fix 'hf iclass sim':

* chg to reader command decoder in iso15693.c (require no modulation before SOF)
* add 'has_been_low_for' logic to hi_simulate.v (same as in other FPGA modes, default to "no modulation")
* add simulation of chip status (IDLE, ACTIVE, SELECTED, HALTED)
* check ACSN on SELECT
* add simulation of RESELECT
* always check length of reader commands
* fix printing of NR, MAC in sim 2 mode
* fix response length to CHECK command
This commit is contained in:
pwpiwi 2019-09-21 11:58:51 +02:00
commit 5b12974a7f
5 changed files with 238 additions and 157 deletions

View file

@ -777,8 +777,6 @@ static void AppendCrc(uint8_t *data, int len) {
/** /**
* @brief Does the actual simulation * @brief Does the actual simulation
* @param csn - csn to use
* @param breakAfterMacReceived if true, returns after reader MAC has been received.
*/ */
int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) { int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) {
@ -919,6 +917,8 @@ int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) {
LED_A_ON(); LED_A_ON();
bool buttonPressed = false; bool buttonPressed = false;
enum { IDLE, ACTIVATED, SELECTED, HALTED } chip_state = IDLE;
while (!exitLoop) { while (!exitLoop) {
WDT_HIT(); WDT_HIT();
LED_B_OFF(); LED_B_OFF();
@ -943,162 +943,193 @@ int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) {
trace_data = NULL; trace_data = NULL;
trace_data_size = 0; trace_data_size = 0;
if (receivedCmd[0] == ICLASS_CMD_ACTALL) { if (receivedCmd[0] == ICLASS_CMD_ACTALL && len == 1) {
// Reader in anticollission phase // Reader in anticollision phase
modulated_response = resp_sof; if (chip_state != HALTED) {
modulated_response_size = resp_sof_Len; modulated_response = resp_sof;
trace_data = sof_data; modulated_response_size = resp_sof_Len;
trace_data_size = sizeof(sof_data); trace_data = sof_data;
trace_data_size = sizeof(sof_data);
chip_state = ACTIVATED;
}
} else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { // identify } else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { // identify
// Reader asks for anticollission CSN // Reader asks for anticollision CSN
modulated_response = resp_anticoll; if (chip_state == SELECTED || chip_state == ACTIVATED) {
modulated_response_size = resp_anticoll_len; modulated_response = resp_anticoll;
trace_data = anticoll_data; modulated_response_size = resp_anticoll_len;
trace_data_size = sizeof(anticoll_data); trace_data = anticoll_data;
trace_data_size = sizeof(anticoll_data);
}
} else if (receivedCmd[0] == ICLASS_CMD_SELECT && len == 9) {
// Reader selects anticollision CSN.
// Tag sends the corresponding real CSN
if (chip_state == ACTIVATED || chip_state == SELECTED) {
if (!memcmp(receivedCmd+1, anticoll_data, 8)) {
modulated_response = resp_csn;
modulated_response_size = resp_csn_len;
trace_data = csn_data;
trace_data_size = sizeof(csn_data);
chip_state = SELECTED;
} else {
chip_state = IDLE;
}
} else if (chip_state == HALTED) {
// RESELECT with CSN
if (!memcmp(receivedCmd+1, csn_data, 8)) {
modulated_response = resp_csn;
modulated_response_size = resp_csn_len;
trace_data = csn_data;
trace_data_size = sizeof(csn_data);
chip_state = SELECTED;
}
}
} else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4) { // read block } else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4) { // read block
uint16_t blockNo = receivedCmd[1]; uint16_t blockNo = receivedCmd[1];
if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) { if (chip_state == SELECTED) {
// provide defaults for blocks 0 ... 5 if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) {
switch (blockNo) { // provide defaults for blocks 0 ... 5
case 0: // csn (block 00) switch (blockNo) {
modulated_response = resp_csn; case 0: // csn (block 00)
modulated_response_size = resp_csn_len; modulated_response = resp_csn;
trace_data = csn_data; modulated_response_size = resp_csn_len;
trace_data_size = sizeof(csn_data); trace_data = csn_data;
break; trace_data_size = sizeof(csn_data);
case 1: // configuration (block 01) break;
modulated_response = resp_conf; case 1: // configuration (block 01)
modulated_response_size = resp_conf_len; modulated_response = resp_conf;
trace_data = conf_data; modulated_response_size = resp_conf_len;
trace_data_size = sizeof(conf_data); trace_data = conf_data;
break; trace_data_size = sizeof(conf_data);
case 2: // e-purse (block 02) break;
