Merge pull request #548 from merlokk/mfsniff_fix

`hf mf sniff` not a small fix
This commit is contained in:
Iceman 2018-01-17 23:16:08 +01:00 committed by GitHub
commit 30bb6d6591
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 186 additions and 197 deletions

View file

@ -2539,7 +2539,9 @@ void RAMFUNC SniffMifare(uint8_t param) {
if(!TagIsActive) { // no need to try decoding tag data if the reader is sending if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
if(MillerDecoding(readerdata, (sniffCounter-1)*4)) { if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
LED_C_INV(); LED_B_ON();
LED_C_OFF();
if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, true)) break; if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, true)) break;
/* And ready to receive another command. */ /* And ready to receive another command. */
@ -2554,7 +2556,8 @@ void RAMFUNC SniffMifare(uint8_t param) {
if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
uint8_t tagdata = (previous_data << 4) | (*data & 0x0F); uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) { if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
LED_C_INV(); LED_B_OFF();
LED_C_ON();
if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, false)) break; if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, false)) break;

View file

@ -1,183 +1,166 @@
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
// Merlok - 2012 // Merlok - 2012
// //
// This code is licensed to you under the terms of the GNU GPL, version 2 or, // This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of // at your option, any later version. See the LICENSE.txt file for the text of
// the license. // the license.
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
// Routines to support mifare classic sniffer. // Routines to support mifare classic sniffer.
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
#include "mifaresniff.h" #include "mifaresniff.h"
#include "apps.h" #include "apps.h"
#include "proxmark3.h" #include "proxmark3.h"
#include "util.h" #include "util.h"
#include "string.h" #include "string.h"
#include "iso14443crc.h" #include "iso14443crc.h"
#include "iso14443a.h" #include "iso14443a.h"
#include "crapto1/crapto1.h" #include "crapto1/crapto1.h"
#include "mifareutil.h" #include "mifareutil.h"
#include "common.h" #include "common.h"
static int sniffState = SNF_INIT; static int sniffState = SNF_INIT;
static uint8_t sniffUIDType; static uint8_t sniffUIDType;
static uint8_t sniffUID[8] = {0x00}; static uint8_t sniffUID[8] = {0x00};
static uint8_t sniffATQA[2] = {0x00}; static uint8_t sniffATQA[2] = {0x00};
static uint8_t sniffSAK; static uint8_t sniffSAK;
static uint8_t sniffBuf[16] = {0x00}; static uint8_t sniffBuf[16] = {0x00};
static uint32_t timerData = 0; static uint32_t timerData = 0;
bool MfSniffInit(void){ bool MfSniffInit(void){
memset(sniffUID, 0x00, 8); memset(sniffUID, 0x00, 8);
memset(sniffATQA, 0x00, 2); memset(sniffATQA, 0x00, 2);
sniffSAK = 0; sniffSAK = 0;
sniffUIDType = SNF_UID_4; sniffUIDType = SNF_UID_4;
return FALSE; return FALSE;
} }
bool MfSniffEnd(void){ bool MfSniffEnd(void){
LED_B_ON(); LED_B_ON();
cmd_send(CMD_ACK,0,0,0,0,0); cmd_send(CMD_ACK,0,0,0,0,0);
LED_B_OFF(); LED_B_OFF();
return FALSE; return FALSE;
} }
bool RAMFUNC MfSniffLogic(const uint8_t *data, uint16_t len, uint8_t *parity, uint16_t bitCnt, bool reader) { bool RAMFUNC MfSniffLogic(const uint8_t *data, uint16_t len, uint8_t *parity, uint16_t bitCnt, bool reader) {
if (reader && (len == 1) && (bitCnt == 7)) { // reset on 7-Bit commands from reader if (reader && (len == 1) && (bitCnt == 7)) { // reset on 7-Bit commands from reader
sniffState = SNF_INIT; sniffState = SNF_INIT;
} }
switch (sniffState) { switch (sniffState) {
case SNF_INIT:{ case SNF_INIT:{
if ((len == 1) && (reader) && (bitCnt == 7) ) { // REQA or WUPA from reader if ((len == 1) && (reader) && (bitCnt == 7) ) { // REQA or WUPA from reader
sniffUIDType = SNF_UID_4; sniffUIDType = SNF_UID_4;
memset(sniffUID, 0x00, 8); memset(sniffUID, 0x00, 8);
memset(sniffATQA, 0x00, 2); memset(sniffATQA, 0x00, 2);
sniffSAK = 0; sniffSAK = 0;
sniffState = SNF_WUPREQ; sniffState = SNF_ATQA;
} if (data[0] == 0x40)
break; sniffState = SNF_MAGIC_WUPC2;
} }
case SNF_WUPREQ:{ break;
if ((!reader) && (len == 2)) { // ATQA from tag }
memcpy(sniffATQA, data, 2); case SNF_MAGIC_WUPC2:
sniffState = SNF_ATQA; if ((len == 1) && (reader) && (data[0] == 0x43) ) {
} sniffState = SNF_CARD_IDLE;
break; }
} break;
case SNF_ATQA:{ case SNF_ATQA:{
