Nested loop fix for static nonces

* add detection of static tag nonces
* add tag nonce to error message
* modify mfCheckKeys() to pass button press events upstream
* don't abort nested when a static nonce is encountered
* modify nested to try multiple keys in a single operation
* Print keys remaining only every 10 seconds, and add estimated worst-case time
This commit is contained in:
uzlonewolf 2019-12-23 07:08:23 -08:00 committed by pwpiwi
parent 1f4789fe53
commit 5a03ea993f
3 changed files with 132 additions and 34 deletions

View file

@ -23,6 +23,7 @@
#include "parity.h"
#include "util.h"
#include "iso14443crc.h"
#include "util_posix.h"
#include "mifare.h"
#include "mifare4.h"
@ -236,8 +237,16 @@ int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t key
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK,&resp,3000)) return 1;
if ((resp.arg[0] & 0xff) != 0x01) return 2;
if (!WaitForResponseTimeout(CMD_ACK,&resp,3000))
return 1;
if ((resp.arg[0] & 0xff) != 0x01) {
if (((int)resp.arg[1]) < 0)
return (int)resp.arg[1];
return 2;
}
*key = bytes_to_num(resp.d.asBytes, 6);
return 0;
}
@ -321,13 +330,25 @@ __attribute__((force_align_arg_pointer))
int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *resultKey, bool calibrate)
{
uint16_t i;
uint32_t i, j;
uint32_t uid;
UsbCommand resp;
int num_unique_nonces;
StateList_t statelists[2];
struct Crypto1State *p1, *p2, *p3, *p4;
uint8_t *keyBlock = NULL;
uint64_t key64;
int isOK = 1;
uint64_t next_print_time = 0;
uint64_t start_time;
float brute_force_time;
float brute_force_per_second;
// flush queue
(void)WaitForResponseTimeout(CMD_ACK,NULL,100);
@ -335,7 +356,11 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo,
memcpy(c.d.asBytes, key, 6);
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) {
// some cards can cause it to get stuck in a loop, so break out of it
UsbCommand c = {CMD_PING};
SendCommand(&c);
(void)WaitForResponseTimeout(CMD_ACK,NULL,500);
return -1;
}
@ -354,6 +379,11 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo,
memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
}
if (statelists[0].nt == statelists[1].nt && statelists[0].ks1 == statelists[1].ks1)
num_unique_nonces = 1;
else
num_unique_nonces = 2;
// calc keys
pthread_t thread_id[2];
@ -404,30 +434,86 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo,
statelists[0].tail.sltail=--p3;
statelists[1].tail.sltail=--p4;
for (i = 0; i < 2; i++) {
PrintAndLog("statelist %d: length:%d block:%02d keytype:%d nt:%08X ks1:%08X", i, statelists[i].len, statelists[i].blockNo, statelists[i].keyType, statelists[i].nt, statelists[i].ks1);
}
// the statelists now contain possible keys. The key we are searching for must be in the
// intersection of both lists. Create the intersection:
qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compare_uint64);
qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compare_uint64);
statelists[0].len = intersection(statelists[0].head.keyhead, statelists[1].head.keyhead);
if (num_unique_nonces > 1) {
qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compare_uint64);
statelists[0].len = intersection(statelists[0].head.keyhead, statelists[1].head.keyhead);
}
else {
PrintAndLog("Nonce 1 and 2 are the same!");
}
if (statelists[0].len > 100) {
PrintAndLog("We have %d keys to check. This will take a very long time!", statelists[0].len);
PrintAndLog("Press button to abort.");
}
else if (statelists[0].len < 1) {
PrintAndLog("No candidate keys to check!");
}
else {
PrintAndLog("We have %d key(s) to check.", statelists[0].len);
}
uint32_t max_keys = (statelists[0].len > (USB_CMD_DATA_SIZE / 6)) ? (USB_CMD_DATA_SIZE / 6) : statelists[0].len;
keyBlock = calloc(max_keys, 6);
if (keyBlock == NULL) {
free(statelists[0].head.slhead);
free(statelists[1].head.slhead);
return -4;
}
memset(resultKey, 0, 6);
start_time = msclock();
next_print_time = start_time + 1 * 1000;
// The list may still contain several key candidates. Test each of them with mfCheckKeys
for (i = 0; i < statelists[0].len; i++) {
uint8_t keyBlock[6];
uint64_t key64;
crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
num_to_bytes(key64, 6, keyBlock);
for (i = 0; i < statelists[0].len; i+=max_keys) {
if (next_print_time <= msclock()) {
brute_force_per_second = ((float)i) / (((float)(msclock() - start_time)) / 1000.0);
brute_force_time = ((float)(statelists[0].len - i)) / brute_force_per_second;
next_print_time = msclock() + 10 * 1000;
PrintAndLog(" %8d keys left | %5.1f keys/sec | worst case %6.1f seconds remaining", statelists[0].len - i, brute_force_per_second, brute_force_time);
}
if ((i+max_keys) >= statelists[0].len)
max_keys = statelists[0].len - i;
for (j = 0; j < max_keys; j++) {
crypto1_get_lfsr(statelists[0].head.slhead + i + j, &key64);
num_to_bytes(key64, 6, keyBlock+(j*6));
}
key64 = 0;
if (!mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, false, 1, keyBlock, &key64)) {
isOK = mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, true, max_keys, keyBlock, &key64);
if (isOK == 1) { // timeout
isOK = -1;
break;
}
else if (isOK < 0) { // -2 is button pressed
break;
}
else if (!isOK) {
num_to_bytes(key64, 6, resultKey);
break;
}
}
if (isOK == 0 && statelists[0].len != 1)
PrintAndLog("Key found in %0.2f seconds after checking %d keys\n", ((float)(msclock() - start_time)) / 1000.0, i+max_keys);
free(statelists[0].head.slhead);
free(statelists[1].head.slhead);
free(keyBlock);
return 0;
return isOK;
}
// MIFARE