modulated_response = resp_cc; case 2: // e-purse (block 02)
modulated_response_size = resp_cc_len; modulated_response = resp_cc;
trace_data = card_challenge_data; modulated_response_size = resp_cc_len;
trace_data_size = sizeof(card_challenge_data); trace_data = card_challenge_data;
// set epurse of sim2,4 attack trace_data_size = sizeof(card_challenge_data);
if (reader_mac_buf != NULL) { // set epurse of sim2,4 attack
memcpy(reader_mac_buf, card_challenge_data, 8); if (reader_mac_buf != NULL) {
} memcpy(reader_mac_buf, card_challenge_data, 8);
break; }
case 3: break;
case 4: // Kd, Kd, always respond with 0xff bytes case 3:
case 4: // Kd, Kc, always respond with 0xff bytes
modulated_response = resp_ff;
modulated_response_size = resp_ff_len;
trace_data = ff_data;
trace_data_size = sizeof(ff_data);
break;
case 5: // Application Issuer Area (block 05)
modulated_response = resp_aia;
modulated_response_size = resp_aia_len;
trace_data = aia_data;
trace_data_size = sizeof(aia_data);
break;
// default: don't respond
}
} else if (simulationMode == ICLASS_SIM_MODE_FULL) {
if (blockNo == 3 || blockNo == 4) { // Kd, Kc, always respond with 0xff bytes
modulated_response = resp_ff; modulated_response = resp_ff;
modulated_response_size = resp_ff_len; modulated_response_size = resp_ff_len;
trace_data = ff_data; trace_data = ff_data;
trace_data_size = sizeof(ff_data); trace_data_size = sizeof(ff_data);
break; } else { // use data from emulator memory
case 5: // Application Issuer Area (block 05) memcpy(data_generic_trace, emulator + 8*blockNo, 8);
modulated_response = resp_aia; AppendCrc(data_generic_trace, 8);
modulated_response_size = resp_aia_len; trace_data = data_generic_trace;
trace_data = aia_data; trace_data_size = 10;
trace_data_size = sizeof(aia_data); CodeIso15693AsTag(trace_data, trace_data_size);
break; memcpy(data_response, ToSend, ToSendMax);
// default: don't respond modulated_response = data_response;
modulated_response_size = ToSendMax;
}
} }
} else if (simulationMode == ICLASS_SIM_MODE_FULL) { }
if (blockNo == 3 || blockNo == 4) { // Kd, Kc, always respond with 0xff bytes
modulated_response = resp_ff; } else if ((receivedCmd[0] == ICLASS_CMD_READCHECK_KD
modulated_response_size = resp_ff_len; || receivedCmd[0] == ICLASS_CMD_READCHECK_KC) && len == 2) {
trace_data = ff_data; // Read e-purse (88 02 || 18 02)
trace_data_size = sizeof(ff_data); if (chip_state == SELECTED) {
} else { // use data from emulator memory modulated_response = resp_cc;
memcpy(data_generic_trace, emulator + (receivedCmd[1] << 3), 8); modulated_response_size = resp_cc_len;
AppendCrc(data_generic_trace, 8); trace_data = card_challenge_data;
trace_data_size = sizeof(card_challenge_data);
LED_B_ON();
}
} else if (receivedCmd[0] == ICLASS_CMD_CHECK && len == 9) {
// Reader random and reader MAC!!!
if (chip_state == SELECTED) {
if (simulationMode == ICLASS_SIM_MODE_FULL) {
//NR, from reader, is in receivedCmd+1
opt_doTagMAC_2(cipher_state, receivedCmd+1, data_generic_trace, diversified_key);
trace_data = data_generic_trace; trace_data = data_generic_trace;
trace_data_size = 10; trace_data_size = 4;
CodeIso15693AsTag(trace_data, trace_data_size); CodeIso15693AsTag(trace_data, trace_data_size);
memcpy(data_response, ToSend, ToSendMax); memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response; modulated_response = data_response;
modulated_response_size = ToSendMax; modulated_response_size = ToSendMax;
} //exitLoop = true;
} } else { // Not fullsim, we don't respond
// We do not know what to answer, so lets keep quiet
} else if (receivedCmd[0] == ICLASS_CMD_SELECT) { if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) {
// Reader selects anticollission CSN. if (reader_mac_buf != NULL) {
// Tag sends the corresponding real CSN // save NR and MAC for sim 2,4
modulated_response = resp_csn; memcpy(reader_mac_buf + 8, receivedCmd + 1, 8);
modulated_response_size = resp_csn_len; }
trace_data = csn_data; exitLoop = true;
trace_data_size = sizeof(csn_data);
} else if (receivedCmd[0] == ICLASS_CMD_READCHECK_KD
|| receivedCmd[0] == ICLASS_CMD_READCHECK_KC) {
// Read e-purse (88 02 || 18 02)
modulated_response = resp_cc;
modulated_response_size = resp_cc_len;
trace_data = card_challenge_data;
trace_data_size = sizeof(card_challenge_data);
LED_B_ON();
} else if (receivedCmd[0] == ICLASS_CMD_CHECK) {
// Reader random and reader MAC!!!
