hf mf cload compatibility for 4k, suppress halt errors messages for debug level 2

This commit is contained in:
Fl0-0 2017-07-07 15:08:42 +02:00
commit 22ce0f5705
3 changed files with 122 additions and 111 deletions

View file

@ -1218,7 +1218,7 @@ void MifareCSetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai
}; };
if(mifare_classic_halt(NULL, cuid)) { if(mifare_classic_halt(NULL, cuid)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Halt error"); if (MF_DBGLEVEL > 2) Dbprintf("Halt error");
// Continue, some magic tags misbehavies and send an answer to it. // Continue, some magic tags misbehavies and send an answer to it.
// break; // break;
}; };
@ -1240,7 +1240,7 @@ void MifareCSetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai
}; };
if(mifare_classic_halt(NULL, cuid)) { if(mifare_classic_halt(NULL, cuid)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Halt error"); if (MF_DBGLEVEL > 2) Dbprintf("Halt error");
// Continue, some magic tags misbehavies and send an answer to it. // Continue, some magic tags misbehavies and send an answer to it.
// break; // break;
}; };
@ -1282,7 +1282,7 @@ void MifareCSetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai
if (workFlags & 0x04) { if (workFlags & 0x04) {
if (mifare_classic_halt(NULL, cuid)) { if (mifare_classic_halt(NULL, cuid)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Halt error"); if (MF_DBGLEVEL > 2) Dbprintf("Halt error");
// Continue, some magic tags misbehavies and send an answer to it. // Continue, some magic tags misbehavies and send an answer to it.
// break; // break;
}; };
@ -1363,7 +1363,7 @@ void MifareCGetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai
if (workFlags & 0x04) { if (workFlags & 0x04) {
if (mifare_classic_halt(NULL, cuid)) { if (mifare_classic_halt(NULL, cuid)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Halt error"); if (MF_DBGLEVEL > 2) Dbprintf("Halt error");
// Continue, some magic tags misbehavies and send an answer to it. // Continue, some magic tags misbehavies and send an answer to it.
// break; // break;
}; };

View file

@ -27,7 +27,7 @@ int MF_DBGLEVEL = MF_DBG_ALL;
void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len){ void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len){
uint8_t bt = 0; uint8_t bt = 0;
int i; int i;
if (len != 1) { if (len != 1) {
for (i = 0; i < len; i++) for (i = 0; i < len; i++)
data[i] = crypto1_byte(pcs, 0x00, 0) ^ data[i]; data[i] = crypto1_byte(pcs, 0x00, 0) ^ data[i];
@ -35,7 +35,7 @@ void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len){
bt = 0; bt = 0;
for (i = 0; i < 4; i++) for (i = 0; i < 4; i++)
bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data[0], i)) << i; bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data[0], i)) << i;
data[0] = bt; data[0] = bt;
} }
return; return;
@ -45,14 +45,14 @@ void mf_crypto1_encrypt(struct Crypto1State *pcs, uint8_t *data, uint16_t len, u
uint8_t bt = 0; uint8_t bt = 0;
int i; int i;
par[0] = 0; par[0] = 0;
for (i = 0; i < len; i++) { for (i = 0; i < len; i++) {
bt = data[i]; bt = data[i];
data[i] = crypto1_byte(pcs, 0x00, 0) ^ data[i]; data[i] = crypto1_byte(pcs, 0x00, 0) ^ data[i];
if((i&0x0007) == 0) if((i&0x0007) == 0)
par[i>>3] = 0; par[i>>3] = 0;
par[i>>3] |= (((filter(pcs->odd) ^ oddparity8(bt)) & 0x01)<<(7-(i&0x0007))); par[i>>3] |= (((filter(pcs->odd) ^ oddparity8(bt)) & 0x01)<<(7-(i&0x0007)));
} }
return; return;
} }
@ -62,7 +62,7 @@ uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data) {
for (i = 0; i < 4; i++) for (i = 0; i < 4; i++)
bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data, i)) << i; bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data, i)) << i;
return bt; return bt;
} }
@ -92,16 +92,16 @@ int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd,
dcmd[0] = cmd; dcmd[0] = cmd;
dcmd[1] = data; dcmd[1] = data;
