fixing iso14443b (issue #103):

- fix: IQ demodulator (FPGA)
- fix: approximately align reader signal delay to tag response delay (FPGA)
- fix: remove deprecated RSSI calculation to improve decoder speed (iso14443b.c)
- fix: better approximation of signal amplitude to avoid false carrier detection (iso14443b.c)
- fix: remove initial power off in iso14443b raw command (iso14443b.c)
- add: enable tracing for iso14443b raw command (iso14443b.c)
- fix: client crashed when checking CRC for incomplete responses (iso14433b.c)
- speeding up snoop to avoid circular buffer overflow
- added some comments for better documentation
- rename functions (iso14443 -> iso14443b)
- remove unused code in hi_read_rx_xcorr.v
This commit is contained in:
pwpiwi 2015-06-12 07:43:00 +02:00
commit 51d4f6f114
7 changed files with 279 additions and 320 deletions

Binary file not shown.

View file

@ -67,15 +67,10 @@ assign major_mode = conf_word[7:5];
// some fraction of the buffers)
wire hi_read_tx_shallow_modulation = conf_word[0];
// For the high-frequency receive correlator: frequency against which to
// correlate.
wire hi_read_rx_xcorr_848 = conf_word[0];
// and whether to drive the coil (reader) or just short it (snooper)
// For the high-frequency receive correlator:
// whether to drive the coil (reader) or just short it (snooper)
wire hi_read_rx_xcorr_snoop = conf_word[1];
// Divide the expected subcarrier frequency for hi_read_rx_xcorr by 4
wire hi_read_rx_xcorr_quarter = conf_word[2];
// For the high-frequency simulated tag: what kind of modulation to use.
wire [2:0] hi_simulate_mod_type = conf_word[2:0];
@ -102,7 +97,7 @@ hi_read_rx_xcorr hrxc(
hrxc_ssp_frame, hrxc_ssp_din, ssp_dout, hrxc_ssp_clk,
cross_hi, cross_lo,
hrxc_dbg,
hi_read_rx_xcorr_848, hi_read_rx_xcorr_snoop, hi_read_rx_xcorr_quarter
hi_read_rx_xcorr_snoop
);
hi_simulate hs(