if (simulationMode == ICLASS_SIM_MODE_FULL) {
//NR, from reader, is in receivedCmd+1
opt_doTagMAC_2(cipher_state, receivedCmd+1, data_generic_trace, diversified_key);
trace_data = data_generic_trace;
trace_data_size = 4;
CodeIso15693AsTag(trace_data, trace_data_size);
memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
//exitLoop = true;
} else { // Not fullsim, we don't respond
// We do not know what to answer, so lets keep quiet
if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) {
if (reader_mac_buf != NULL) {
// save NR and MAC for sim 2,4
memcpy(reader_mac_buf + 8, receivedCmd + 1, 8);
} }
exitLoop = true;
} }
} }
} else if (receivedCmd[0] == ICLASS_CMD_HALT && len == 1) { } else if (receivedCmd[0] == ICLASS_CMD_HALT && len == 1) {
// Reader ends the session if (chip_state == SELECTED) {
modulated_response = resp_sof; // Reader ends the session
modulated_response_size = 0; chip_state = HALTED;
trace_data = NULL; }
trace_data_size = 0;
} else if (simulationMode == ICLASS_SIM_MODE_FULL && receivedCmd[0] == ICLASS_CMD_READ4 && len == 4) { // 0x06 } else if (simulationMode == ICLASS_SIM_MODE_FULL && receivedCmd[0] == ICLASS_CMD_READ4 && len == 4) { // 0x06
//Read block //Read 4 blocks
//Take the data... if (chip_state == SELECTED) {
memcpy(data_generic_trace, emulator + (receivedCmd[1] << 3), 8 * 4); memcpy(data_generic_trace, emulator + (receivedCmd[1] << 3), 8 * 4);
AppendCrc(data_generic_trace, 8 * 4); AppendCrc(data_generic_trace, 8 * 4);
trace_data = data_generic_trace; trace_data = data_generic_trace;
trace_data_size = 8 * 4 + 2; trace_data_size = 8 * 4 + 2;
CodeIso15693AsTag(trace_data, trace_data_size); CodeIso15693AsTag(trace_data, trace_data_size);
memcpy(data_response, ToSend, ToSendMax); memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response; modulated_response = data_response;
modulated_response_size = ToSendMax; modulated_response_size = ToSendMax;
}
} else if (receivedCmd[0] == ICLASS_CMD_UPDATE && simulationMode == ICLASS_SIM_MODE_FULL) { } else if (receivedCmd[0] == ICLASS_CMD_UPDATE && (len == 12 || len == 14)) {
// Probably the reader wants to update the nonce. Let's just ignore that for now. // Probably the reader wants to update the nonce. Let's just ignore that for now.