AppendCrc14443a(dcmd, 2); AppendCrc14443a(dcmd, 2);
memcpy(ecmd, dcmd, sizeof(dcmd)); memcpy(ecmd, dcmd, sizeof(dcmd));
if (crypted) { if (crypted) {
par[0] = 0; par[0] = 0;
for (pos = 0; pos < 4; pos++) for (pos = 0; pos < 4; pos++)
{ {
ecmd[pos] = crypto1_byte(pcs, 0x00, 0) ^ dcmd[pos]; ecmd[pos] = crypto1_byte(pcs, 0x00, 0) ^ dcmd[pos];
par[0] |= (((filter(pcs->odd) ^ oddparity8(dcmd[pos])) & 0x01) << (7-pos)); par[0] |= (((filter(pcs->odd) ^ oddparity8(dcmd[pos])) & 0x01) << (7-pos));
} }
ReaderTransmitPar(ecmd, sizeof(ecmd), par, timing); ReaderTransmitPar(ecmd, sizeof(ecmd), par, timing);
@ -110,17 +110,17 @@ int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd,
} }
int len = ReaderReceive(answer, par); int len = ReaderReceive(answer, par);
if (answer_parity) *answer_parity = par[0]; if (answer_parity) *answer_parity = par[0];
if (crypted == CRYPT_ALL) { if (crypted == CRYPT_ALL) {
if (len == 1) { if (len == 1) {
res = 0; res = 0;
for (pos = 0; pos < 4; pos++) for (pos = 0; pos < 4; pos++)
res |= (crypto1_bit(pcs, 0, 0) ^ BIT(answer[0], pos)) << pos; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(answer[0], pos)) << pos;
answer[0] = res; answer[0] = res;
} else { } else {
for (pos = 0; pos < len; pos++) for (pos = 0; pos < len; pos++)
{ {
@ -128,41 +128,41 @@ int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd,
} }
} }
} }
return len; return len;
} }
// mifare classic commands // mifare classic commands
int mifare_classic_auth(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested) int mifare_classic_auth(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested)
{ {
return mifare_classic_authex(pcs, uid, blockNo, keyType, ui64Key, isNested, NULL, NULL); return mifare_classic_authex(pcs, uid, blockNo, keyType, ui64Key, isNested, NULL, NULL);
} }
int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested, uint32_t *ntptr, uint32_t *timing) int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested, uint32_t *ntptr, uint32_t *timing)
{ {
// variables // variables
int len; int len;
uint32_t pos; uint32_t pos;
uint8_t tmp4[4]; uint8_t tmp4[4];
uint8_t par[1] = {0x00}; uint8_t par[1] = {0x00};
byte_t nr[4]; byte_t nr[4];
uint32_t nt, ntpp; // Supplied tag nonce uint32_t nt, ntpp; // Supplied tag nonce
uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
// Transmit MIFARE_CLASSIC_AUTH // Transmit MIFARE_CLASSIC_AUTH
len = mifare_sendcmd_short(pcs, isNested, 0x60 + (keyType & 0x01), blockNo, receivedAnswer, receivedAnswerPar, timing); len = mifare_sendcmd_short(pcs, isNested, 0x60 + (keyType & 0x01), blockNo, receivedAnswer, receivedAnswerPar, timing);
if (MF_DBGLEVEL >= 4) Dbprintf("rand tag nonce len: %x", len); if (MF_DBGLEVEL >= 4) Dbprintf("rand tag nonce len: %x", len);
if (len != 4) return 1; if (len != 4) return 1;
// "random" reader nonce: // "random" reader nonce:
nr[0] = 0x55; nr[0] = 0x55;
nr[1] = 0x41; nr[1] = 0x41;
nr[2] = 0x49; nr[2] = 0x49;
nr[3] = 0x92; nr[3] = 0x92;
// Save the tag nonce (nt) // Save the tag nonce (nt)
nt = bytes_to_num(receivedAnswer, 4); nt = bytes_to_num(receivedAnswer, 4);
@ -174,7 +174,7 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
crypto1_create(pcs, ui64Key); crypto1_create(pcs, ui64Key);
if (isNested == AUTH_NESTED) { if (isNested == AUTH_NESTED) {
// decrypt nt with help of new key // decrypt nt with help of new key
nt = crypto1_word(pcs, nt ^ uid, 1) ^ nt; nt = crypto1_word(pcs, nt ^ uid, 1) ^ nt;
} else { } else {
// Load (plain) uid^nt into the cipher // Load (plain) uid^nt into the cipher
@ -183,8 +183,8 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
// some statistic // some statistic
if (!ntptr && (MF_DBGLEVEL >= 3)) if (!ntptr && (MF_DBGLEVEL >= 3))
Dbprintf("auth uid: %08x nt: %08x", uid, nt); Dbprintf("auth uid: %08x nt: %08x", uid, nt);
// save Nt // save Nt