if ((reader) && (len == 2) && (data[0] == 0x93) && (data[1] == 0x20)) { // Select ALL from reader if ((!reader) && (len == 2)) { // ATQA from tag
sniffState = SNF_ANTICOL1; memcpy(sniffATQA, data, 2);
} sniffState = SNF_UID1;
break; }
} break;
case SNF_ANTICOL1:{ }
if ((!reader) && (len == 5) && ((data[0] ^ data[1] ^ data[2] ^ data[3]) == data[4])) { // UID from tag (CL1)
memcpy(sniffUID + 3, data, 4);
sniffState = SNF_UID1;
}
break;
}
case SNF_UID1:{ case SNF_UID1:{
if ((reader) && (len == 9) && (data[0] == 0x93) && (data[1] == 0x70) && (CheckCrc14443(CRC_14443_A, data, 9))) { // Select 4 Byte UID from reader if ((reader) && (len == 9) && (data[0] == 0x93) && (data[1] == 0x70) && (CheckCrc14443(CRC_14443_A, data, 9))) { // Select 4 Byte UID from reader
memcpy(sniffUID + 3, &data[2], 4);
sniffState = SNF_SAK; sniffState = SNF_SAK;
} }
break; break;
}
case SNF_SAK:{
if ((!reader) && (len == 3) && (CheckCrc14443(CRC_14443_A, data, 3))) { // SAK from card?
sniffSAK = data[0];
if (sniffUID[3] == 0x88) { // CL2 UID part to be expected
sniffState = SNF_ANTICOL2;
} else { // select completed
sniffState = SNF_CARD_IDLE;
}
}
break;
}
case SNF_ANTICOL2:{
if ((!reader) && (len == 5) && ((data[0] ^ data[1] ^ data[2] ^ data[3]) == data[4])) { // CL2 UID
memcpy(sniffUID, sniffUID+4, 3);
memcpy(sniffUID+3, data, 4);
sniffUIDType = SNF_UID_7;
sniffState = SNF_UID2;
}
break;
} }
case SNF_SAK:{
if ((!reader) && (len == 3) && (CheckCrc14443(CRC_14443_A, data, 3))) { // SAK from card?
sniffSAK = data[0];
if ((sniffUID[3] == 0x88) && (sniffUIDType == SNF_UID_4)) { // CL2 UID part to be expected
sniffUIDType = SNF_UID_7;
memcpy(sniffUID, sniffUID + 4, 3);
sniffState = SNF_UID2;
} else { // select completed
sniffState = SNF_CARD_IDLE;
}
}
break;
}
case SNF_UID2:{ case SNF_UID2:{
if ((reader) && (len == 9) && (data[0] == 0x95) && (data[1] == 0x70) && (CheckCrc14443(CRC_14443_A, data, 9))) { // Select 2nd part of 7 Byte UID if ((reader) && (len == 9) && (data[0] == 0x95) && (data[1] == 0x70) && (CheckCrc14443(CRC_14443_A, data, 9))) {
memcpy(sniffUID + 3, &data[2], 4);
sniffState = SNF_SAK; sniffState = SNF_SAK;
} }
break; break;
} }
case SNF_CARD_IDLE:{ // trace the card select sequence case SNF_CARD_IDLE:{ // trace the card select sequence
sniffBuf[0] = 0xFF; sniffBuf[0] = 0xFF;
sniffBuf[1] = 0xFF; sniffBuf[1] = 0xFF;
memcpy(sniffBuf + 2, sniffUID, 7); memcpy(sniffBuf + 2, sniffUID, 7);
memcpy(sniffBuf + 9, sniffATQA, 2); memcpy(sniffBuf + 9, sniffATQA, 2);
sniffBuf[11] = sniffSAK; sniffBuf[11] = sniffSAK;
sniffBuf[12] = 0xFF; sniffBuf[12] = 0xFF;
sniffBuf[13] = 0xFF; sniffBuf[13] = 0xFF;
LogTrace(sniffBuf, 14, 0, 0, NULL, TRUE); LogTrace(sniffBuf, 14, 0, 0, NULL, TRUE);
} // intentionally no break; sniffState = SNF_CARD_CMD;
case SNF_CARD_CMD:{ } // intentionally no break;
LogTrace(data, len, 0, 0, NULL, TRUE); case SNF_CARD_CMD:{
sniffState = SNF_CARD_RESP; LogTrace(data, len, 0, 0, NULL, reader);
timerData = GetTickCount(); timerData = GetTickCount();
break; break;
} }
case SNF_CARD_RESP:{
LogTrace(data, len, 0, 0, NULL, FALSE); default:
sniffState = SNF_CARD_CMD; sniffState = SNF_INIT;
timerData = GetTickCount(); break;
break; }
}
default: return FALSE;
sniffState = SNF_INIT; }
break;
} bool RAMFUNC MfSniffSend(uint16_t maxTimeoutMs) {
if (BigBuf_get_traceLen() && (GetTickCount() > timerData + maxTimeoutMs)) {
return intMfSniffSend();
return FALSE; }
} return FALSE;
}
bool RAMFUNC MfSniffSend(uint16_t maxTimeoutMs) {
if (BigBuf_get_traceLen() && (GetTickCount() > timerData + maxTimeoutMs)) { // internal sending function. not a RAMFUNC.
return intMfSniffSend(); bool intMfSniffSend() {
}
return FALSE; int pckSize = 0;
} int pckLen = BigBuf_get_traceLen();
int pckNum = 0;
// internal sending function. not a RAMFUNC. uint8_t *trace = BigBuf_get_addr();
bool intMfSniffSend() {
FpgaDisableSscDma();
int pckSize = 0; while (pckLen > 0) {
int pckLen = BigBuf_get_traceLen(); pckSize = MIN(USB_CMD_DATA_SIZE, pckLen);
int pckNum = 0; LED_B_ON();
uint8_t *trace = BigBuf_get_addr(); cmd_send(CMD_ACK, 1, BigBuf_get_traceLen(), pckSize, trace + BigBuf_get_traceLen() - pckLen, pckSize);
LED_B_OFF();
FpgaDisableSscDma();
while (pckLen > 0) { pckLen -= pckSize;
pckSize = MIN(USB_CMD_DATA_SIZE, pckLen); pckNum++;
LED_B_ON(); }
cmd_send(CMD_ACK, 1, BigBuf_get_traceLen(), pckSize, trace + BigBuf_get_traceLen() - pckLen, pckSize);
LED_B_OFF(); LED_B_ON();
cmd_send(CMD_ACK,2,0,0,0,0);
pckLen -= pckSize; LED_B_OFF();
pckNum++;
} clear_trace();
LED_B_ON(); return TRUE;
cmd_send(CMD_ACK,2,0,0,0,0); }
LED_B_OFF();
clear_trace();
return TRUE;
}