// OBS! If this is implemented, don't forget to regenerate the cipher_state // OBS! If this is implemented, don't forget to regenerate the cipher_state
// We're expected to respond with the data+crc, exactly what's already in the receivedCmd // We're expected to respond with the data+crc, exactly what's already in the receivedCmd
// receivedCmd is now UPDATE 1b | ADDRESS 1b | DATA 8b | Signature 4b or CRC 2b // receivedCmd is now UPDATE 1b | ADDRESS 1b | DATA 8b | Signature 4b or CRC 2b
memcpy(data_generic_trace, receivedCmd + 2, 8); if (chip_state == SELECTED) {
AppendCrc(data_generic_trace, 8); memcpy(data_generic_trace, receivedCmd + 2, 8);
trace_data = data_generic_trace; AppendCrc(data_generic_trace, 8);
trace_data_size = 10; trace_data = data_generic_trace;
CodeIso15693AsTag(trace_data, trace_data_size); trace_data_size = 10;
memcpy(data_response, ToSend, ToSendMax); CodeIso15693AsTag(trace_data, trace_data_size);
modulated_response = data_response; memcpy(data_response, ToSend, ToSendMax);
modulated_response_size = ToSendMax; modulated_response = data_response;
modulated_response_size = ToSendMax;
}
} else if (receivedCmd[0] == ICLASS_CMD_PAGESEL) { } else if (receivedCmd[0] == ICLASS_CMD_PAGESEL && len == 4) {
// Pagesel // Pagesel
// Pagesel enables to select a page in the selected chip memory and return its configuration block if (chip_state == SELECTED) {
// Chips with a single page will not answer to this command // Pagesel enables to select a page in the selected chip memory and return its configuration block
// It appears we're fine ignoring this. // Chips with a single page will not answer to this command
// Otherwise, we should answer 8bytes (block) + 2bytes CRC // It appears we're fine ignoring this.
// Otherwise, we should answer 8bytes (block) + 2bytes CRC
}
} else { } else {
// Never seen this command before // don't know how to handle this command
char debug_message[250]; // should be enough char debug_message[250]; // should be enough
sprintf(debug_message, "Unhandled command (len = %d) received from reader:", len); sprintf(debug_message, "Unhandled command (len = %d) received from reader:", len);
for (int i = 0; i < len && strlen(debug_message) < sizeof(debug_message) - 3 - 1; i++) { for (int i = 0; i < len && strlen(debug_message) < sizeof(debug_message) - 3 - 1; i++) {
@ -1187,8 +1218,9 @@ void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain
datain[i*8+0], datain[i*8+1], datain[i*8+2], datain[i*8+3], datain[i*8+0], datain[i*8+1], datain[i*8+2], datain[i*8+3],
datain[i*8+4], datain[i*8+5], datain[i*8+6], datain[i*8+7]); datain[i*8+4], datain[i*8+5], datain[i*8+6], datain[i*8+7]);
Dbprintf("NR,MAC: %02x %02x %02x %02x %02x %02x %02x %02x", Dbprintf("NR,MAC: %02x %02x %02x %02x %02x %02x %02x %02x",
datain[i*8+ 8], datain[i*8+ 9], datain[i*8+10], datain[i*8+11], mac_responses[i*16+ 8], mac_responses[i*16+ 9], mac_responses[i*16+10], mac_responses[i*16+11],
datain[i*8+12], datain[i*8+13], datain[i*8+14], datain[i*8+15]); mac_responses[i*16+12], mac_responses[i*16+13], mac_responses[i*16+14], mac_responses[i*16+15]);
SpinDelay(100); // give the reader some time to prepare for next CSN
} }
cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i, 0, mac_responses, i*16); cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i, 0, mac_responses, i*16);
} else if (simType == ICLASS_SIM_MODE_FULL) { } else if (simType == ICLASS_SIM_MODE_FULL) {

View file

@ -671,6 +671,7 @@ static int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, int tim
typedef struct DecodeReader { typedef struct DecodeReader {
enum { enum {
STATE_READER_UNSYNCD, STATE_READER_UNSYNCD,
STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF,
STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF, STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF,
STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF, STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF,
STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF, STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF,
@ -714,6 +715,13 @@ static int inline __attribute__((always_inline)) Handle15693SampleFromReader(uin
{ {
switch (DecodeReader->state) { switch (DecodeReader->state) {
case STATE_READER_UNSYNCD: case STATE_READER_UNSYNCD:
// wait for unmodulated carrier
if (bit) {
DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
}
break;
case STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF:
if (!bit) { if (!bit) {
// we went low, so this could be the beginning of a SOF // we went low, so this could be the beginning of a SOF
DecodeReader->posCount = 1; DecodeReader->posCount = 1;
@ -725,7 +733,7 @@ static int inline __attribute__((always_inline)) Handle15693SampleFromReader(uin
DecodeReader->posCount++; DecodeReader->posCount++;
if (bit) { // detected rising edge if (bit) { // detected rising edge
if (DecodeReader->posCount < 4) { // rising edge too early (nominally expected at 5) if (DecodeReader->posCount < 4) { // rising edge too early (nominally expected at 5)
DecodeReaderReset(DecodeReader); DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
} else { // SOF } else { // SOF