if (ntptr) if (ntptr)
*ntptr = nt; *ntptr = nt;
@ -195,8 +195,8 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
{ {
mf_nr_ar[pos] = crypto1_byte(pcs, nr[pos], 0) ^ nr[pos]; mf_nr_ar[pos] = crypto1_byte(pcs, nr[pos], 0) ^ nr[pos];
par[0] |= (((filter(pcs->odd) ^ oddparity8(nr[pos])) & 0x01) << (7-pos)); par[0] |= (((filter(pcs->odd) ^ oddparity8(nr[pos])) & 0x01) << (7-pos));
} }
// Skip 32 bits in pseudo random generator // Skip 32 bits in pseudo random generator
nt = prng_successor(nt,32); nt = prng_successor(nt,32);
@ -206,8 +206,8 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
nt = prng_successor(nt,8); nt = prng_successor(nt,8);
mf_nr_ar[pos] = crypto1_byte(pcs,0x00,0) ^ (nt & 0xff); mf_nr_ar[pos] = crypto1_byte(pcs,0x00,0) ^ (nt & 0xff);
par[0] |= (((filter(pcs->odd) ^ oddparity8(nt)) & 0x01) << (7-pos)); par[0] |= (((filter(pcs->odd) ^ oddparity8(nt)) & 0x01) << (7-pos));
} }
// Transmit reader nonce and reader answer // Transmit reader nonce and reader answer
ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL); ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
@ -218,10 +218,10 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
if (MF_DBGLEVEL >= 1) Dbprintf("Authentication failed. Card timeout."); if (MF_DBGLEVEL >= 1) Dbprintf("Authentication failed. Card timeout.");
return 2; return 2;
} }
memcpy(tmp4, receivedAnswer, 4); memcpy(tmp4, receivedAnswer, 4);
ntpp = prng_successor(nt, 32) ^ crypto1_word(pcs, 0,0); ntpp = prng_successor(nt, 32) ^ crypto1_word(pcs, 0,0);
if (ntpp != bytes_to_num(tmp4, 4)) { if (ntpp != bytes_to_num(tmp4, 4)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Authentication failed. Error card response."); if (MF_DBGLEVEL >= 1) Dbprintf("Authentication failed. Error card response.");
return 3; return 3;
@ -230,33 +230,33 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
return 0; return 0;
} }
int mifare_classic_readblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData) int mifare_classic_readblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData)
{ {
// variables // variables
int len; int len;
uint8_t bt[2]; uint8_t bt[2];
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
// command MIFARE_CLASSIC_READBLOCK // command MIFARE_CLASSIC_READBLOCK
len = mifare_sendcmd_short(pcs, 1, 0x30, blockNo, receivedAnswer, receivedAnswerPar, NULL); len = mifare_sendcmd_short(pcs, 1, 0x30, blockNo, receivedAnswer, receivedAnswerPar, NULL);
if (len == 1) { if (len == 1) {
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: %02x", receivedAnswer[0]); if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: %02x", receivedAnswer[0]);
return 1; return 1;
} }
if (len != 18) { if (len != 18) {
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: card timeout. len: %x", len); if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: card timeout. len: %x", len);
return 2; return 2;
} }
memcpy(bt, receivedAnswer + 16, 2); memcpy(bt, receivedAnswer + 16, 2);
AppendCrc14443a(receivedAnswer, 16); AppendCrc14443a(receivedAnswer, 16);
if (bt[0] != receivedAnswer[16] || bt[1] != receivedAnswer[17]) { if (bt[0] != receivedAnswer[16] || bt[1] != receivedAnswer[17]) {
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd CRC response error."); if (MF_DBGLEVEL >= 1) Dbprintf("Cmd CRC response error.");
return 3; return 3;
} }
memcpy(blockData, receivedAnswer, 16); memcpy(blockData, receivedAnswer, 16);
return 0; return 0;
} }
@ -345,7 +345,7 @@ int mifare_ultra_auth(uint8_t *keybytes){
uint8_t resp_random_a[8] = { 0,0,0,0,0,0,0,0 }; uint8_t resp_random_a[8] = { 0,0,0,0,0,0,0,0 };
memcpy(enc_resp, resp+1, 8); memcpy(enc_resp, resp+1, 8);
// decrypt out, in, length, key, iv // decrypt out, in, length, key, iv
tdes_2key_dec(resp_random_a, enc_resp, 8, key, enc_random_b); tdes_2key_dec(resp_random_a, enc_resp, 8, key, enc_random_b);
