 3'b010)
modulating_carrier <= ssp_dout & ssp_clk_divider[5]; // switch 212kHz subcarrier on/off
else if(mod_type == 3'b100)
else if(mod_type == 3'b100 || mod_type == 3'b101)
modulating_carrier <= ssp_dout & ssp_clk_divider[4]; // switch 424kHz modulation on/off
else
modulating_carrier <= 1'b0; // yet unused
@ -106,7 +133,7 @@ assign pwr_oe4 = modulating_carrier;
// This one is always on, so that we can watch the carrier.
assign pwr_oe3 = 1'b0;
assign dbg = after_hysteresis;
assign dbg = modulating_carrier;
//reg dbg;
//always @(ssp_dout)
// dbg <= ssp_dout;