DecodeReader->state = STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF; DecodeReader->state = STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF;
} }
@ -748,13 +756,13 @@ static int inline __attribute__((always_inline)) Handle15693SampleFromReader(uin
DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF; DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF;
} else if (DecodeReader->posCount < 28) { // falling edge too early (nominally expected at 29 latest) } else if (DecodeReader->posCount < 28) { // falling edge too early (nominally expected at 29 latest)
DecodeReaderReset(DecodeReader); DecodeReaderReset(DecodeReader);
} else { // SOF for 1 out of 4 coding } else { // SOF for 1 out of 256 coding
DecodeReader->Coding = CODING_1_OUT_OF_256; DecodeReader->Coding = CODING_1_OUT_OF_256;
DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF; DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF;
} }
} else { } else {
if (DecodeReader->posCount > 29) { // stayed high for too long if (DecodeReader->posCount > 29) { // stayed high for too long
DecodeReaderReset(DecodeReader); DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
} else { } else {
// do nothing, keep waiting // do nothing, keep waiting
} }
@ -766,7 +774,7 @@ static int inline __attribute__((always_inline)) Handle15693SampleFromReader(uin
if (bit) { // detected rising edge if (bit) { // detected rising edge
if (DecodeReader->Coding == CODING_1_OUT_OF_256) { if (DecodeReader->Coding == CODING_1_OUT_OF_256) {
if (DecodeReader->posCount < 32) { // rising edge too early (nominally expected at 33) if (DecodeReader->posCount < 32) { // rising edge too early (nominally expected at 33)
DecodeReaderReset(DecodeReader); DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
} else { } else {
DecodeReader->posCount = 1; DecodeReader->posCount = 1;
DecodeReader->bitCount = 0; DecodeReader->bitCount = 0;
@ -777,21 +785,22 @@ static int inline __attribute__((always_inline)) Handle15693SampleFromReader(uin
} }
} else { // CODING_1_OUT_OF_4 } else { // CODING_1_OUT_OF_4
if (DecodeReader->posCount < 24) { // rising edge too early (nominally expected at 25) if (DecodeReader->posCount < 24) { // rising edge too early (nominally expected at 25)
DecodeReaderReset(DecodeReader); DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
} else { } else {
DecodeReader->posCount = 1;
DecodeReader->state = STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4; DecodeReader->state = STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4;
} }
} }
} else { } else {
if (DecodeReader->Coding == CODING_1_OUT_OF_256) { if (DecodeReader->Coding == CODING_1_OUT_OF_256) {
if (DecodeReader->posCount > 34) { // signal stayed low for too long if (DecodeReader->posCount > 34) { // signal stayed low for too long
DecodeReaderReset(DecodeReader); DecodeReaderReset(DecodeReader);
} else { } else {
// do nothing, keep waiting // do nothing, keep waiting
} }
} else { // CODING_1_OUT_OF_4 } else { // CODING_1_OUT_OF_4
if (DecodeReader->posCount > 26) { // signal stayed low for too long if (DecodeReader->posCount > 26) { // signal stayed low for too long
DecodeReaderReset(DecodeReader); DecodeReaderReset(DecodeReader);
} else { } else {
// do nothing, keep waiting // do nothing, keep waiting
} }
@ -802,7 +811,7 @@ static int inline __attribute__((always_inline)) Handle15693SampleFromReader(uin
case STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4: case STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4:
DecodeReader->posCount++; DecodeReader->posCount++;
if (bit) { if (bit) {
if (DecodeReader->posCount == 33) { if (DecodeReader->posCount == 9) {
DecodeReader->posCount = 1; DecodeReader->posCount = 1;
DecodeReader->bitCount = 0; DecodeReader->bitCount = 0;
DecodeReader->byteCount = 0; DecodeReader->byteCount = 0;

View file

@ -100,7 +100,46 @@ int usage_hf_iclass_sim(void) {
return 0; return 0;
} }
// the original malicious IDs from Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult,
// and Milosch Meriac. Dismantling iClass and iClass Elite.
#define NUM_CSNS 15 #define NUM_CSNS 15
static uint8_t csns[8 * NUM_CSNS] = {
0x00, 0x0B, 0x0F, 0xFF, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x04, 0x0E, 0x08, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x09, 0x0D, 0x05, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0A, 0x0C, 0x06, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0F, 0x0B, 0x03, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x08, 0x0A, 0x0C, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0D, 0x09, 0x09, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0E, 0x08, 0x0A, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x03, 0x07, 0x17, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x3C, 0x06, 0xE0, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x01, 0x05, 0x1D, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x02, 0x04, 0x1E, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x07, 0x03, 0x1B, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x00, 0x02, 0x24, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x05, 0x01, 0x21, 0xF7, 0xFF, 0x12, 0xE0 };
// pre-defined 9 CSNs by iceman.