if ( memcmp(resp_random_a, random_a, 8) != 0 ) { if ( memcmp(resp_random_a, random_a, 8) != 0 ) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("failed authentication"); if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("failed authentication");
@ -353,7 +353,7 @@ int mifare_ultra_auth(uint8_t *keybytes){
} }
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {
Dbprintf("e_AB: %02x %02x %02x %02x %02x %02x %02x %02x", Dbprintf("e_AB: %02x %02x %02x %02x %02x %02x %02x %02x",
rnd_ab[0],rnd_ab[1],rnd_ab[2],rnd_ab[3], rnd_ab[0],rnd_ab[1],rnd_ab[2],rnd_ab[3],
rnd_ab[4],rnd_ab[5],rnd_ab[6],rnd_ab[7]); rnd_ab[4],rnd_ab[5],rnd_ab[6],rnd_ab[7]);
@ -378,7 +378,7 @@ int mifare_ultra_readblock(uint8_t blockNo, uint8_t *blockData)
uint8_t bt[2]; uint8_t bt[2];
uint8_t receivedAnswer[MAX_FRAME_SIZE]; uint8_t receivedAnswer[MAX_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_PARITY_SIZE];
len = mifare_sendcmd_short(NULL, 1, 0x30, blockNo, receivedAnswer, receivedAnswerPar, NULL); len = mifare_sendcmd_short(NULL, 1, 0x30, blockNo, receivedAnswer, receivedAnswerPar, NULL);
if (len == 1) { if (len == 1) {
@ -389,67 +389,67 @@ int mifare_ultra_readblock(uint8_t blockNo, uint8_t *blockData)
if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Cmd Error: card timeout. len: %x", len); if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Cmd Error: card timeout. len: %x", len);
return 2; return 2;
} }
memcpy(bt, receivedAnswer + 16, 2); memcpy(bt, receivedAnswer + 16, 2);
AppendCrc14443a(receivedAnswer, 16); AppendCrc14443a(receivedAnswer, 16);
if (bt[0] != receivedAnswer[16] || bt[1] != receivedAnswer[17]) { if (bt[0] != receivedAnswer[16] || bt[1] != receivedAnswer[17]) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Cmd CRC response error."); if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Cmd CRC response error.");
return 3; return 3;
} }
memcpy(blockData, receivedAnswer, 14); memcpy(blockData, receivedAnswer, 14);
return 0; return 0;
} }
int mifare_classic_writeblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData) int mifare_classic_writeblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData)
{ {
// variables // variables
uint16_t len, i; uint16_t len, i;
uint32_t pos; uint32_t pos;
uint8_t par[3] = {0}; // enough for 18 Bytes to send uint8_t par[3] = {0}; // enough for 18 Bytes to send
byte_t res; byte_t res;
uint8_t d_block[18], d_block_enc[18]; uint8_t d_block[18], d_block_enc[18];
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
// command MIFARE_CLASSIC_WRITEBLOCK // command MIFARE_CLASSIC_WRITEBLOCK
len = mifare_sendcmd_short(pcs, 1, 0xA0, blockNo, receivedAnswer, receivedAnswerPar, NULL); len = mifare_sendcmd_short(pcs, 1, 0xA0, blockNo, receivedAnswer, receivedAnswerPar, NULL);
if ((len != 1) || (receivedAnswer[0] != 0x0A)) { // 0x0a - ACK if ((len != 1) || (receivedAnswer[0] != 0x0A)) { // 0x0a - ACK
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: %02x", receivedAnswer[0]); if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: %02x", receivedAnswer[0]);
return 1; return 1;
} }
memcpy(d_block, blockData, 16); memcpy(d_block, blockData, 16);
AppendCrc14443a(d_block, 16); AppendCrc14443a(d_block, 16);
// crypto // crypto
for (pos = 0; pos < 18; pos++) for (pos = 0; pos < 18; pos++)
{ {
d_block_enc[pos] = crypto1_byte(pcs, 0x00, 0) ^ d_block[pos]; d_block_enc[pos] = crypto1_byte(pcs, 0x00, 0) ^ d_block[pos];
par[pos>>3] |= (((filter(pcs->odd) ^ oddparity8(d_block[pos])) & 0x01) << (7 - (pos&0x0007))); par[pos>>3] |= (((filter(pcs->odd) ^ oddparity8(d_block[pos])) & 0x01) << (7 - (pos&0x0007)));
} }
ReaderTransmitPar(d_block_enc, sizeof(d_block_enc), par, NULL); ReaderTransmitPar(d_block_enc, sizeof(d_block_enc), par, NULL);
// Receive the response // Receive the response
len = ReaderReceive(receivedAnswer, receivedAnswerPar); len = ReaderReceive(receivedAnswer, receivedAnswerPar);