View file

@ -10,7 +10,7 @@ module hi_read_rx_xcorr(
ssp_frame, ssp_din, ssp_dout, ssp_clk,
cross_hi, cross_lo,
dbg,
xcorr_is_848, snoop, xcorr_quarter_freq
snoop
);
input pck0, ck_1356meg, ck_1356megb;
output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
@ -20,58 +20,20 @@ module hi_read_rx_xcorr(
output ssp_frame, ssp_din, ssp_clk;
input cross_hi, cross_lo;
output dbg;
input xcorr_is_848, snoop, xcorr_quarter_freq;
input snoop;
// Carrier is steady on through this, unless we're snooping.
assign pwr_hi = ck_1356megb & (~snoop);
assign pwr_oe1 = 1'b0;
assign pwr_oe2 = 1'b0;
assign pwr_oe3 = 1'b0;
assign pwr_oe4 = 1'b0;
reg ssp_clk;
reg ssp_frame;
reg fc_div_2;
always @(posedge ck_1356meg)
fc_div_2 = ~fc_div_2;
reg fc_div_4;
always @(posedge fc_div_2)
fc_div_4 = ~fc_div_4;
reg fc_div_8;
always @(posedge fc_div_4)
fc_div_8 = ~fc_div_8;
reg adc_clk;
always @(xcorr_is_848 or xcorr_quarter_freq or ck_1356meg)
if(~xcorr_quarter_freq)
begin
if(xcorr_is_848)
// The subcarrier frequency is fc/16; we will sample at fc, so that
// means the subcarrier is 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 ...
adc_clk <= ck_1356meg;
else
// The subcarrier frequency is fc/32; we will sample at fc/2, and
// the subcarrier will look identical.
adc_clk <= fc_div_2;
end
else
begin
if(xcorr_is_848)
// The subcarrier frequency is fc/64
adc_clk <= fc_div_4;
else
// The subcarrier frequency is fc/128
adc_clk <= fc_div_8;
end
wire adc_clk = ck_1356megb;
// When we're a reader, we just need to do the BPSK demod; but when we're an
// eavesdropper, we also need to pick out the commands sent by the reader,
// using AM. Do this the same way that we do it for the simulated tag.
reg after_hysteresis, after_hysteresis_prev;
reg after_hysteresis, after_hysteresis_prev, after_hysteresis_prev_prev;
reg [11:0] has_been_low_for;
always @(negedge adc_clk)
begin
@ -97,7 +59,6 @@ end
// Let us report a correlation every 4 subcarrier cycles, or 4*16 samples,
// so we need a 6-bit counter.
reg [5:0] corr_i_cnt;
reg [5:0] corr_q_cnt;
// And a couple of registers in which to accumulate the correlations.
// we would add at most 32 times adc_d, the result can be held in 13 bits.
// Need one additional bit because it can be negative as well
@ -105,32 +66,38 @@ reg signed [13:0] corr_i_accum;
reg signed [13:0] corr_q_accum;
reg signed [7:0] corr_i_out;
reg signed [7:0] corr_q_out;
// clock and frame signal for communication to ARM
reg ssp_clk;
reg ssp_frame;
// ADC data appears on the rising edge, so sample it on the falling edge
always @(negedge adc_clk)
begin
corr_i_cnt <= corr_i_cnt + 1;
// These are the correlators: we correlate against in-phase and quadrature
// versions of our reference signal, and keep the (signed) result to
// send out later over the SSP.
if(corr_i_cnt == 7'd63)
if(corr_i_cnt == 7'd0)
begin
if(snoop)
begin
// highest 7 significant bits of tag signal (signed), 1 bit reader signal:
corr_i_out <= {corr_i_accum[13:7], after_hysteresis_prev};
corr_q_out <= {corr_q_accum[13:7], after_hysteresis};
// 7 most significant bits of tag signal (signed), 1 bit reader signal:
corr_i_out <= {corr_i_accum[13:7], after_hysteresis_prev_prev};
corr_q_out <= {corr_q_accum[13:7], after_hysteresis_prev};
after_hysteresis_prev_prev <= after_hysteresis;
end
else
begin
// highest 8 significant bits of tag signal
// 8 most significant bits of tag signal
corr_i_out <= corr_i_accum[13:6];
corr_q_out <= corr_q_accum[13:6];
end
corr_i_accum <= adc_d;
corr_q_accum <= adc_d;
corr_q_cnt <= 4;
corr_i_cnt <= 0;
end
else
begin
@ -139,13 +106,11 @@ begin
else
corr_i_accum <= corr_i_accum + adc_d;
if(corr_q_cnt[3])
corr_q_accum <= corr_q_accum - adc_d;
else
if(corr_i_cnt[3] == corr_i_cnt[2]) // phase shifted by pi/2
corr_q_accum <= corr_q_accum + adc_d;
else
corr_q_accum <= corr_q_accum - adc_d;
corr_i_cnt <= corr_i_cnt + 1;
corr_q_cnt <= corr_q_cnt + 1;
end
// The logic in hi_simulate.v reports 4 samples per bit. We report two
@ -172,7 +137,7 @@ begin
end
// set ssp_frame signal for corr_i_cnt = 0..3 and corr_i_cnt = 32..35
// (two frames with 8 Bits each)
// (send two frames with 8 Bits each)
if(corr_i_cnt[5:2] == 4'b0000 || corr_i_cnt[5:2] == 4'b1000)
ssp_frame = 1'b1;
else
@ -186,5 +151,6 @@ assign dbg = corr_i_cnt[3];
// Unused.
assign pwr_lo = 1'b0;
assign pwr_oe2 = 1'b0;
endmodule