// only one csn depend on several others.
// six depends only on the first csn, (0,1, 0x45)
// #define NUM_CSNS 9
// static uint8_t csns[8 * NUM_CSNS] = {
// 0x01, 0x0A, 0x0F, 0xFF, 0xF7, 0xFF, 0x12, 0xE0,
// 0x0C, 0x06, 0x0C, 0xFE, 0xF7, 0xFF, 0x12, 0xE0,
// 0x10, 0x97, 0x83, 0x7B, 0xF7, 0xFF, 0x12, 0xE0,
// 0x13, 0x97, 0x82, 0x7A, 0xF7, 0xFF, 0x12, 0xE0,
// 0x07, 0x0E, 0x0D, 0xF9, 0xF7, 0xFF, 0x12, 0xE0,
// 0x14, 0x96, 0x84, 0x76, 0xF7, 0xFF, 0x12, 0xE0,
// 0x17, 0x96, 0x85, 0x71, 0xF7, 0xFF, 0x12, 0xE0,
// 0xCE, 0xC5, 0x0F, 0x77, 0xF7, 0xFF, 0x12, 0xE0,
// 0xD2, 0x5A, 0x82, 0xF8, 0xF7, 0xFF, 0x12, 0xE0
// //0x04, 0x08, 0x9F, 0x78, 0x6E, 0xFF, 0x12, 0xE0
// };
int CmdHFiClassSim(const char *Cmd) { int CmdHFiClassSim(const char *Cmd) {
uint8_t simType = 0; uint8_t simType = 0;
uint8_t CSN[8] = {0, 0, 0, 0, 0, 0, 0, 0}; uint8_t CSN[8] = {0, 0, 0, 0, 0, 0, 0, 0};
@ -123,23 +162,6 @@ int CmdHFiClassSim(const char *Cmd) {
UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType, NUM_CSNS}}; UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType, NUM_CSNS}};
UsbCommand resp = {0}; UsbCommand resp = {0};
uint8_t csns[8 * NUM_CSNS] = {
0x00, 0x0B, 0x0F, 0xFF, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x04, 0x0E, 0x08, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x09, 0x0D, 0x05, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0A, 0x0C, 0x06, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0F, 0x0B, 0x03, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x08, 0x0A, 0x0C, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0D, 0x09, 0x09, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0E, 0x08, 0x0A, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x03, 0x07, 0x17, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x3C, 0x06, 0xE0, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x01, 0x05, 0x1D, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x02, 0x04, 0x1E, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x07, 0x03, 0x1B, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x00, 0x02, 0x24, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x05, 0x01, 0x21, 0xF7, 0xFF, 0x12, 0xE0 };
memcpy(c.d.asBytes, csns, 8 * NUM_CSNS); memcpy(c.d.asBytes, csns, 8 * NUM_CSNS);
SendCommand(&c); SendCommand(&c);

Binary file not shown.

View file

@ -33,15 +33,33 @@ module hi_simulate(
output dbg; output dbg;
input [2:0] mod_type; input [2:0] mod_type;
assign adc_clk = ck_1356meg;
// The comparator with hysteresis on the output from the peak detector. // The comparator with hysteresis on the output from the peak detector.
reg after_hysteresis; reg after_hysteresis;
assign adc_clk = ck_1356meg; reg [11:0] has_been_low_for;
always @(negedge adc_clk) always @(negedge adc_clk)
begin begin
if(& adc_d[7:5]) after_hysteresis = 1'b1; // if (adc_d >= 224) if (& adc_d[7:5]) after_hysteresis <= 1'b1; // if (adc_d >= 224)
else if(~(| adc_d[7:5])) after_hysteresis = 1'b0; // if (adc_d <= 31) else if (~(| adc_d[7:5])) after_hysteresis <= 1'b0; // if (adc_d <= 31)
if (adc_d >= 224)
begin
has_been_low_for <= 12'd0;
end
else
begin
if (has_been_low_for == 12'd4095)
begin
has_been_low_for <= 12'd0;
after_hysteresis <= 1'b1;
end
else
begin
has_been_low_for <= has_been_low_for + 1;
end
end
end end