res = 0; res = 0;
for (i = 0; i < 4; i++) for (i = 0; i < 4; i++)
res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], i)) << i; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], i)) << i;
if ((len != 1) || (res != 0x0A)) { if ((len != 1) || (res != 0x0A)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd send data2 Error: %02x", res); if (MF_DBGLEVEL >= 1) Dbprintf("Cmd send data2 Error: %02x", res);
return 2; return 2;
} }
return 0; return 0;
} }
/* // command not needed, but left for future testing /* // command not needed, but left for future testing
int mifare_ultra_writeblock_compat(uint8_t blockNo, uint8_t *blockData) int mifare_ultra_writeblock_compat(uint8_t blockNo, uint8_t *blockData)
{ {
uint16_t len; uint16_t len;
uint8_t par[3] = {0}; // enough for 18 parity bits uint8_t par[3] = {0}; // enough for 18 parity bits
@ -503,16 +503,17 @@ int mifare_ultra_writeblock(uint8_t blockNo, uint8_t *blockData)
return 0; return 0;
} }
int mifare_classic_halt(struct Crypto1State *pcs, uint32_t uid) int mifare_classic_halt(struct Crypto1State *pcs, uint32_t uid)
{ {
uint16_t len; uint16_t len;
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
len = mifare_sendcmd_short(pcs, pcs == NULL ? false:true, 0x50, 0x00, receivedAnswer, receivedAnswerPar, NULL); len = mifare_sendcmd_short(pcs, pcs == NULL ? false:true, 0x50, 0x00, receivedAnswer, receivedAnswerPar, NULL);
if (len != 0) { if (len != 0) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) // change from MF_DBG_ERROR to MF_DBG_ALL, to much halt error for moagic tags
Dbprintf("halt error. response len: %x", len); if (MF_DBGLEVEL > MF_DBG_ALL)
Dbprintf("halt error. response len: %x", len);
return 1; return 1;
} }
@ -524,7 +525,7 @@ int mifare_ultra_halt()
uint16_t len; uint16_t len;
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
len = mifare_sendcmd_short(NULL, true, 0x50, 0x00, receivedAnswer, receivedAnswerPar, NULL); len = mifare_sendcmd_short(NULL, true, 0x50, 0x00, receivedAnswer, receivedAnswerPar, NULL);
if (len != 0) { if (len != 0) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) if (MF_DBGLEVEL >= MF_DBG_ERROR)
@ -537,21 +538,21 @@ int mifare_ultra_halt()
// Mifare Memory Structure: up to 32 Sectors with 4 blocks each (1k and 2k cards), // Mifare Memory Structure: up to 32 Sectors with 4 blocks each (1k and 2k cards),
// plus evtl. 8 sectors with 16 blocks each (4k cards) // plus evtl. 8 sectors with 16 blocks each (4k cards)
uint8_t NumBlocksPerSector(uint8_t sectorNo) uint8_t NumBlocksPerSector(uint8_t sectorNo)
{ {
if (sectorNo < 32) if (sectorNo < 32)
return 4; return 4;
else else
return 16; return 16;
} }
uint8_t FirstBlockOfSector(uint8_t sectorNo) uint8_t FirstBlockOfSector(uint8_t sectorNo)
{ {
if (sectorNo < 32) if (sectorNo < 32)
return sectorNo * 4; return sectorNo * 4;
else else
return 32*4 + (sectorNo - 32) * 16; return 32*4 + (sectorNo - 32) * 16;
} }
@ -581,7 +582,7 @@ int emlCheckValBl(int blockNum) {
(data[3] != (data[7] ^ 0xff)) || (data[3] != data[11]) || (data[3] != (data[7] ^ 0xff)) || (data[3] != data[11]) ||
(data[12] != (data[13] ^ 0xff)) || (data[12] != data[14]) || (data[12] != (data[13] ^ 0xff)) || (data[12] != data[14]) ||
(data[12] != (data[15] ^ 0xff)) (data[12] != (data[15] ^ 0xff))
) )
return 1; return 1;
return 0; return 0;
} }
@ -589,11 +590,11 @@ int emlCheckValBl(int blockNum) {
int emlGetValBl(uint32_t *blReg, uint8_t *blBlock, int blockNum) { int emlGetValBl(uint32_t *blReg, uint8_t *blBlock, int blockNum) {
uint8_t* emCARD = BigBuf_get_EM_addr(); uint8_t* emCARD = BigBuf_get_EM_addr();
uint8_t* data = emCARD + blockNum * 16; uint8_t* data = emCARD + blockNum * 16;
if (emlCheckValBl(blockNum)) { if (emlCheckValBl(blockNum)) {
return 1; return 1;
} }
memcpy(blReg, data, 4); memcpy(blReg, data, 4);