View file

@ -27,6 +27,7 @@
#define SNF_CARD_IDLE 9 #define SNF_CARD_IDLE 9
#define SNF_CARD_CMD 10 #define SNF_CARD_CMD 10
#define SNF_CARD_RESP 11 #define SNF_CARD_RESP 11
#define SNF_MAGIC_WUPC2 12
#define SNF_UID_4 0 #define SNF_UID_4 0
#define SNF_UID_7 0 #define SNF_UID_7 0

View file

@ -609,7 +609,8 @@ int saveTraceCard(void) {
for (int i = 0; i < 64; i++) { // blocks for (int i = 0; i < 64; i++) { // blocks
for (int j = 0; j < 16; j++) // bytes for (int j = 0; j < 16; j++) // bytes
fprintf(f, "%02x", *(traceCard + i * 16 + j)); fprintf(f, "%02x", *(traceCard + i * 16 + j));
fprintf(f,"\n"); if (i < 63)
fprintf(f,"\n");
} }
fclose(f); fclose(f);
return 0; return 0;
@ -826,20 +827,30 @@ int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
if (len ==4) { if (len ==4) {
traceState = TRACE_IDLE; traceState = TRACE_IDLE;
at_enc = bytes_to_num(data, 4); if (!traceCrypto1) {
at_enc = bytes_to_num(data, 4);
// decode key here) // decode key here)
ks2 = ar_enc ^ prng_successor(nt, 64); ks2 = ar_enc ^ prng_successor(nt, 64);
ks3 = at_enc ^ prng_successor(nt, 96); ks3 = at_enc ^ prng_successor(nt, 96);
revstate = lfsr_recovery64(ks2, ks3); revstate = lfsr_recovery64(ks2, ks3);
lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, nr_enc, 1); lfsr_rollback_word(revstate, nr_enc, 1);
lfsr_rollback_word(revstate, uid ^ nt, 0); lfsr_rollback_word(revstate, uid ^ nt, 0);
crypto1_get_lfsr(revstate, &lfsr); crypto1_get_lfsr(revstate, &lfsr);
printf("key> %x%x\n", (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF)); printf("key> %x%x\n", (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF));
AddLogUint64(logHexFileName, "key> ", lfsr); AddLogUint64(logHexFileName, "key> ", lfsr);
} else {
printf("key> nested not implemented!\n");
at_enc = bytes_to_num(data, 4);
crypto1_destroy(traceCrypto1);
// not implemented
traceState = TRACE_ERROR;
}
int blockShift = ((traceCurBlock & 0xFC) + 3) * 16; int blockShift = ((traceCurBlock & 0xFC) + 3) * 16;
if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4); if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4);
@ -857,15 +868,6 @@ int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
// set cryptosystem state // set cryptosystem state
traceCrypto1 = lfsr_recovery64(ks2, ks3); traceCrypto1 = lfsr_recovery64(ks2, ks3);
// nt = crypto1_word(traceCrypto1, nt ^ uid, 1) ^ nt;
/* traceCrypto1 = crypto1_create(lfsr); // key in lfsr
crypto1_word(traceCrypto1, nt ^ uid, 0);
crypto1_word(traceCrypto1, ar, 1);
crypto1_word(traceCrypto1, 0, 0);
crypto1_word(traceCrypto1, 0, 0);*/
return 0; return 0;
} else { } else {
traceState = TRACE_ERROR; traceState = TRACE_ERROR;