*blBlock = data[12]; *blBlock = data[12];
return 0; return 0;
@ -602,41 +603,41 @@ int emlGetValBl(uint32_t *blReg, uint8_t *blBlock, int blockNum) {
int emlSetValBl(uint32_t blReg, uint8_t blBlock, int blockNum) { int emlSetValBl(uint32_t blReg, uint8_t blBlock, int blockNum) {
uint8_t* emCARD = BigBuf_get_EM_addr(); uint8_t* emCARD = BigBuf_get_EM_addr();
uint8_t* data = emCARD + blockNum * 16; uint8_t* data = emCARD + blockNum * 16;
memcpy(data + 0, &blReg, 4); memcpy(data + 0, &blReg, 4);
memcpy(data + 8, &blReg, 4); memcpy(data + 8, &blReg, 4);
blReg = blReg ^ 0xffffffff; blReg = blReg ^ 0xffffffff;
memcpy(data + 4, &blReg, 4); memcpy(data + 4, &blReg, 4);
data[12] = blBlock; data[12] = blBlock;
data[13] = blBlock ^ 0xff; data[13] = blBlock ^ 0xff;
data[14] = blBlock; data[14] = blBlock;
data[15] = blBlock ^ 0xff; data[15] = blBlock ^ 0xff;
return 0; return 0;
} }
uint64_t emlGetKey(int sectorNum, int keyType) { uint64_t emlGetKey(int sectorNum, int keyType) {
uint8_t key[6]; uint8_t key[6];
uint8_t* emCARD = BigBuf_get_EM_addr(); uint8_t* emCARD = BigBuf_get_EM_addr();
memcpy(key, emCARD + 16 * (FirstBlockOfSector(sectorNum) + NumBlocksPerSector(sectorNum) - 1) + keyType * 10, 6); memcpy(key, emCARD + 16 * (FirstBlockOfSector(sectorNum) + NumBlocksPerSector(sectorNum) - 1) + keyType * 10, 6);
return bytes_to_num(key, 6); return bytes_to_num(key, 6);
} }
void emlClearMem(void) { void emlClearMem(void) {
int b; int b;
const uint8_t trailer[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07, 0x80, 0x69, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; const uint8_t trailer[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07, 0x80, 0x69, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
const uint8_t uid[] = {0xe6, 0x84, 0x87, 0xf3, 0x16, 0x88, 0x04, 0x00, 0x46, 0x8e, 0x45, 0x55, 0x4d, 0x70, 0x41, 0x04}; const uint8_t uid[] = {0xe6, 0x84, 0x87, 0xf3, 0x16, 0x88, 0x04, 0x00, 0x46, 0x8e, 0x45, 0x55, 0x4d, 0x70, 0x41, 0x04};
uint8_t* emCARD = BigBuf_get_EM_addr(); uint8_t* emCARD = BigBuf_get_EM_addr();
memset(emCARD, 0, CARD_MEMORY_SIZE); memset(emCARD, 0, CARD_MEMORY_SIZE);
// fill sectors trailer data // fill sectors trailer data
for(b = 3; b < 256; b<127?(b+=4):(b+=16)) { for(b = 3; b < 256; b<127?(b+=4):(b+=16)) {
emlSetMem((uint8_t *)trailer, b , 1); emlSetMem((uint8_t *)trailer, b , 1);
} }
// uid // uid
emlSetMem((uint8_t *)uid, 0, 1); emlSetMem((uint8_t *)uid, 0, 1);
@ -651,11 +652,11 @@ int mifare_sendcmd_special(struct Crypto1State *pcs, uint8_t crypted, uint8_t cm
dcmd[0] = cmd; dcmd[0] = cmd;
memcpy(dcmd+1,data,2); memcpy(dcmd+1,data,2);
AppendCrc14443a(dcmd, 3); AppendCrc14443a(dcmd, 3);
ReaderTransmit(dcmd, sizeof(dcmd), NULL); ReaderTransmit(dcmd, sizeof(dcmd), NULL);
int len = ReaderReceive(answer, answer_parity); int len = ReaderReceive(answer, answer_parity);
if(!len) { if(!len) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) if (MF_DBGLEVEL >= MF_DBG_ERROR)
Dbprintf("Authentication failed. Card timeout."); Dbprintf("Authentication failed. Card timeout.");
return 1; return 1;
} }
@ -686,14 +687,14 @@ int mifare_desfire_des_auth1(uint32_t uid, uint8_t *blockData){
uint8_t data[2]={0x0a, 0x00}; uint8_t data[2]={0x0a, 0x00};
uint8_t receivedAnswer[MAX_FRAME_SIZE]; uint8_t receivedAnswer[MAX_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_PARITY_SIZE];
len = mifare_sendcmd_special(NULL, 1, 0x02, data, receivedAnswer,receivedAnswerPar,NULL); len = mifare_sendcmd_special(NULL, 1, 0x02, data, receivedAnswer,receivedAnswerPar,NULL);
if (len == 1) { if (len == 1) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) if (MF_DBGLEVEL >= MF_DBG_ERROR)
Dbprintf("Cmd Error: %02x", receivedAnswer[0]); Dbprintf("Cmd Error: %02x", receivedAnswer[0]);
return 1; return 1;
} }
if (len == 12) { if (len == 12) {
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {
Dbprintf("Auth1 Resp: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", Dbprintf("Auth1 Resp: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x",
@ -713,18 +714,18 @@ int mifare_desfire_des_auth2(uint32_t uid, uint8_t *key, uint8_t *blockData){
uint8_t data[17] = {0x00}; uint8_t data[17] = {0x00};
data[0] = 0xAF; data[0] = 0xAF;
memcpy(data+1,key,16); memcpy(data+1,key,16);
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
len = mifare_sendcmd_special2(NULL, 1, 0x03, data, receivedAnswer, receivedAnswerPar ,NULL); len = mifare_sendcmd_special2(NULL, 1, 0x03, data, receivedAnswer, receivedAnswerPar ,NULL);
if ((receivedAnswer[0] == 0x03) && (receivedAnswer[1] == 0xae)) { if ((receivedAnswer[0] == 0x03) && (receivedAnswer[1] == 0xae)) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) if (MF_DBGLEVEL >= MF_DBG_ERROR)
Dbprintf("Auth Error: %02x %02x", receivedAnswer[0], receivedAnswer[1]); Dbprintf("Auth Error: %02x %02x", receivedAnswer[0], receivedAnswer[1]);
return 1; return 1;
} }
if (len == 12){ if (len == 12){
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {
Dbprintf("Auth2 Resp: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", Dbprintf("Auth2 Resp: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x",

View file

@ -1899,34 +1899,40 @@ int CmdHF14AMfCLoad(const char *Cmd)
FILE * f; FILE * f;
char filename[FILE_PATH_SIZE] = {0x00}; char filename[FILE_PATH_SIZE] = {0x00};
char * fnameptr = filename; char * fnameptr = filename;
char buf[64] = {0x00}; char buf[256] = {0x00};
uint8_t buf8[64] = {0x00}; uint8_t buf8[256] = {0x00};
uint8_t fillFromEmulator = 0; uint8_t fillFromEmulator = 0;
int i, len, blockNum, flags = 0, gen = 0; int i, len, blockNum, flags = 0, gen = 0, numblock = 64;
if (param_getchar(Cmd, 0) == 'h' || param_getchar(Cmd, 0)== 0x00) { if (param_getchar(Cmd, 0) == 'h' || param_getchar(Cmd, 0)== 0x00) {
PrintAndLog("It loads magic Chinese card from the file `filename.eml`"); PrintAndLog("It loads magic Chinese card from the file `filename.eml`");
PrintAndLog("or from emulator memory (option `e`)"); PrintAndLog("or from emulator memory (option `e`). 4K card: (option `4`)");
PrintAndLog("Usage: hf mf cload <file name w/o `.eml`>"); PrintAndLog("Usage: hf mf cload [file name w/o `.eml`][e][4]");
PrintAndLog(" or: hf mf cload e "); PrintAndLog(" or: hf mf cload e [4]");
PrintAndLog(" sample: hf mf cload filename"); PrintAndLog("Sample: hf mf cload filename");
PrintAndLog(" hf mf cload filname 4");
PrintAndLog(" hf mf cload e");
PrintAndLog(" hf mf cload e 4");
return 0; return 0;
} }
char ctmp = param_getchar(Cmd, 0); char ctmp = param_getchar(Cmd, 0);
if (ctmp == 'e' || ctmp == 'E') fillFromEmulator = 1; if (ctmp == 'e' || ctmp == 'E') fillFromEmulator = 1;
ctmp = param_getchar(Cmd, 1);
if (ctmp == '4') numblock = 256;
gen = mfCIdentify(); gen = mfCIdentify();
PrintAndLog("Loading magic mifare %dK", numblock == 256 ? 4:1);
if (fillFromEmulator) { if (fillFromEmulator) {
for (blockNum = 0; blockNum < 16 * 4; blockNum += 1) { for (blockNum = 0; blockNum < numblock; blockNum += 1) {
if (mfEmlGetMem(buf8, blockNum, 1)) { if (mfEmlGetMem(buf8, blockNum, 1)) {
PrintAndLog("Cant get block: %d", blockNum); PrintAndLog("Cant get block: %d", blockNum);
return 2; return 2;
} }
if (blockNum == 0) flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC; // switch on field and send magic sequence if (blockNum == 0) flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC; // switch on field and send magic sequence
if (blockNum == 1) flags = 0; // just write if (blockNum == 1) flags = 0; // just write
if (blockNum == 16 * 4 - 1) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD; // Done. Magic Halt and switch off field. if (blockNum == numblock - 1) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD; // Done. Magic Halt and switch off field.
if (gen == 2) if (gen == 2)
/* generation 1b magic card */ /* generation 1b magic card */
@ -1938,10 +1944,12 @@ int CmdHF14AMfCLoad(const char *Cmd)
} }
return 0; return 0;
} else { } else {
len = strlen(Cmd); param_getstr(Cmd, 0, filename);
len = strlen(filename);
if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5; if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5;
memcpy(filename, Cmd, len); //memcpy(filename, Cmd, len);
fnameptr += len; fnameptr += len;
sprintf(fnameptr, ".eml"); sprintf(fnameptr, ".eml");
@ -1976,7 +1984,7 @@ int CmdHF14AMfCLoad(const char *Cmd)
if (blockNum == 0) flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC; // switch on field and send magic sequence if (blockNum == 0) flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC; // switch on field and send magic sequence
if (blockNum == 1) flags = 0; // just write if (blockNum == 1) flags = 0; // just write
if (blockNum == 16 * 4 - 1) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD; // Done. Switch off field. if (blockNum == numblock - 1) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD; // Done. Switch off field.
if (gen == 2) if (gen == 2)
/* generation 1b magic card */ /* generation 1b magic card */
@ -1988,12 +1996,13 @@ int CmdHF14AMfCLoad(const char *Cmd)
} }
blockNum++; blockNum++;
if (blockNum >= 16 * 4) break; // magic card type - mifare 1K if (blockNum >= numblock) break; // magic card type - mifare 1K 64 blocks, mifare 4k 256 blocks
} }
fclose(f); fclose(f);
if (blockNum != 16 * 4 && blockNum != 32 * 4 + 8 * 16){ //if (blockNum != 16 * 4 && blockNum != 32 * 4 + 8 * 16){
PrintAndLog("File content error. There must be 64 blocks"); if (blockNum != numblock){
PrintAndLog("File content error. There must be %d blocks", numblock);
return 4; return 4;
} }
PrintAndLog("Loaded from file: %s", filename); PrintAndLog("Loaded from file: %s", filename);
@ -2095,7 +2104,7 @@ int CmdHF14AMfCSave(const char *Cmd) {
char filename[FILE_PATH_SIZE] = {0x00}; char filename[FILE_PATH_SIZE] = {0x00};
char * fnameptr = filename; char * fnameptr = filename;
uint8_t fillFromEmulator = 0; uint8_t fillFromEmulator = 0;
uint8_t buf[64] = {0x00}; uint8_t buf[256] = {0x00};
int i, j, len, flags, gen = 0, numblock = 64; int i, j, len, flags, gen = 0, numblock = 64;
// memset(filename, 0, sizeof(filename)); // memset(filename, 0, sizeof(filename));
@ -2105,12 +2114,12 @@ int CmdHF14AMfCSave(const char *Cmd) {
PrintAndLog("It saves `magic Chinese` card dump into the file `filename.eml` or `cardID.eml`"); PrintAndLog("It saves `magic Chinese` card dump into the file `filename.eml` or `cardID.eml`");
PrintAndLog("or into emulator memory (option `e`). 4K card: (option `4`)"); PrintAndLog("or into emulator memory (option `e`). 4K card: (option `4`)");
PrintAndLog("Usage: hf mf esave [file name w/o `.eml`][e][4]"); PrintAndLog("Usage: hf mf esave [file name w/o `.eml`][e][4]");
PrintAndLog(" sample: hf mf esave "); PrintAndLog("Sample: hf mf esave ");
PrintAndLog(" hf mf esave filename"); PrintAndLog(" hf mf esave filename");
PrintAndLog(" hf mf esave e"); PrintAndLog(" hf mf esave e");
PrintAndLog(" hf mf esave 4"); PrintAndLog(" hf mf esave 4");
PrintAndLog(" hf mf esave filename 4"); PrintAndLog(" hf mf esave filename 4");
PrintAndLog(" hf mf esave e 4\n"); PrintAndLog(" hf mf esave e 4");
return 0; return 0;
} }
@ -2122,6 +2131,7 @@ int CmdHF14AMfCSave(const char *Cmd) {
gen = mfCIdentify(); gen = mfCIdentify();
PrintAndLog("Saving magic mifare %dK", numblock == 256 ? 4:1); PrintAndLog("Saving magic mifare %dK", numblock == 256 ? 4:1);
if (fillFromEmulator) { if (fillFromEmulator) {
// put into emulator // put into emulator
flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC; flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC;