This commit is contained in:
pwpiwi 2017-03-06 17:04:23 +00:00 committed by GitHub
commit 1daaa80b78
57 changed files with 1395 additions and 3427 deletions

View file

@ -13,6 +13,7 @@
#include "proxmark3.h"
#include "apps.h"
#include "string.h"
#include "util.h"
// BigBuf is the large multi-purpose buffer, typically used to hold A/D samples or traces.
// Also used to hold various smaller buffers and the Mifare Emulator Memory.

View file

@ -19,7 +19,7 @@ SRC_LF = lfops.c hitag2.c hitagS.c lfsampling.c pcf7931.c lfdemod.c protocols.c
SRC_ISO15693 = iso15693.c iso15693tools.c
SRC_ISO14443a = epa.c iso14443a.c mifareutil.c mifarecmd.c mifaresniff.c
SRC_ISO14443b = iso14443b.c
SRC_CRAPTO1 = crapto1.c crypto1.c des.c aes.c
SRC_CRAPTO1 = crypto1.c des.c aes.c
SRC_CRC = iso14443crc.c crc.c crc16.c crc32.c
#the FPGA bitstream files. Note: order matters!
@ -33,9 +33,6 @@ APP_CFLAGS += $(ZLIB_CFLAGS)
# zlib includes:
APP_CFLAGS += -I../zlib
# stdint.h provided locally until GCC 4.5 becomes C99 compliant
APP_CFLAGS += -I.
# Compile these in thumb mode (small size)
THUMBSRC = start.c \
$(SRC_LCD) \

View file

@ -10,20 +10,18 @@
// executes.
//-----------------------------------------------------------------------------
#include <stdarg.h>
#include "usb_cdc.h"
#include "cmd.h"
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
#include "printf.h"
#include "string.h"
#include <stdarg.h>
#include "legicrf.h"
#include <hitag2.h>
#include <hitagS.h>
#include "hitag2.h"
#include "hitagS.h"
#include "lfsampling.h"
#include "BigBuf.h"
#include "mifareutil.h"

View file

@ -15,6 +15,7 @@
#include <stdint.h>
#include <stddef.h>
#include "common.h"
#include "usb_cmd.h"
#include "hitag2.h"
#include "hitagS.h"
#include "mifare.h"

View file

@ -1,488 +0,0 @@
/* crapto1.c
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, US$
Copyright (C) 2008-2008 bla <blapost@gmail.com>
*/
#include "crapto1.h"
#include <stdlib.h>
#if !defined LOWMEM && defined __GNUC__
static uint8_t filterlut[1 << 20];
static void __attribute__((constructor)) fill_lut()
{
uint32_t i;
for(i = 0; i < 1 << 20; ++i)
filterlut[i] = filter(i);
}
#define filter(x) (filterlut[(x) & 0xfffff])
#endif
static void quicksort(uint32_t* const start, uint32_t* const stop)
{
uint32_t *it = start + 1, *rit = stop;
uint32_t tmp;
if(it > rit)
return;
while(it < rit)
if(*it <= *start)
++it;
else if(*rit > *start)
--rit;
else {
tmp = *it;
*it = *rit;
*rit = tmp;
}
if(*rit >= *start)
--rit;
if(rit != start) {
tmp = *rit;
*rit = *start;
*start = tmp;
}
quicksort(start, rit - 1);
quicksort(rit + 1, stop);
}
/** binsearch
* Binary search for the first occurence of *stop's MSB in sorted [start,stop]
*/
static inline uint32_t* binsearch(uint32_t *start, uint32_t *stop)
{
uint32_t mid, val = *stop & 0xff000000;
while(start != stop)
if(start[mid = (stop - start) >> 1] > val)
stop = &start[mid];
else
start += mid + 1;
return start;
}
/** update_contribution
* helper, calculates the partial linear feedback contributions and puts in MSB
*/
static inline void
update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)
{
uint32_t p = *item >> 25;
p = p << 1 | parity(*item & mask1);
p = p << 1 | parity(*item & mask2);
*item = p << 24 | (*item & 0xffffff);
}
/** extend_table
* using a bit of the keystream extend the table of possible lfsr states
*/
static inline void
extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
{
in <<= 24;
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else if(filter(*tbl) == bit) {
*++*end = tbl[1];
tbl[1] = tbl[0] | 1;
update_contribution(tbl, m1, m2);
*tbl++ ^= in;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else
*tbl-- = *(*end)--;
}
/** extend_table_simple
* using a bit of the keystream extend the table of possible lfsr states
*/
static inline void extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
{
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1))
*tbl |= filter(*tbl) ^ bit;
else if(filter(*tbl) == bit) {
*++*end = *++tbl;
*tbl = tbl[-1] | 1;
} else
*tbl-- = *(*end)--;
}
/** recover
* recursively narrow down the search space, 4 bits of keystream at a time
*/
static struct Crypto1State*
recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
struct Crypto1State *sl, uint32_t in)
{
uint32_t *o, *e, i;
if(rem == -1) {
for(e = e_head; e <= e_tail; ++e) {
*e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);
for(o = o_head; o <= o_tail; ++o, ++sl) {
sl->even = *o;
sl->odd = *e ^ parity(*o & LF_POLY_ODD);
sl[1].odd = sl[1].even = 0;
}
}
return sl;
}
for(i = 0; i < 4 && rem--; i++) {
oks >>= 1;
eks >>= 1;
in >>= 2;
extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1,
LF_POLY_ODD << 1, 0);
if(o_head > o_tail)
return sl;
extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD,
LF_POLY_EVEN << 1 | 1, in & 3);
if(e_head > e_tail)
return sl;
}
quicksort(o_head, o_tail);
quicksort(e_head, e_tail);
while(o_tail >= o_head && e_tail >= e_head)
if(((*o_tail ^ *e_tail) >> 24) == 0) {
o_tail = binsearch(o_head, o = o_tail);
e_tail = binsearch(e_head, e = e_tail);
sl = recover(o_tail--, o, oks,
e_tail--, e, eks, rem, sl, in);
}
else if(*o_tail > *e_tail)
o_tail = binsearch(o_head, o_tail) - 1;
else
e_tail = binsearch(e_head, e_tail) - 1;
return sl;
}
/** lfsr_recovery
* recover the state of the lfsr given 32 bits of the keystream
* additionally you can use the in parameter to specify the value
* that was fed into the lfsr at the time the keystream was generated
*/
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
{
struct Crypto1State *statelist;
uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
uint32_t *even_head = 0, *even_tail = 0, eks = 0;
int i;
for(i = 31; i >= 0; i -= 2)
oks = oks << 1 | BEBIT(ks2, i);
for(i = 30; i >= 0; i -= 2)
eks = eks << 1 | BEBIT(ks2, i);
odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
even_head = even_tail = malloc(sizeof(uint32_t) << 21);
statelist = malloc(sizeof(struct Crypto1State) << 18);
if(!odd_tail-- || !even_tail-- || !statelist) {
free(statelist);
statelist = 0;
goto out;
}
statelist->odd = statelist->even = 0;
for(i = 1 << 20; i >= 0; --i) {
if(filter(i) == (oks & 1))
*++odd_tail = i;
if(filter(i) == (eks & 1))
*++even_tail = i;
}
for(i = 0; i < 4; i++) {
extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
}
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);
recover(odd_head, odd_tail, oks,
even_head, even_tail, eks, 11, statelist, in << 1);
out:
free(odd_head);
free(even_head);
return statelist;
}
static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
0x7EC7EE90, 0x7F63F748, 0x79117020};
static const uint32_t T1[] = {
0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};
static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
/** Reverse 64 bits of keystream into possible cipher states
* Variation mentioned in the paper. Somewhat optimized version
*/
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
{
struct Crypto1State *statelist, *sl;
uint8_t oks[32], eks[32], hi[32];
uint32_t low = 0, win = 0;
uint32_t *tail, table[1 << 16];
int i, j;
sl = statelist = malloc(sizeof(struct Crypto1State) << 4);
if(!sl)
return 0;
sl->odd = sl->even = 0;
for(i = 30; i >= 0; i -= 2) {
oks[i >> 1] = BEBIT(ks2, i);
oks[16 + (i >> 1)] = BEBIT(ks3, i);
}
for(i = 31; i >= 0; i -= 2) {
eks[i >> 1] = BEBIT(ks2, i);
eks[16 + (i >> 1)] = BEBIT(ks3, i);
}
for(i = 0xfffff; i >= 0; --i) {
if (filter(i) != oks[0])
continue;
*(tail = table) = i;
for(j = 1; tail >= table && j < 29; ++j)
extend_table_simple(table, &tail, oks[j]);
if(tail < table)
continue;
for(j = 0; j < 19; ++j)
low = low << 1 | parity(i & S1[j]);
for(j = 0; j < 32; ++j)
hi[j] = parity(i & T1[j]);
for(; tail >= table; --tail) {
for(j = 0; j < 3; ++j) {
*tail = *tail << 1;
*tail |= parity((i & C1[j]) ^ (*tail & C2[j]));
if(filter(*tail) != oks[29 + j])
goto continue2;
}
for(j = 0; j < 19; ++j)
win = win << 1 | parity(*tail & S2[j]);
win ^= low;
for(j = 0; j < 32; ++j) {
win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);
if(filter(win) != eks[j])
goto continue2;
}
*tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);
sl->odd = *tail ^ parity(LF_POLY_ODD & win);
sl->even = win;
++sl;
sl->odd = sl->even = 0;
continue2:;
}
}
return statelist;
}
/** lfsr_rollback_bit
* Rollback the shift register in order to get previous states
*/
uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
{
int out;
uint8_t ret;
uint32_t tmp;
s->odd &= 0xffffff;
tmp = s->odd;
s->odd = s->even;
s->even = tmp;
out = s->even & 1;
out ^= LF_POLY_EVEN & (s->even >>= 1);
out ^= LF_POLY_ODD & s->odd;
out ^= !!in;
out ^= (ret = filter(s->odd)) & !!fb;
s->even |= parity(out) << 23;
return ret;
}
/** lfsr_rollback_byte
* Rollback the shift register in order to get previous states
*/
uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
{
int i, ret = 0;
for (i = 7; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
return ret;
}
/** lfsr_rollback_word
* Rollback the shift register in order to get previous states
*/
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
{
int i;
uint32_t ret = 0;
for (i = 31; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
return ret;
}
/** nonce_distance
* x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
*/
static uint16_t *dist = 0;
int nonce_distance(uint32_t from, uint32_t to)
{
uint16_t x, i;
if(!dist) {
dist = malloc(2 << 16);
if(!dist)
return -1;
for (x = i = 1; i; ++i) {
dist[(x & 0xff) << 8 | x >> 8] = i;
x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
}
}
return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
}
static uint32_t fastfwd[2][8] = {
{ 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
{ 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
/** lfsr_prefix_ks
*
* Is an exported helper function from the common prefix attack
* Described in the "dark side" paper. It returns an -1 terminated array
* of possible partial(21 bit) secret state.
* The required keystream(ks) needs to contain the keystream that was used to
* encrypt the NACK which is observed when varying only the 3 last bits of Nr
* only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
*/
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
{
uint32_t c, entry, *candidates = malloc(4 << 10);
int i, size = 0, good;
if(!candidates)
return 0;
for(i = 0; i < 1 << 21; ++i) {
for(c = 0, good = 1; good && c < 8; ++c) {
entry = i ^ fastfwd[isodd][c];
good &= (BIT(ks[c], isodd) == filter(entry >> 1));
good &= (BIT(ks[c], isodd + 2) == filter(entry));
}
if(good)
candidates[size++] = i;
}
candidates[size] = -1;
return candidates;
}
/** check_pfx_parity
* helper function which eliminates possible secret states using parity bits
*/
static struct Crypto1State*
check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8],
uint32_t odd, uint32_t even, struct Crypto1State* sl)
{
uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;
for(c = 0; good && c < 8; ++c) {
sl->odd = odd ^ fastfwd[1][c];
sl->even = even ^ fastfwd[0][c];
lfsr_rollback_bit(sl, 0, 0);
lfsr_rollback_bit(sl, 0, 0);
ks3 = lfsr_rollback_bit(sl, 0, 0);
ks2 = lfsr_rollback_word(sl, 0, 0);
ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);
nr = ks1 ^ (prefix | c << 5);
rr = ks2 ^ rresp;
good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
}
return sl + good;
}
/** lfsr_common_prefix
* Implentation of the common prefix attack.
*/
struct Crypto1State*
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])
{
struct Crypto1State *statelist, *s;
uint32_t *odd, *even, *o, *e, top;
odd = lfsr_prefix_ks(ks, 1);
even = lfsr_prefix_ks(ks, 0);
s = statelist = malloc((sizeof *statelist) << 20);
if(!s || !odd || !even) {
free(statelist);
statelist = 0;
goto out;
}
for(o = odd; *o + 1; ++o)
for(e = even; *e + 1; ++e)
for(top = 0; top < 64; ++top) {
*o += 1 << 21;
*e += (!(top & 7) + 1) << 21;
s = check_pfx_parity(pfx, rr, par, *o, *e, s);
}
s->odd = s->even = 0;
out:
free(odd);
free(even);
return statelist;
}

View file

@ -1,93 +0,0 @@
/* crapto1.h
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, US$
Copyright (C) 2008-2008 bla <blapost@gmail.com>
*/
#ifndef CRAPTO1_INCLUDED
#define CRAPTO1_INCLUDED
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
struct Crypto1State {uint32_t odd, even;};
void crypto1_create(struct Crypto1State *s, uint64_t key);
void crypto1_destroy(struct Crypto1State*);
void crypto1_get_lfsr(struct Crypto1State*, uint64_t*);
uint8_t crypto1_bit(struct Crypto1State*, uint8_t, int);
uint8_t crypto1_byte(struct Crypto1State*, uint8_t, int);
uint32_t crypto1_word(struct Crypto1State*, uint32_t, int);
uint32_t prng_successor(uint32_t x, uint32_t n);
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in);
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3);
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd);
struct Crypto1State*
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]);
uint8_t lfsr_rollback_bit(struct Crypto1State* s, uint32_t in, int fb);
uint8_t lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb);
uint32_t lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb);
int nonce_distance(uint32_t from, uint32_t to);
#define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\
uint32_t __n = 0,__M = 0, N = 0;\
int __i;\
for(; __n < 1 << 16; N = prng_successor(__M = ++__n, 16))\
for(__i = FSIZE - 1; __i >= 0; __i--)\
if(BIT(FILTER, __i) ^ parity(__M & 0xFF01))\
break;\
else if(__i)\
__M = prng_successor(__M, (__i == 7) ? 48 : 8);\
else
#define LF_POLY_ODD (0x29CE5C)
#define LF_POLY_EVEN (0x870804)
#define BIT(x, n) ((x) >> (n) & 1)
#define BEBIT(x, n) BIT(x, (n) ^ 24)
static inline int parity(uint32_t x)
{
#if !defined __i386__ || !defined __GNUC__
x ^= x >> 16;
x ^= x >> 8;
x ^= x >> 4;
return BIT(0x6996, x & 0xf);
#else
asm( "movl %1, %%eax\n"
"mov %%ax, %%cx\n"
"shrl $0x10, %%eax\n"
"xor %%ax, %%cx\n"
"xor %%ch, %%cl\n"
"setpo %%al\n"
"movzx %%al, %0\n": "=r"(x) : "r"(x): "eax","ecx");
return x;
#endif
}
static inline int filter(uint32_t const x)
{
uint32_t f;
f = 0xf22c0 >> (x & 0xf) & 16;
f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8;
f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4;
f |= 0x1e458 >> (x >> 12 & 0xf) & 2;
f |= 0x0d938 >> (x >> 16 & 0xf) & 1;
return BIT(0xEC57E80A, f);
}
#ifdef __cplusplus
}
#endif
#endif

View file

@ -1,98 +0,0 @@
/* crypto1.c
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, US
Copyright (C) 2008-2008 bla <blapost@gmail.com>
*/
#include "crapto1.h"
#include <stdlib.h>
#define SWAPENDIAN(x)\
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
void crypto1_create(struct Crypto1State *s, uint64_t key)
{
// struct Crypto1State *s = malloc(sizeof(*s));
int i;
for(i = 47;s && i > 0; i -= 2) {
s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7);
s->even = s->even << 1 | BIT(key, i ^ 7);
}
return;
}
void crypto1_destroy(struct Crypto1State *state)
{
// free(state);
state->odd = 0;
state->even = 0;
}
void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr)
{
int i;
for(*lfsr = 0, i = 23; i >= 0; --i) {
*lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3);
*lfsr = *lfsr << 1 | BIT(state->even, i ^ 3);
}
}
uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
{
uint32_t feedin;
uint32_t tmp;
uint8_t ret = filter(s->odd);
feedin = ret & !!is_encrypted;
feedin ^= !!in;
feedin ^= LF_POLY_ODD & s->odd;
feedin ^= LF_POLY_EVEN & s->even;
s->even = s->even << 1 | parity(feedin);
tmp = s->odd;
s->odd = s->even;
s->even = tmp;
return ret;
}
uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted)
{
uint8_t i, ret = 0;
for (i = 0; i < 8; ++i)
ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i;
return ret;
}
uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
{
uint32_t i, ret = 0;
for (i = 0; i < 32; ++i)
ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24);
return ret;
}
/* prng_successor
* helper used to obscure the keystream during authentication
*/
uint32_t prng_successor(uint32_t x, uint32_t n)
{
SWAPENDIAN(x);
while(n--)
x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31;
return SWAPENDIAN(x);
}

View file

@ -26,7 +26,7 @@
*
*/
#include <stdint.h>
#include <string.h>
#include "string.h"
const uint8_t sbox[256] = {
/* S-box 1 */

View file

@ -11,10 +11,14 @@
// functions, You need to do the setup before calling them!
//-----------------------------------------------------------------------------
#include "apps.h"
#include "iso14443a.h"
#include "iso14443b.h"
#include "epa.h"
#include "cmd.h"
#include "fpgaloader.h"
#include "string.h"
#include "util.h"
// Protocol and Parameter Selection Request for ISO 14443 type A cards
// use regular (1x) speed in both directions

View file

@ -17,8 +17,8 @@
#include "cmd.h"
#include "iso14443crc.h"
#include "iso14443a.h"
#include "crapto1.h"
#include "mifareutil.h"
#include "mifaresniff.h"
#include "BigBuf.h"
#include "protocols.h"

View file

@ -13,7 +13,7 @@
#ifndef __ISO14443A_H
#define __ISO14443A_H
#include "common.h"
#include "mifaresniff.h"
#include "mifare.h"
typedef struct {
enum {

View file

@ -20,7 +20,6 @@
#include "iso14443crc.h"
#include "iso14443a.h"
#include "crapto1.h"
#include "mifareutil.h"
#include "common.h"

View file

@ -8,8 +8,31 @@
// Routines to support mifare classic sniffer.
//-----------------------------------------------------------------------------
#include "mifaresniff.h"
#include "apps.h"
#include "proxmark3.h"
#include "util.h"
#include "string.h"
#include "iso14443crc.h"
#include "iso14443a.h"
#include "crapto1/crapto1.h"
#include "mifareutil.h"
#include "common.h"
#define SNF_INIT 0
#define SNF_NO_FIELD 1
#define SNF_WUPREQ 2
#define SNF_ATQA 3
#define SNF_ANTICOL1 4
#define SNF_UID1 5
#define SNF_ANTICOL2 6
#define SNF_UID2 7
#define SNF_SAK 8
#define SNF_CARD_IDLE 9
#define SNF_CARD_CMD 10
#define SNF_CARD_RESP 11
#define SNF_UID_4 0
#define SNF_UID_7 0
static int sniffState = SNF_INIT;
static uint8_t sniffUIDType;
@ -26,7 +49,7 @@ bool MfSniffInit(void){
sniffSAK = 0;
sniffUIDType = SNF_UID_4;
return FALSE;
return false;
}
bool MfSniffEnd(void){
@ -34,7 +57,7 @@ bool MfSniffEnd(void){
cmd_send(CMD_ACK,0,0,0,0,0);
LED_B_OFF();
return FALSE;
return false;
}
bool RAMFUNC MfSniffLogic(const uint8_t *data, uint16_t len, uint8_t *parity, uint16_t bitCnt, bool reader) {
@ -114,16 +137,16 @@ bool RAMFUNC MfSniffLogic(const uint8_t *data, uint16_t len, uint8_t *parity, ui
sniffBuf[11] = sniffSAK;
sniffBuf[12] = 0xFF;
sniffBuf[13] = 0xFF;
LogTrace(sniffBuf, 14, 0, 0, NULL, TRUE);
LogTrace(sniffBuf, 14, 0, 0, NULL, true);
} // intentionally no break;
case SNF_CARD_CMD:{
LogTrace(data, len, 0, 0, NULL, TRUE);
LogTrace(data, len, 0, 0, NULL, true);
sniffState = SNF_CARD_RESP;
timerData = GetTickCount();
break;
}
case SNF_CARD_RESP:{
LogTrace(data, len, 0, 0, NULL, FALSE);
LogTrace(data, len, 0, 0, NULL, false);
sniffState = SNF_CARD_CMD;
timerData = GetTickCount();
break;
@ -135,14 +158,7 @@ bool RAMFUNC MfSniffLogic(const uint8_t *data, uint16_t len, uint8_t *parity, ui
}
return FALSE;
}
bool RAMFUNC MfSniffSend(uint16_t maxTimeoutMs) {
if (BigBuf_get_traceLen() && (GetTickCount() > timerData + maxTimeoutMs)) {
return intMfSniffSend();
}
return FALSE;
return false;
}
// internal sending function. not a RAMFUNC.
@ -170,5 +186,13 @@ bool intMfSniffSend() {
clear_trace();
return TRUE;
return true;
}
bool RAMFUNC MfSniffSend(uint16_t maxTimeoutMs) {
if (BigBuf_get_traceLen() && (GetTickCount() > timerData + maxTimeoutMs)) {
return intMfSniffSend();
}
return false;
}

View file

@ -11,32 +11,8 @@
#ifndef __MIFARESNIFF_H
#define __MIFARESNIFF_H
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
#include "string.h"
#include "iso14443crc.h"
#include "iso14443a.h"
#include "crapto1.h"
#include "mifareutil.h"
#include "common.h"
#define SNF_INIT 0
#define SNF_NO_FIELD 1
#define SNF_WUPREQ 2
#define SNF_ATQA 3
#define SNF_ANTICOL1 4
#define SNF_UID1 5
#define SNF_ANTICOL2 6
#define SNF_UID2 7
#define SNF_SAK 8
#define SNF_CARD_IDLE 9
#define SNF_CARD_CMD 10
#define SNF_CARD_RESP 11
#define SNF_UID_4 0
#define SNF_UID_7 0
#include <stdint.h>
#include <stdbool.h>
bool MfSniffInit(void);
bool RAMFUNC MfSniffLogic(const uint8_t *data, uint16_t len, uint8_t *parity, uint16_t bitCnt, bool reader);

View file

@ -16,7 +16,7 @@
#include "iso14443crc.h"
#include "iso14443a.h"
#include "crapto1.h"
#include "crapto1/crapto1.h"
#include "mifareutil.h"
#include "des.h"

View file

@ -8,11 +8,12 @@
//-----------------------------------------------------------------------------
// code for work with mifare cards.
//-----------------------------------------------------------------------------
#include "crapto1.h"
#ifndef __MIFAREUTIL_H
#define __MIFAREUTIL_H
#include "crapto1/crapto1.h"
// mifare authentication
#define CRYPT_NONE 0
#define CRYPT_ALL 1

View file

@ -61,8 +61,7 @@
**/
#include "optimized_cipher.h"
#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#include <stdbool.h>
#include <stdint.h>

View file

@ -2,6 +2,7 @@
#include "apps.h"
#include "lfsampling.h"
#include "pcf7931.h"
#include "util.h"
#include "string.h"
#define T0_PCF 8 //period for the pcf7931 in us

View file

@ -40,9 +40,6 @@
#include "util.h"
#include "string.h"
typedef uint32_t uintmax_t;
typedef int32_t intmax_t;
typedef unsigned char u_char;
typedef unsigned int u_int;
typedef unsigned long u_long;

View file

@ -1,27 +0,0 @@
//-----------------------------------------------------------------------------
// Copyright (C) 2010 Hector Martin "marcan" <marcan@marcansoft.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Replacement stdint.h because GCC doesn't come with it yet (C99)
//-----------------------------------------------------------------------------
#ifndef __STDINT_H
#define __STDINT_H
typedef signed char int8_t;
typedef short int int16_t;
typedef int int32_t;
typedef long long int int64_t;
typedef unsigned char uint8_t;
typedef unsigned short int uint16_t;
typedef unsigned int uint32_t;
typedef unsigned long long int uint64_t;
typedef int intptr_t;
typedef unsigned int uintptr_t;
#endif /* __STDINT_H */

View file

@ -13,7 +13,7 @@
#define __STRING_H
#include <stdint.h>
#include <util.h>
#include "util.h"
int strlen(const char *str);
RAMFUNC void *memcpy(void *dest, const void *src, int len);

View file

@ -9,17 +9,16 @@ include ../common/Makefile.common
CC=gcc
CXX=g++
#COMMON_FLAGS = -m32
VPATH = ../common ../zlib
VPATH = ../common ../zlib ../tools
OBJDIR = obj
LDLIBS = -L/opt/local/lib -L/usr/local/lib -lreadline -lpthread -lm
LUALIB = ../liblua/liblua.a
LDFLAGS = $(COMMON_FLAGS)
CFLAGS = -std=c99 -I. -I../include -I../common -I../zlib -I/opt/local/include -I../liblua -Wall $(COMMON_FLAGS) -g -O4
CFLAGS = -std=c99 -D_ISOC99_SOURCE -I. -I../include -I../common -I../tools -I../zlib -I/opt/local/include -I../liblua -Wall $(COMMON_FLAGS) -g -O4
LUAPLATFORM = generic
ifneq (,$(findstring MINGW,$(platform)))
CFLAGS += -D__USE_MINGW_ANSI_STDIO=1
CXXFLAGS = -I$(QTDIR)/include -I$(QTDIR)/include/QtCore -I$(QTDIR)/include/QtGui
MOC = $(QTDIR)/bin/moc
LUAPLATFORM = mingw
@ -58,9 +57,10 @@ CORESRCS = uart.c \
sleep.c
CMDSRCS = nonce2key/crapto1.c\
nonce2key/crypto1.c\
CMDSRCS = crapto1/crapto1.c\
crapto1/crypto1.c\
nonce2key/nonce2key.c\
mfkey/mfkey32.c\
loclass/cipher.c \
loclass/cipherutils.c \
loclass/des.c \

View file

@ -11,8 +11,10 @@
#include <stdio.h>
#include <string.h>
#include "proxmark3.h"
#include "graph.h"
#include "util.h"
#include "ui.h"
#include "iso14443crc.h"
#include "cmdmain.h"
#include "cmdparser.h"
#include "cmdhf.h"
#include "cmdhf14a.h"

View file

@ -9,8 +9,19 @@
//-----------------------------------------------------------------------------
#include <inttypes.h>
#include "cmdhfmf.h"
#include "./nonce2key/nonce2key.h"
#include <stdio.h>
#include <stdlib.h>
#include "proxmark3.h"
#include "cmdmain.h"
#include "util.h"
#include "ui.h"
#include "mifarehost.h"
#include "mifare.h"
#include "nonce2key/nonce2key.h"
#include "mfkey/mfkey32.h"
#define NESTED_SECTOR_RETRY 10 // how often we try mfested() until we give up
static int CmdHelp(const char *Cmd);
@ -551,10 +562,17 @@ int CmdHF14AMfRestore(const char *Cmd)
return 0;
}
typedef struct {
uint64_t Key[2];
int foundKey[2];
} sector_t;
int CmdHF14AMfNested(const char *Cmd)
{
int i, j, res, iterations;
sector *e_sector = NULL;
sector_t *e_sector = NULL;
uint8_t blockNo = 0;
uint8_t keyType = 0;
uint8_t trgBlockNo = 0;
@ -674,7 +692,7 @@ int CmdHF14AMfNested(const char *Cmd)
clock_t time1;
time1 = clock();
e_sector = calloc(SectorsCnt, sizeof(sector));
e_sector = calloc(SectorsCnt, sizeof(sector_t));
if (e_sector == NULL) return 1;
//test current key and additional standard keys first

View file

@ -11,47 +11,34 @@
#ifndef CMDHFMF_H__
#define CMDHFMF_H__
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "proxmark3.h"
#include "iso14443crc.h"
#include "data.h"
#include "ui.h"
#include "cmdparser.h"
#include "common.h"
#include "util.h"
#include "mifarehost.h"
int CmdHFMF(const char *Cmd);
extern int CmdHFMF(const char *Cmd);
int CmdHF14AMfDbg(const char* cmd);
int CmdHF14AMfRdBl(const char* cmd);
int CmdHF14AMfURdBl(const char* cmd);
int CmdHF14AMfRdSc(const char* cmd);
int CmdHF14SMfURdCard(const char* cmd);
int CmdHF14AMfDump(const char* cmd);
int CmdHF14AMfRestore(const char* cmd);
int CmdHF14AMfWrBl(const char* cmd);
int CmdHF14AMfUWrBl(const char* cmd);
int CmdHF14AMfChk(const char* cmd);
int CmdHF14AMifare(const char* cmd);
int CmdHF14AMfNested(const char* cmd);
int CmdHF14AMfSniff(const char* cmd);
int CmdHF14AMf1kSim(const char* cmd);
int CmdHF14AMfEClear(const char* cmd);
int CmdHF14AMfEGet(const char* cmd);
int CmdHF14AMfESet(const char* cmd);
int CmdHF14AMfELoad(const char* cmd);
int CmdHF14AMfESave(const char* cmd);
int CmdHF14AMfECFill(const char* cmd);
int CmdHF14AMfEKeyPrn(const char* cmd);
int CmdHF14AMfCSetUID(const char* cmd);
int CmdHF14AMfCSetBlk(const char* cmd);
int CmdHF14AMfCGetBlk(const char* cmd);
int CmdHF14AMfCGetSc(const char* cmd);
int CmdHF14AMfCLoad(const char* cmd);
int CmdHF14AMfCSave(const char* cmd);
extern int CmdHF14AMfDbg(const char* cmd);
extern int CmdHF14AMfRdBl(const char* cmd);
extern int CmdHF14AMfURdBl(const char* cmd);
extern int CmdHF14AMfRdSc(const char* cmd);
extern int CmdHF14SMfURdCard(const char* cmd);
extern int CmdHF14AMfDump(const char* cmd);
extern int CmdHF14AMfRestore(const char* cmd);
extern int CmdHF14AMfWrBl(const char* cmd);
extern int CmdHF14AMfUWrBl(const char* cmd);
extern int CmdHF14AMfChk(const char* cmd);
extern int CmdHF14AMifare(const char* cmd);
extern int CmdHF14AMfNested(const char* cmd);
extern int CmdHF14AMfSniff(const char* cmd);
extern int CmdHF14AMf1kSim(const char* cmd);
extern int CmdHF14AMfEClear(const char* cmd);
extern int CmdHF14AMfEGet(const char* cmd);
extern int CmdHF14AMfESet(const char* cmd);
extern int CmdHF14AMfELoad(const char* cmd);
extern int CmdHF14AMfESave(const char* cmd);
extern int CmdHF14AMfECFill(const char* cmd);
extern int CmdHF14AMfEKeyPrn(const char* cmd);
extern int CmdHF14AMfCSetUID(const char* cmd);
extern int CmdHF14AMfCSetBlk(const char* cmd);
extern int CmdHF14AMfCGetBlk(const char* cmd);
extern int CmdHF14AMfCGetSc(const char* cmd);
extern int CmdHF14AMfCLoad(const char* cmd);
extern int CmdHF14AMfCSave(const char* cmd);
#endif

View file

@ -7,7 +7,11 @@
//-----------------------------------------------------------------------------
// High frequency MIFARE ULTRALIGHT (C) commands
//-----------------------------------------------------------------------------
#include <ctype.h>
#include "proxmark3.h"
#include "usb_cmd.h"
#include "cmdmain.h"
#include "ui.h"
#include "loclass/des.h"
#include "cmdhfmfu.h"
#include "cmdhfmf.h"

View file

@ -11,12 +11,16 @@
#ifndef CMDMAIN_H__
#define CMDMAIN_H__
#include <stdint.h>
#include <stddef.h>
#include "usb_cmd.h"
#include "cmdparser.h"
void UsbCommandReceived(UsbCommand *UC);
int CommandReceived(char *Cmd);
bool WaitForResponseTimeout(uint32_t cmd, UsbCommand* response, size_t ms_timeout);
bool WaitForResponse(uint32_t cmd, UsbCommand* response);
void clearCommandBuffer();
command_t* getTopLevelCommandTable();
extern void UsbCommandReceived(UsbCommand *UC);
extern int CommandReceived(char *Cmd);
extern bool WaitForResponseTimeout(uint32_t cmd, UsbCommand* response, size_t ms_timeout);
extern bool WaitForResponse(uint32_t cmd, UsbCommand* response);
extern void clearCommandBuffer();
extern command_t* getTopLevelCommandTable();
#endif

View file

@ -13,7 +13,7 @@
#include <stdint.h>
#ifdef WIN32
#ifdef _WIN32
# define HOST_LITTLE_ENDIAN
#else
# include <sys/types.h>

View file

@ -11,7 +11,7 @@
#ifndef SLEEP_H__
#define SLEEP_H__
#ifdef WIN32
#ifdef _WIN32
#include <windows.h>
#define sleep(n) Sleep(1000 * n)
#define msleep(n) Sleep(n)

View file

@ -12,10 +12,43 @@
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include "mifarehost.h"
#include "crapto1/crapto1.h"
#include "proxmark3.h"
#include "usb_cmd.h"
#include "cmdmain.h"
#include "ui.h"
#include "util.h"
#include "iso14443crc.h"
#include "mifarehost.h"
// mifare tracer flags used in mfTraceDecode()
#define TRACE_IDLE 0x00
#define TRACE_AUTH1 0x01
#define TRACE_AUTH2 0x02
#define TRACE_AUTH_OK 0x03
#define TRACE_READ_DATA 0x04
#define TRACE_WRITE_OK 0x05
#define TRACE_WRITE_DATA 0x06
#define TRACE_ERROR 0xFF
// MIFARE
int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){
*key = 0;
UsbCommand c = {CMD_MIFARE_CHKKEYS, {((blockNo & 0xff) | ((keyType&0xff)<<8)), clear_trace, keycnt}};
memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK,&resp,3000)) return 1;
if ((resp.arg[0] & 0xff) != 0x01) return 2;
*key = bytes_to_num(resp.d.asBytes, 6);
return 0;
}
int compar_int(const void * a, const void * b) {
// didn't work: (the result is truncated to 32 bits)
//return (*(uint64_t*)b - *(uint64_t*)a);
@ -193,21 +226,6 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo
return 0;
}
int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){
*key = 0;
UsbCommand c = {CMD_MIFARE_CHKKEYS, {((blockNo & 0xff) | ((keyType&0xff)<<8)), clear_trace, keycnt}};
memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK,&resp,3000)) return 1;
if ((resp.arg[0] & 0xff) != 0x01) return 2;
*key = bytes_to_num(resp.d.asBytes, 6);
return 0;
}
// EMULATOR
int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
@ -229,6 +247,45 @@ int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
// "MAGIC" CARD
int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) {
uint8_t isOK = 0;
UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
isOK = resp.arg[0] & 0xff;
memcpy(data, resp.d.asBytes, 16);
if (!isOK) return 2;
} else {
PrintAndLog("Command execute timeout");
return 1;
}
return 0;
}
int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, bool wantWipe, uint8_t params) {
uint8_t isOK = 0;
UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
memcpy(c.d.asBytes, data, 16);
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
isOK = resp.arg[0] & 0xff;
if (uid != NULL)
memcpy(uid, resp.d.asBytes, 4);
if (!isOK)
return 2;
} else {
PrintAndLog("Command execute timeout");
return 1;
}
return 0;
}
int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, bool wantWipe) {
uint8_t oldblock0[16] = {0x00};
uint8_t block0[16] = {0x00};
@ -257,45 +314,6 @@ int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, bool w
return mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER);
}
int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, bool wantWipe, uint8_t params) {
uint8_t isOK = 0;
UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
memcpy(c.d.asBytes, data, 16);
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
isOK = resp.arg[0] & 0xff;
if (uid != NULL)
memcpy(uid, resp.d.asBytes, 4);
if (!isOK)
return 2;
} else {
PrintAndLog("Command execute timeout");
return 1;
}
return 0;
}
int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) {
uint8_t isOK = 0;
UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
isOK = resp.arg[0] & 0xff;
memcpy(data, resp.d.asBytes, 16);
if (!isOK) return 2;
} else {
PrintAndLog("Command execute timeout");
return 1;
}
return 0;
}
// SNIFFER
// constants
@ -337,6 +355,23 @@ int isBlockTrailer(int blockN) {
return ((blockN & 0x03) == 0x03);
}
int saveTraceCard(void) {
FILE * f;
if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0;
f = fopen(traceFileName, "w+");
if ( !f ) return 1;
for (int i = 0; i < 64; i++) { // blocks
for (int j = 0; j < 16; j++) // bytes
fprintf(f, "%02x", *(traceCard + i * 16 + j));
fprintf(f,"\n");
}
fclose(f);
return 0;
}
int loadTraceCard(uint8_t *tuid) {
FILE * f;
char buf[64] = {0x00};
@ -383,23 +418,6 @@ int loadTraceCard(uint8_t *tuid) {
return 0;
}
int saveTraceCard(void) {
FILE * f;
if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0;
f = fopen(traceFileName, "w+");
if ( !f ) return 1;
for (int i = 0; i < 64; i++) { // blocks
for (int j = 0; j < 16; j++) // bytes
fprintf(f, "%02x", *(traceCard + i * 16 + j));
fprintf(f,"\n");
}
fclose(f);
return 0;
}
int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) {
if (traceCrypto1)

View file

@ -8,63 +8,36 @@
// High frequency ISO14443A commands
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include "common.h"
#include "cmdmain.h"
#include "ui.h"
#include <stdint.h>
#include <stdbool.h>
#include "data.h"
#include "util.h"
#include "nonce2key/nonce2key.h"
#include "nonce2key/crapto1.h"
#include "iso14443crc.h"
#define MEM_CHUNK 1000000
#define NESTED_SECTOR_RETRY 10
// mfCSetBlock work flags
#define CSETBLOCK_UID 0x01
#define CSETBLOCK_WUPC 0x02
#define CSETBLOCK_HALT 0x04
#define CSETBLOCK_INIT_FIELD 0x08
#define CSETBLOCK_RESET_FIELD 0x10
#define CSETBLOCK_SINGLE_OPER 0x1F
#define CSETBLOCK_INIT_FIELD 0x08
#define CSETBLOCK_RESET_FIELD 0x10
#define CSETBLOCK_SINGLE_OPER 0x1F
// mifare tracer flags
#define TRACE_IDLE 0x00
#define TRACE_AUTH1 0x01
#define TRACE_AUTH2 0x02
#define TRACE_AUTH_OK 0x03
#define TRACE_READ_DATA 0x04
#define TRACE_WRITE_OK 0x05
#define TRACE_WRITE_DATA 0x06
#define TRACE_ERROR 0xFF
typedef struct {
uint64_t Key[2];
int foundKey[2];
} sector;
extern char logHexFileName[FILE_PATH_SIZE];
int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t * ResultKeys, bool calibrate);
int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key);
extern int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t * ResultKeys, bool calibrate);
extern int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key);
int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount);
int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount);
extern int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount);
extern int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount);
int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, bool wantWipe);
int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, bool wantWipe, uint8_t params);
int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params);
extern int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, bool wantWipe);
extern int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, bool wantWipe, uint8_t params);
extern int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params);
int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile);
int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile);
extern int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile);
extern int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile);
int isTraceCardEmpty(void);
int isBlockEmpty(int blockN);
int isBlockTrailer(int blockN);
int loadTraceCard(uint8_t *tuid);
int saveTraceCard(void);
int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data, int len);
extern int isTraceCardEmpty(void);
extern int isBlockEmpty(int blockN);
extern int isBlockTrailer(int blockN);
extern int loadTraceCard(uint8_t *tuid);
extern int saveTraceCard(void);
extern int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data, int len);

View file

@ -1,287 +0,0 @@
//-----------------------------------------------------------------------------
// Merlok - June 2011
// Roel - Dec 2009
// Unknown author
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// MIFARE Darkside hack
//-----------------------------------------------------------------------------
#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#include "nonce2key.h"
#include "mifarehost.h"
#include "ui.h"
int compar_state(const void * a, const void * b) {
// didn't work: (the result is truncated to 32 bits)
//return (*(int64_t*)b - *(int64_t*)a);
// better:
if (*(int64_t*)b == *(int64_t*)a) return 0;
else if (*(int64_t*)b > *(int64_t*)a) return 1;
else return -1;
}
int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key) {
struct Crypto1State *state;
uint32_t i, pos, rr, nr_diff, key_count;//, ks1, ks2;
byte_t bt, ks3x[8], par[8][8];
uint64_t key_recovered;
int64_t *state_s;
static uint32_t last_uid;
static int64_t *last_keylist;
rr = 0;
if (last_uid != uid && last_keylist != NULL)
{
free(last_keylist);
last_keylist = NULL;
}
last_uid = uid;
// Reset the last three significant bits of the reader nonce
nr &= 0xffffff1f;
PrintAndLog("\nuid(%08x) nt(%08x) par(%016" PRIx64") ks(%016" PRIx64") nr(%08" PRIx32")\n\n",uid,nt,par_info,ks_info,nr);
for (pos=0; pos<8; pos++)
{
ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
bt = (par_info >> (pos*8)) & 0xff;
for (i=0; i<8; i++)
{
par[7-pos][i] = (bt >> i) & 0x01;
}
}
printf("|diff|{nr} |ks3|ks3^5|parity |\n");
printf("+----+--------+---+-----+---------------+\n");
for (i=0; i<8; i++)
{
nr_diff = nr | i << 5;
printf("| %02x |%08x|",i << 5, nr_diff);
printf(" %01x | %01x |",ks3x[i], ks3x[i]^5);
for (pos=0; pos<7; pos++) printf("%01x,", par[i][pos]);
printf("%01x|\n", par[i][7]);
}
if (par_info==0)
PrintAndLog("parity is all zero,try special attack!just wait for few more seconds...");
state = lfsr_common_prefix(nr, rr, ks3x, par, par_info==0);
state_s = (int64_t*)state;
//char filename[50] ;
//sprintf(filename, "nt_%08x_%d.txt", nt, nr);
//printf("name %s\n", filename);
//FILE* fp = fopen(filename,"w");
for (i = 0; (state) && ((state + i)->odd != -1); i++)
{
lfsr_rollback_word(state+i, uid^nt, 0);
crypto1_get_lfsr(state + i, &key_recovered);
*(state_s + i) = key_recovered;
//fprintf(fp, "%012" PRIx64 "\n",key_recovered);
}
//fclose(fp);
if(!state)
return 1;
qsort(state_s, i, sizeof(*state_s), compar_state);
*(state_s + i) = -1;
//Create the intersection:
if (par_info == 0 )
if ( last_keylist != NULL)
{
int64_t *p1, *p2, *p3;
p1 = p3 = last_keylist;
p2 = state_s;
while ( *p1 != -1 && *p2 != -1 ) {
if (compar_state(p1, p2) == 0) {
printf("p1:%" PRIx64" p2:%" PRIx64 " p3:%" PRIx64" key:%012" PRIx64 "\n",(uint64_t)(p1-last_keylist),(uint64_t)(p2-state_s),(uint64_t)(p3-last_keylist),*p1);
*p3++ = *p1++;
p2++;
}
else {
while (compar_state(p1, p2) == -1) ++p1;
while (compar_state(p1, p2) == 1) ++p2;
}
}
key_count = p3 - last_keylist;;
}
else
key_count = 0;
else
{
last_keylist = state_s;
key_count = i;
}
printf("key_count:%d\n", key_count);
// The list may still contain several key candidates. Test each of them with mfCheckKeys
for (i = 0; i < key_count; i++) {
uint8_t keyBlock[6];
uint64_t key64;
key64 = *(last_keylist + i);
num_to_bytes(key64, 6, keyBlock);
key64 = 0;
if (!mfCheckKeys(0, 0, false, 1, keyBlock, &key64)) {
*key = key64;
free(last_keylist);
last_keylist = NULL;
if (par_info ==0)
free(state);
return 0;
}
}
free(last_keylist);
last_keylist = state_s;
return 1;
}
// 32 bit recover key from 2 nonces
bool mfkey32(nonces_t data, uint64_t *outputkey) {
struct Crypto1State *s,*t;
uint64_t outkey = 0;
uint64_t key=0; // recovered key
uint32_t uid = data.cuid;
uint32_t nt = data.nonce; // first tag challenge (nonce)
uint32_t nr0_enc = data.nr; // first encrypted reader challenge
uint32_t ar0_enc = data.ar; // first encrypted reader response
uint32_t nr1_enc = data.nr2; // second encrypted reader challenge
uint32_t ar1_enc = data.ar2; // second encrypted reader response
clock_t t1 = clock();
bool isSuccess = FALSE;
uint8_t counter=0;
s = lfsr_recovery32(ar0_enc ^ prng_successor(nt, 64), 0);
for(t = s; t->odd | t->even; ++t) {
lfsr_rollback_word(t, 0, 0);
lfsr_rollback_word(t, nr0_enc, 1);
lfsr_rollback_word(t, uid ^ nt, 0);
crypto1_get_lfsr(t, &key);
crypto1_word(t, uid ^ nt, 0);
crypto1_word(t, nr1_enc, 1);
if (ar1_enc == (crypto1_word(t, 0, 0) ^ prng_successor(nt, 64))) {
//PrintAndLog("Found Key: [%012" PRIx64 "]",key);
outkey = key;
counter++;
if (counter==20) break;
}
}
isSuccess = (counter == 1);
t1 = clock() - t1;
//if ( t1 > 0 ) PrintAndLog("Time in mfkey32: %.0f ticks \nFound %d possible keys", (float)t1, counter);
*outputkey = ( isSuccess ) ? outkey : 0;
crypto1_destroy(s);
/* //un-comment to save all keys to a stats.txt file
FILE *fout;
if ((fout = fopen("stats.txt","ab")) == NULL) {
PrintAndLog("Could not create file name stats.txt");
return 1;
}
fprintf(fout, "mfkey32,%d,%08x,%d,%s,%04x%08x,%.0Lf\r\n", counter, data.cuid, data.sector, (data.keytype) ? "B" : "A", (uint32_t)(outkey>>32) & 0xFFFF,(uint32_t)(outkey&0xFFFFFFFF),(long double)t1);
fclose(fout);
*/
return isSuccess;
}
bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey) {
struct Crypto1State *s, *t;
uint64_t outkey = 0;
uint64_t key = 0; // recovered key
uint32_t uid = data.cuid;
uint32_t nt0 = data.nonce; // first tag challenge (nonce)
uint32_t nr0_enc = data.nr; // first encrypted reader challenge
uint32_t ar0_enc = data.ar; // first encrypted reader response
uint32_t nt1 = data.nonce2; // second tag challenge (nonce)
uint32_t nr1_enc = data.nr2; // second encrypted reader challenge
uint32_t ar1_enc = data.ar2; // second encrypted reader response
bool isSuccess = FALSE;
int counter = 0;
//PrintAndLog("Enter mfkey32_moebius");
clock_t t1 = clock();
s = lfsr_recovery32(ar0_enc ^ prng_successor(nt0, 64), 0);
for(t = s; t->odd | t->even; ++t) {
lfsr_rollback_word(t, 0, 0);
lfsr_rollback_word(t, nr0_enc, 1);
lfsr_rollback_word(t, uid ^ nt0, 0);
crypto1_get_lfsr(t, &key);
crypto1_word(t, uid ^ nt1, 0);
crypto1_word(t, nr1_enc, 1);
if (ar1_enc == (crypto1_word(t, 0, 0) ^ prng_successor(nt1, 64))) {
//PrintAndLog("Found Key: [%012" PRIx64 "]",key);
outkey=key;
++counter;
if (counter==20)
break;
}
}
isSuccess = (counter == 1);
t1 = clock() - t1;
//if ( t1 > 0 ) PrintAndLog("Time in mfkey32_moebius: %.0f ticks \nFound %d possible keys", (float)t1,counter);
*outputkey = ( isSuccess ) ? outkey : 0;
crypto1_destroy(s);
/* // un-comment to output all keys to stats.txt
FILE *fout;
if ((fout = fopen("stats.txt","ab")) == NULL) {
PrintAndLog("Could not create file name stats.txt");
return 1;
}
fprintf(fout, "moebius,%d,%08x,%d,%s,%04x%08x,%0.Lf\r\n", counter, data.cuid, data.sector, (data.keytype) ? "B" : "A", (uint32_t) (outkey>>32),(uint32_t)(outkey&0xFFFFFFFF),(long double)t1);
fclose(fout);
*/
return isSuccess;
}
int tryMfk64_ex(uint8_t *data, uint64_t *outputkey){
uint32_t uid = le32toh(data);
uint32_t nt = le32toh(data+4); // tag challenge
uint32_t nr_enc = le32toh(data+8); // encrypted reader challenge
uint32_t ar_enc = le32toh(data+12); // encrypted reader response
uint32_t at_enc = le32toh(data+16); // encrypted tag response
return tryMfk64(uid, nt, nr_enc, ar_enc, at_enc, outputkey);
}
int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey){
uint64_t key = 0; // recovered key
uint32_t ks2; // keystream used to encrypt reader response
uint32_t ks3; // keystream used to encrypt tag response
struct Crypto1State *revstate;
PrintAndLog("Enter mfkey64");
clock_t t1 = clock();
// Extract the keystream from the messages
ks2 = ar_enc ^ prng_successor(nt, 64);
ks3 = at_enc ^ prng_successor(nt, 96);
revstate = lfsr_recovery64(ks2, ks3);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, nr_enc, 1);
lfsr_rollback_word(revstate, uid ^ nt, 0);
crypto1_get_lfsr(revstate, &key);
PrintAndLog("Found Key: [%012" PRIx64 "]", key);
crypto1_destroy(revstate);
*outputkey = key;
t1 = clock() - t1;
if ( t1 > 0 ) PrintAndLog("Time in mfkey64: %.0f ticks \n", (float)t1);
return 0;
}

View file

@ -1,42 +0,0 @@
//-----------------------------------------------------------------------------
// Merlok - June 2011
// Roel - Dec 2009
// Unknown author
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// MIFARE Darkside hack
//-----------------------------------------------------------------------------
#ifndef __NONCE2KEY_H
#define __NONCE2KEY_H
#include <stdio.h>
#include <stdlib.h>
#include "crapto1.h"
#include "common.h"
//#include <stdbool.h> //for bool
typedef struct {
uint32_t cuid;
uint8_t sector;
uint8_t keytype;
uint32_t nonce;
uint32_t ar;
uint32_t nr;
uint32_t nonce2;
uint32_t ar2;
uint32_t nr2;
} nonces_t;
int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key);
bool mfkey32(nonces_t data, uint64_t *outputkey);
bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey);
int tryMfk64_ex(uint8_t *data, uint64_t *outputkey);
int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey);
//uint64_t mfkey32(uint32_t uid, uint32_t nt, uint32_t nr0_enc, uint32_t ar0_enc, uint32_t nr1_enc, uint32_t ar1_enc);
#endif

View file

0
client/obj/mfkey/.dummy Normal file
View file

View file

@ -261,7 +261,7 @@ int WAI_PREFIX(getModulePath)(char* out, int capacity, int* dirname_length)
if (!fgets(buffer, sizeof(buffer), maps))
break;
if (sscanf(buffer, "%" PRIx64 "-%" PRIx64 " %s %" PRIx64 " %x:%x %u %s\n", &low, &high, perms, &offset, &major, &minor, &inode, path) == 8)
if (sscanf(buffer, "%" SCNx64 "-%" SCNx64 " %s %" SCNx64 " %x:%x %u %s\n", &low, &high, perms, &offset, &major, &minor, &inode, path) == 8)
{
uint64_t addr = (uint64_t)(uintptr_t)WAI_RETURN_ADDRESS();
if (low <= addr && addr <= high)

View file

@ -63,7 +63,7 @@ endif
# Also search prerequisites in the common directory (for usb.c), the fpga directory (for fpga.bit), and the zlib directory
VPATH = . ../common ../fpga ../zlib
VPATH = . ../common ../common/crapto1 ../fpga ../zlib
INCLUDES = ../include/proxmark3.h ../include/at91sam7s512.h ../include/config_gpio.h ../include/usb_cmd.h $(APP_INCLUDES)

File diff suppressed because it is too large Load diff

View file

@ -25,7 +25,11 @@ extern "C" {
#endif
struct Crypto1State {uint32_t odd, even;};
struct Crypto1State* crypto1_create(uint64_t);
#if defined(__arm__)
void crypto1_create(struct Crypto1State *s, uint64_t key);
#else
struct Crypto1State *crypto1_create(uint64_t key);
#endif
void crypto1_destroy(struct Crypto1State*);
void crypto1_get_lfsr(struct Crypto1State*, uint64_t*);
uint8_t crypto1_bit(struct Crypto1State*, uint8_t, int);
@ -37,16 +41,13 @@ struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in);
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3);
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd);
struct Crypto1State*
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8], uint8_t no_par);
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]);
void lfsr_rollback_bit(struct Crypto1State* s, uint32_t in, int fb);
void lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb);
void lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb);
int nonce_distance(uint32_t from, uint32_t to);
#define SWAPENDIAN(x)\
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
#define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\
uint32_t __n = 0,__M = 0, N = 0;\
int __i;\

View file

@ -23,21 +23,38 @@
#define SWAPENDIAN(x)\
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
#if defined(__arm__)
void crypto1_create(struct Crypto1State *s, uint64_t key)
{
#else
struct Crypto1State * crypto1_create(uint64_t key)
{
struct Crypto1State *s = malloc(sizeof(*s));
#endif
int i;
for(i = 47;s && i > 0; i -= 2) {
s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7);
s->even = s->even << 1 | BIT(key, i ^ 7);
}
#if defined(__arm__)
return;
#else
return s;
#endif
}
#if defined(__arm__)
void crypto1_destroy(struct Crypto1State *state)
{
state->odd = 0;
state->even = 0;
}
#else
void crypto1_destroy(struct Crypto1State *state)
{
free(state);
}
#endif
void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr)
{
int i;

View file

@ -8,7 +8,6 @@
#ifndef __ISO14443CRC_H
#define __ISO14443CRC_H
#include "common.h"
//-----------------------------------------------------------------------------
// Routines to compute the CRCs (two different flavours, just for confusion)

View file

@ -13,6 +13,12 @@
#ifndef _HITAG2_H_
#define _HITAG2_H_
#ifdef _MSC_VER
#define PACKED
#else
#define PACKED __attribute__((packed))
#endif
typedef enum {
RHTSF_CHALLENGE = 01,
RHTSF_KEY = 02,

View file

@ -10,13 +10,11 @@
//-----------------------------------------------------------------------------
#include <stdlib.h>
#include <string.h>
#include <hitag2.h>
#ifndef _HITAGS_H_
#define _HITAGS_H_
#include "hitag2.h"
typedef enum PROTO_STATE {READY=0,INIT,AUTHENTICATE,SELECTED,QUIET,TTF,FAIL} PSTATE; //protocol-state
typedef enum TAG_STATE {NO_OP=0,READING_PAGE,WRITING_PAGE_ACK,WRITING_PAGE_DATA,WRITING_BLOCK_DATA} TSATE; //tag-state
typedef enum SOF_TYPE {STANDARD=0,ADVANCED,FAST_ADVANCED,ONE,NO_BITS} stype; //number of start-of-frame bits

View file

@ -1,17 +1,19 @@
VPATH = ../../common/crapto1
CC = gcc
LD = gcc
CFLAGS = -Wall -Winline -O4
CFLAGS = -I../../common -DSTANDALONE_TOOL -Wall -O4
LDFLAGS =
OBJS = crapto1.o crypto1.o
HEADERS =
EXES = mfkey64 mfkey32
LIBS =
all: $(OBJS) $(EXES) $(LIBS)
OBJS = crypto1.o crapto1.o
EXES = mfkey32 mfkey64
% : %.c $(OBJS)
$(LD) $(CFLAGS) -o $@ $< $(OBJS) $(LDFLAGS)
all: $(OBJS) $(EXES)
%.o : %.c
$(CC) $(CFLAGS) -c -o $@ $<
% : %.c
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $(OBJS) $<
clean:
rm -f $(OBJS) $(EXES) $(LIBS)
rm -f $(OBJS) $(EXES)

View file

@ -1,478 +0,0 @@
/* crapto1.c
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, US$
Copyright (C) 2008-2008 bla <blapost@gmail.com>
*/
#include "crapto1.h"
#include <stdlib.h>
#if !defined LOWMEM && defined __GNUC__
static uint8_t filterlut[1 << 20];
static void __attribute__((constructor)) fill_lut()
{
uint32_t i;
for(i = 0; i < 1 << 20; ++i)
filterlut[i] = filter(i);
}
#define filter(x) (filterlut[(x) & 0xfffff])
#endif
static void quicksort(uint32_t* const start, uint32_t* const stop)
{
uint32_t *it = start + 1, *rit = stop;
if(it > rit)
return;
while(it < rit)
if(*it <= *start)
++it;
else if(*rit > *start)
--rit;
else
*it ^= (*it ^= *rit, *rit ^= *it);
if(*rit >= *start)
--rit;
if(rit != start)
*rit ^= (*rit ^= *start, *start ^= *rit);
quicksort(start, rit - 1);
quicksort(rit + 1, stop);
}
/** binsearch
* Binary search for the first occurence of *stop's MSB in sorted [start,stop]
*/
static inline uint32_t* binsearch(uint32_t *start, uint32_t *stop)
{
uint32_t mid, val = *stop & 0xff000000;
while(start != stop)
if(start[mid = (stop - start) >> 1] > val)
stop = &start[mid];
else
start += mid + 1;
return start;
}
/** update_contribution
* helper, calculates the partial linear feedback contributions and puts in MSB
*/
static inline void
update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)
{
uint32_t p = *item >> 25;
p = p << 1 | parity(*item & mask1);
p = p << 1 | parity(*item & mask2);
*item = p << 24 | (*item & 0xffffff);
}
/** extend_table
* using a bit of the keystream extend the table of possible lfsr states
*/
static inline void
extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
{
in <<= 24;
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else if(filter(*tbl) == bit) {
*++*end = tbl[1];
tbl[1] = tbl[0] | 1;
update_contribution(tbl, m1, m2);
*tbl++ ^= in;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else
*tbl-- = *(*end)--;
}
/** extend_table_simple
* using a bit of the keystream extend the table of possible lfsr states
*/
static inline void extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
{
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1))
*tbl |= filter(*tbl) ^ bit;
else if(filter(*tbl) == bit) {
*++*end = *++tbl;
*tbl = tbl[-1] | 1;
} else
*tbl-- = *(*end)--;
}
/** recover
* recursively narrow down the search space, 4 bits of keystream at a time
*/
static struct Crypto1State*
recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
struct Crypto1State *sl, uint32_t in)
{
uint32_t *o, *e, i;
if(rem == -1) {
for(e = e_head; e <= e_tail; ++e) {
*e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);
for(o = o_head; o <= o_tail; ++o, ++sl) {
sl->even = *o;
sl->odd = *e ^ parity(*o & LF_POLY_ODD);
sl[1].odd = sl[1].even = 0;
}
}
return sl;
}
for(i = 0; i < 4 && rem--; i++) {
oks >>= 1;
eks >>= 1;
in >>= 2;
extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1,
LF_POLY_ODD << 1, 0);
if(o_head > o_tail)
return sl;
extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD,
LF_POLY_EVEN << 1 | 1, in & 3);
if(e_head > e_tail)
return sl;
}
quicksort(o_head, o_tail);
quicksort(e_head, e_tail);
while(o_tail >= o_head && e_tail >= e_head)
if(((*o_tail ^ *e_tail) >> 24) == 0) {
o_tail = binsearch(o_head, o = o_tail);
e_tail = binsearch(e_head, e = e_tail);
sl = recover(o_tail--, o, oks,
e_tail--, e, eks, rem, sl, in);
}
else if(*o_tail > *e_tail)
o_tail = binsearch(o_head, o_tail) - 1;
else
e_tail = binsearch(e_head, e_tail) - 1;
return sl;
}
/** lfsr_recovery
* recover the state of the lfsr given 32 bits of the keystream
* additionally you can use the in parameter to specify the value
* that was fed into the lfsr at the time the keystream was generated
*/
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
{
struct Crypto1State *statelist;
uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
uint32_t *even_head = 0, *even_tail = 0, eks = 0;
int i;
for(i = 31; i >= 0; i -= 2)
oks = oks << 1 | BEBIT(ks2, i);
for(i = 30; i >= 0; i -= 2)
eks = eks << 1 | BEBIT(ks2, i);
odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
even_head = even_tail = malloc(sizeof(uint32_t) << 21);
statelist = malloc(sizeof(struct Crypto1State) << 18);
if(!odd_tail-- || !even_tail-- || !statelist) {
free(statelist);
statelist = 0;
goto out;
}
statelist->odd = statelist->even = 0;
for(i = 1 << 20; i >= 0; --i) {
if(filter(i) == (oks & 1))
*++odd_tail = i;
if(filter(i) == (eks & 1))
*++even_tail = i;
}
for(i = 0; i < 4; i++) {
extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
}
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);
recover(odd_head, odd_tail, oks,
even_head, even_tail, eks, 11, statelist, in << 1);
out:
free(odd_head);
free(even_head);
return statelist;
}
static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
0x7EC7EE90, 0x7F63F748, 0x79117020};
static const uint32_t T1[] = {
0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};
static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
/** Reverse 64 bits of keystream into possible cipher states
* Variation mentioned in the paper. Somewhat optimized version
*/
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
{
struct Crypto1State *statelist, *sl;
uint8_t oks[32], eks[32], hi[32];
uint32_t low = 0, win = 0;
uint32_t *tail, table[1 << 16];
int i, j;
sl = statelist = malloc(sizeof(struct Crypto1State) << 4);
if(!sl)
return 0;
sl->odd = sl->even = 0;
for(i = 30; i >= 0; i -= 2) {
oks[i >> 1] = BEBIT(ks2, i);
oks[16 + (i >> 1)] = BEBIT(ks3, i);
}
for(i = 31; i >= 0; i -= 2) {
eks[i >> 1] = BEBIT(ks2, i);
eks[16 + (i >> 1)] = BEBIT(ks3, i);
}
for(i = 0xfffff; i >= 0; --i) {
if (filter(i) != oks[0])
continue;
*(tail = table) = i;
for(j = 1; tail >= table && j < 29; ++j)
extend_table_simple(table, &tail, oks[j]);
if(tail < table)
continue;
for(j = 0; j < 19; ++j)
low = low << 1 | parity(i & S1[j]);
for(j = 0; j < 32; ++j)
hi[j] = parity(i & T1[j]);
for(; tail >= table; --tail) {
for(j = 0; j < 3; ++j) {
*tail = *tail << 1;
*tail |= parity((i & C1[j]) ^ (*tail & C2[j]));
if(filter(*tail) != oks[29 + j])
goto continue2;
}
for(j = 0; j < 19; ++j)
win = win << 1 | parity(*tail & S2[j]);
win ^= low;
for(j = 0; j < 32; ++j) {
win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);
if(filter(win) != eks[j])
goto continue2;
}
*tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);
sl->odd = *tail ^ parity(LF_POLY_ODD & win);
sl->even = win;
++sl;
sl->odd = sl->even = 0;
continue2:;
}
}
return statelist;
}
/** lfsr_rollback_bit
* Rollback the shift register in order to get previous states
*/
uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
{
int out;
uint8_t ret;
s->odd &= 0xffffff;
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
out = s->even & 1;
out ^= LF_POLY_EVEN & (s->even >>= 1);
out ^= LF_POLY_ODD & s->odd;
out ^= !!in;
out ^= (ret = filter(s->odd)) & !!fb;
s->even |= parity(out) << 23;
return ret;
}
/** lfsr_rollback_byte
* Rollback the shift register in order to get previous states
*/
uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
{
int i, ret = 0;
for (i = 7; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
return ret;
}
/** lfsr_rollback_word
* Rollback the shift register in order to get previous states
*/
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
{
int i;
uint32_t ret = 0;
for (i = 31; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
return ret;
}
/** nonce_distance
* x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
*/
static uint16_t *dist = 0;
int nonce_distance(uint32_t from, uint32_t to)
{
uint16_t x, i;
if(!dist) {
dist = malloc(2 << 16);
if(!dist)
return -1;
for (x = i = 1; i; ++i) {
dist[(x & 0xff) << 8 | x >> 8] = i;
x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
}
}
return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
}
static uint32_t fastfwd[2][8] = {
{ 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
{ 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
/** lfsr_prefix_ks
*
* Is an exported helper function from the common prefix attack
* Described in the "dark side" paper. It returns an -1 terminated array
* of possible partial(21 bit) secret state.
* The required keystream(ks) needs to contain the keystream that was used to
* encrypt the NACK which is observed when varying only the 3 last bits of Nr
* only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
*/
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
{
uint32_t c, entry, *candidates = malloc(4 << 10);
int i, size = 0, good;
if(!candidates)
return 0;
for(i = 0; i < 1 << 21; ++i) {
for(c = 0, good = 1; good && c < 8; ++c) {
entry = i ^ fastfwd[isodd][c];
good &= (BIT(ks[c], isodd) == filter(entry >> 1));
good &= (BIT(ks[c], isodd + 2) == filter(entry));
}
if(good)
candidates[size++] = i;
}
candidates[size] = -1;
return candidates;
}
/** check_pfx_parity
* helper function which eliminates possible secret states using parity bits
*/
static struct Crypto1State*
check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8],
uint32_t odd, uint32_t even, struct Crypto1State* sl)
{
uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;
for(c = 0; good && c < 8; ++c) {
sl->odd = odd ^ fastfwd[1][c];
sl->even = even ^ fastfwd[0][c];
lfsr_rollback_bit(sl, 0, 0);
lfsr_rollback_bit(sl, 0, 0);
ks3 = lfsr_rollback_bit(sl, 0, 0);
ks2 = lfsr_rollback_word(sl, 0, 0);
ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);
nr = ks1 ^ (prefix | c << 5);
rr = ks2 ^ rresp;
good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
}
return sl + good;
}
/** lfsr_common_prefix
* Implentation of the common prefix attack.
*/
struct Crypto1State*
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])
{
struct Crypto1State *statelist, *s;
uint32_t *odd, *even, *o, *e, top;
odd = lfsr_prefix_ks(ks, 1);
even = lfsr_prefix_ks(ks, 0);
s = statelist = malloc((sizeof *statelist) << 20);
if(!s || !odd || !even) {
free(statelist);
statelist = 0;
goto out;
}
for(o = odd; *o + 1; ++o)
for(e = even; *e + 1; ++e)
for(top = 0; top < 64; ++top) {
*o += 1 << 21;
*e += (!(top & 7) + 1) << 21;
s = check_pfx_parity(pfx, rr, par, *o, *e, s);
}
s->odd = s->even = 0;
out:
free(odd);
free(even);
return statelist;
}

View file

@ -1,93 +0,0 @@
/* crapto1.h
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, US$
Copyright (C) 2008-2008 bla <blapost@gmail.com>
*/
#ifndef CRAPTO1_INCLUDED
#define CRAPTO1_INCLUDED
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
struct Crypto1State {uint32_t odd, even;};
struct Crypto1State* crypto1_create(uint64_t);
void crypto1_destroy(struct Crypto1State*);
void crypto1_get_lfsr(struct Crypto1State*, uint64_t*);
uint8_t crypto1_bit(struct Crypto1State*, uint8_t, int);
uint8_t crypto1_byte(struct Crypto1State*, uint8_t, int);
uint32_t crypto1_word(struct Crypto1State*, uint32_t, int);
uint32_t prng_successor(uint32_t x, uint32_t n);
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in);
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3);
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd);
struct Crypto1State*
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]);
uint8_t lfsr_rollback_bit(struct Crypto1State* s, uint32_t in, int fb);
uint8_t lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb);
uint32_t lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb);
int nonce_distance(uint32_t from, uint32_t to);
#define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\
uint32_t __n = 0,__M = 0, N = 0;\
int __i;\
for(; __n < 1 << 16; N = prng_successor(__M = ++__n, 16))\
for(__i = FSIZE - 1; __i >= 0; __i--)\
if(BIT(FILTER, __i) ^ parity(__M & 0xFF01))\
break;\
else if(__i)\
__M = prng_successor(__M, (__i == 7) ? 48 : 8);\
else
#define LF_POLY_ODD (0x29CE5C)
#define LF_POLY_EVEN (0x870804)
#define BIT(x, n) ((x) >> (n) & 1)
#define BEBIT(x, n) BIT(x, (n) ^ 24)
static inline int parity(uint32_t x)
{
#if !defined __i386__ || !defined __GNUC__
x ^= x >> 16;
x ^= x >> 8;
x ^= x >> 4;
return BIT(0x6996, x & 0xf);
#else
asm( "movl %1, %%eax\n"
"mov %%ax, %%cx\n"
"shrl $0x10, %%eax\n"
"xor %%ax, %%cx\n"
"xor %%ch, %%cl\n"
"setpo %%al\n"
"movzx %%al, %0\n": "=r"(x) : "r"(x): "eax","ecx");
return x;
#endif
}
static inline int filter(uint32_t const x)
{
uint32_t f;
f = 0xf22c0 >> (x & 0xf) & 16;
f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8;
f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4;
f |= 0x1e458 >> (x >> 12 & 0xf) & 2;
f |= 0x0d938 >> (x >> 16 & 0xf) & 1;
return BIT(0xEC57E80A, f);
}
#ifdef __cplusplus
}
#endif
#endif

View file

@ -1,93 +0,0 @@
/* crypto1.c
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, US
Copyright (C) 2008-2008 bla <blapost@gmail.com>
*/
#include "crapto1.h"
#include <stdlib.h>
#define SWAPENDIAN(x)\
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
struct Crypto1State * crypto1_create(uint64_t key)
{
struct Crypto1State *s = malloc(sizeof(*s));
int i;
for(i = 47;s && i > 0; i -= 2) {
s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7);
s->even = s->even << 1 | BIT(key, i ^ 7);
}
return s;
}
void crypto1_destroy(struct Crypto1State *state)
{
free(state);
}
void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr)
{
int i;
for(*lfsr = 0, i = 23; i >= 0; --i) {
*lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3);
*lfsr = *lfsr << 1 | BIT(state->even, i ^ 3);
}
}
uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
{
uint32_t feedin;
uint8_t ret = filter(s->odd);
feedin = ret & !!is_encrypted;
feedin ^= !!in;
feedin ^= LF_POLY_ODD & s->odd;
feedin ^= LF_POLY_EVEN & s->even;
s->even = s->even << 1 | parity(feedin);
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
return ret;
}
uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted)
{
uint8_t i, ret = 0;
for (i = 0; i < 8; ++i)
ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i;
return ret;
}
uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
{
uint32_t i, ret = 0;
for (i = 0; i < 32; ++i)
ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24);
return ret;
}
/* prng_successor
* helper used to obscure the keystream during authentication
*/
uint32_t prng_successor(uint32_t x, uint32_t n)
{
SWAPENDIAN(x);
while(n--)
x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31;
return SWAPENDIAN(x);
}

View file

@ -1,54 +1,25 @@
#include <inttypes.h>
#include "crapto1.h"
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include "mfkey32.h"
#include "crapto1/crapto1.h"
int main (int argc, char *argv[]) {
struct Crypto1State *s,*t;
uint64_t key; // recovered key
uint32_t uid; // serial number
uint32_t nt; // tag challenge
uint32_t nr0_enc; // first encrypted reader challenge
uint32_t ar0_enc; // first encrypted reader response
uint32_t nr1_enc; // second encrypted reader challenge
uint32_t ar1_enc; // second encrypted reader response
uint32_t ks2; // keystream used to encrypt reader response
printf("MIFARE Classic key recovery - based 32 bits of keystream\n");
printf("Recover key from two 32-bit reader authentication answers only!\n\n");
if (argc < 7) {
printf(" syntax: %s <uid> <nt> <{nr_0}> <{ar_0}> <{nr_1}> <{ar_1}>\n\n",argv[0]);
return 1;
}
sscanf(argv[1],"%x",&uid);
sscanf(argv[2],"%x",&nt);
sscanf(argv[3],"%x",&nr0_enc);
sscanf(argv[4],"%x",&ar0_enc);
sscanf(argv[5],"%x",&nr1_enc);
sscanf(argv[6],"%x",&ar1_enc);
printf("Recovering key for:\n");
printf(" uid: %08x\n",uid);
printf(" nt: %08x\n",nt);
printf(" {nr_0}: %08x\n",nr0_enc);
printf(" {ar_0}: %08x\n",ar0_enc);
printf(" {nr_1}: %08x\n",nr1_enc);
printf(" {ar_1}: %08x\n",ar1_enc);
// Generate lfsr succesors of the tag challenge
printf("\nLFSR succesors of the tag challenge:\n");
printf(" nt': %08x\n",prng_successor(nt, 64));
printf(" nt'': %08x\n",prng_successor(nt, 96));
// Extract the keystream from the messages
printf("\nKeystream used to generate {ar} and {at}:\n");
ks2 = ar0_enc ^ prng_successor(nt, 64);
printf(" ks2: %08x\n",ks2);
// 32 bit recover key from 2 nonces
bool mfkey32(nonces_t data, uint64_t *outputkey) {
struct Crypto1State *s,*t;
uint64_t outkey = 0;
uint64_t key=0; // recovered key
uint32_t uid = data.cuid;
uint32_t nt = data.nonce; // first tag challenge (nonce)
uint32_t nr0_enc = data.nr; // first encrypted reader challenge
uint32_t ar0_enc = data.ar; // first encrypted reader response
uint32_t nr1_enc = data.nr2; // second encrypted reader challenge
uint32_t ar1_enc = data.ar2; // second encrypted reader response
bool isSuccess = false;
uint8_t counter=0;
s = lfsr_recovery32(ar0_enc ^ prng_successor(nt, 64), 0);
for(t = s; t->odd | t->even; ++t) {
lfsr_rollback_word(t, 0, 0);
lfsr_rollback_word(t, nr0_enc, 1);
@ -57,11 +28,121 @@ int main (int argc, char *argv[]) {
crypto1_word(t, uid ^ nt, 0);
crypto1_word(t, nr1_enc, 1);
if (ar1_enc == (crypto1_word(t, 0, 0) ^ prng_successor(nt, 64))) {
printf("\nFound Key: [%012" PRIx64 "]\n\n",key);
break;
outkey = key;
counter++;
if (counter==20) break;
}
}
free(s);
return 0;
isSuccess = (counter == 1);
*outputkey = ( isSuccess ) ? outkey : 0;
crypto1_destroy(s);
/* //un-comment to save all keys to a stats.txt file
FILE *fout;
if ((fout = fopen("stats.txt","ab")) == NULL) {
PrintAndLog("Could not create file name stats.txt");
return 1;
}
fprintf(fout, "mfkey32,%d,%08x,%d,%s,%04x%08x,%.0Lf\r\n", counter, data.cuid, data.sector, (data.keytype) ? "B" : "A", (uint32_t)(outkey>>32) & 0xFFFF,(uint32_t)(outkey&0xFFFFFFFF),(long double)t1);
fclose(fout);
*/
return isSuccess;
}
bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey) {
struct Crypto1State *s, *t;
uint64_t outkey = 0;
uint64_t key = 0; // recovered key
uint32_t uid = data.cuid;
uint32_t nt0 = data.nonce; // first tag challenge (nonce)
uint32_t nr0_enc = data.nr; // first encrypted reader challenge
uint32_t ar0_enc = data.ar; // first encrypted reader response
uint32_t nt1 = data.nonce2; // second tag challenge (nonce)
uint32_t nr1_enc = data.nr2; // second encrypted reader challenge
uint32_t ar1_enc = data.ar2; // second encrypted reader response
bool isSuccess = false;
int counter = 0;
//PrintAndLog("Enter mfkey32_moebius");
s = lfsr_recovery32(ar0_enc ^ prng_successor(nt0, 64), 0);
for(t = s; t->odd | t->even; ++t) {
lfsr_rollback_word(t, 0, 0);
lfsr_rollback_word(t, nr0_enc, 1);
lfsr_rollback_word(t, uid ^ nt0, 0);
crypto1_get_lfsr(t, &key);
crypto1_word(t, uid ^ nt1, 0);
crypto1_word(t, nr1_enc, 1);
if (ar1_enc == (crypto1_word(t, 0, 0) ^ prng_successor(nt1, 64))) {
//PrintAndLog("Found Key: [%012" PRIx64 "]",key);
outkey=key;
++counter;
if (counter==20)
break;
}
}
isSuccess = (counter == 1);
*outputkey = ( isSuccess ) ? outkey : 0;
crypto1_destroy(s);
/* // un-comment to output all keys to stats.txt
FILE *fout;
if ((fout = fopen("stats.txt","ab")) == NULL) {
PrintAndLog("Could not create file name stats.txt");
return 1;
}
fprintf(fout, "moebius,%d,%08x,%d,%s,%04x%08x,%0.Lf\r\n", counter, data.cuid, data.sector, (data.keytype) ? "B" : "A", (uint32_t) (outkey>>32),(uint32_t)(outkey&0xFFFFFFFF),(long double)t1);
fclose(fout);
*/
return isSuccess;
}
#if defined(STANDALONE_TOOL)
#include <stdio.h>
int main (int argc, char *argv[]) {
nonces_t data;
uint32_t ks2; // keystream used to encrypt reader response
uint64_t key; // recovered key
printf("MIFARE Classic key recovery - based on 32 bits of keystream\n");
printf("Recover key from two 32-bit reader authentication answers only!\n\n");
if (argc < 7) {
printf(" syntax: %s <uid> <nt> <{nr_0}> <{ar_0}> <{nr_1}> <{ar_1}>\n\n",argv[0]);
return 1;
}
sscanf(argv[1],"%x",&data.cuid);
sscanf(argv[2],"%x",&data.nonce);
sscanf(argv[3],"%x",&data.nr);
sscanf(argv[4],"%x",&data.ar);
sscanf(argv[5],"%x",&data.nr2);
sscanf(argv[6],"%x",&data.ar2);
printf("Recovering key for:\n");
printf(" uid: %08x\n",data.cuid);
printf(" nt: %08x\n",data.nonce);
printf(" {nr_0}: %08x\n",data.nr);
printf(" {ar_0}: %08x\n",data.ar);
printf(" {nr_1}: %08x\n",data.nr2);
printf(" {ar_1}: %08x\n",data.ar2);
// Generate lfsr succesors of the tag challenge
printf("\nLFSR succesors of the tag challenge:\n");
printf(" nt': %08x\n",prng_successor(data.nonce, 64));
printf(" nt'': %08x\n",prng_successor(data.nonce, 96));
// Extract the keystream from the messages
printf("\nKeystream used to generate {ar} and {at}:\n");
ks2 = data.ar ^ prng_successor(data.nonce, 64);
printf(" ks2: %08x\n",ks2);
if (mfkey32(data, &key)) {
printf("Recovered key: %012" PRIx64 "\n", key);
} else {
printf("Couldn't recover key.\n");
}
}
#endif

22
tools/mfkey/mfkey32.h Normal file
View file

@ -0,0 +1,22 @@
#ifndef __MFKEY32_H
#define __MFKEY32_H
#include <inttypes.h>
#include <stdbool.h>
typedef struct {
uint32_t cuid;
uint8_t sector;
uint8_t keytype;
uint32_t nonce;
uint32_t ar;
uint32_t nr;
uint32_t nonce2;
uint32_t ar2;
uint32_t nr2;
} nonces_t;
bool mfkey32(nonces_t data, uint64_t *outputkey);
bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey);
#endif

View file

@ -1,105 +1,143 @@
#include <inttypes.h>
#include "crapto1.h"
#include <stdio.h>
#include <string.h>
int main (int argc, char *argv[]) {
struct Crypto1State *revstate;
uint64_t key; // recovered key
uint32_t uid; // serial number
uint32_t nt; // tag challenge
uint32_t nr_enc; // encrypted reader challenge
uint32_t ar_enc; // encrypted reader response
uint32_t at_enc; // encrypted tag response
uint32_t ks2; // keystream used to encrypt reader response
uint32_t ks3; // keystream used to encrypt tag response
printf("MIFARE Classic key recovery - based 64 bits of keystream\n");
printf("Recover key from only one complete authentication!\n\n");
if (argc < 6 ) {
printf(" syntax: %s <uid> <nt> <{nr}> <{ar}> <{at}> [enc] [enc...]\n\n", argv[0]);
return 1;
}
int encc = argc - 6;
int enclen[encc];
uint8_t enc[encc][120];
sscanf(argv[1], "%x", &uid);
sscanf(argv[2], "%x", &nt);
sscanf(argv[3], "%x", &nr_enc);
sscanf(argv[4], "%x", &ar_enc);
sscanf(argv[5], "%x", &at_enc);
for (int i = 0; i < encc; i++) {
enclen[i] = strlen(argv[i + 6]) / 2;
for (int i2 = 0; i2 < enclen[i]; i2++) {
sscanf(argv[i+6] + i2*2,"%2x", (uint8_t*)&enc[i][i2]);
}
}
printf("Recovering key for:\n");
printf(" uid: %08x\n", uid);
printf(" nt: %08x\n", nt);
printf(" {nr}: %08x\n", nr_enc);
printf(" {ar}: %08x\n", ar_enc);
printf(" {at}: %08x\n", at_enc);
for (int i = 0; i < encc; i++) {
printf("{enc%d}: ", i);
for (int i2 = 0; i2 < enclen[i]; i2++) {
printf("%02x", enc[i][i2]);
}
printf("\n");
}
#include "crapto1/crapto1.h"
/*
uint32_t uid = 0x9c599b32;
uint32_t tag_challenge = 0x82a4166c;
uint32_t nr_enc = 0xa1e458ce;
uint32_t reader_response = 0x6eea41e0;
uint32_t tag_response = 0x5cadf439;
*/
// Generate lfsr succesors of the tag challenge
printf("\nLFSR succesors of the tag challenge:\n");
printf(" nt': %08x\n",prng_successor(nt, 64));
printf(" nt'': %08x\n",prng_successor(nt, 96));
// Extract the keystream from the messages
printf("\nKeystream used to generate {ar} and {at}:\n");
ks2 = ar_enc ^ prng_successor(nt, 64);
ks3 = at_enc ^ prng_successor(nt, 96);
printf(" ks2: %08x\n",ks2);
printf(" ks3: %08x\n",ks3);
revstate = lfsr_recovery64(ks2, ks3);
// Decrypting communication using keystream if presented
if (argc > 6 ) {
printf("\nDecrypted communication:\n");
uint8_t ks4;
int rollb = 0;
for (int i = 0; i < encc; i++) {
printf("{dec%d}: ", i);
for (int i2 = 0; i2 < enclen[i]; i2++) {
ks4 = crypto1_byte(revstate, 0, 0);
printf("%02x", ks4 ^ enc[i][i2]);
rollb += 1;
}
printf("\n");
}
for (int i = 0; i < rollb; i++) {
lfsr_rollback_byte(revstate, 0, 0);
}
}
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, nr_enc, 1);
lfsr_rollback_word(revstate, uid ^ nt, 0);
crypto1_get_lfsr(revstate, &key);
printf("\nFound Key: [%012" PRIx64"]\n\n",key);
crypto1_destroy(revstate);
return 0;
int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey)
{
#if !defined(STANDALONE_TOOL)
PrintAndLog("Enter mfkey64");
#endif
uint64_t key = 0; // recovered key
struct Crypto1State *revstate;
uint32_t ks2; // keystream used to encrypt reader response
uint32_t ks3; // keystream used to encrypt tag response
// Extract the keystream from the messages
ks2 = ar_enc ^ prng_successor(nt, 64);
ks3 = at_enc ^ prng_successor(nt, 96);
revstate = lfsr_recovery64(ks2, ks3);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, nr_enc, 1);
lfsr_rollback_word(revstate, uid ^ nt, 0);
crypto1_get_lfsr(revstate, &key);
crypto1_destroy(revstate);
#if !defined(STANDALONE_TOOL)
PrintAndLog("Found Key: [%012" PRIx64 "]", key);
#endif
*outputkey = key;
return 0;
}
#if !defined(STANDALONE_TOOL)
int tryMfk64_ex(uint8_t *data, uint64_t *outputkey)
{
uint32_t uid = le32toh(data);
uint32_t nt = le32toh(data+4); // tag challenge
uint32_t nr_enc = le32toh(data+8); // encrypted reader challenge
uint32_t ar_enc = le32toh(data+12); // encrypted reader response
uint32_t at_enc = le32toh(data+16); // encrypted tag response
return tryMfk64(uid, nt, nr_enc, ar_enc, at_enc, outputkey);
}
#endif
#if defined(STANDALONE_TOOL)
#include <stdio.h>
#include <strings.h>
int main (int argc, char *argv[])
{
uint32_t uid; // serial number
uint32_t nt; // tag challenge
uint32_t nr_enc; // encrypted reader challenge
uint32_t ar_enc; // encrypted reader response
uint32_t at_enc; // encrypted tag response
uint64_t key = 0; // recovered key
struct Crypto1State *revstate;
uint32_t ks2; // keystream used to encrypt reader response
uint32_t ks3; // keystream used to encrypt tag response
printf("MIFARE Classic key recovery - based 64 bits of keystream\n");
printf("Recover key from only one complete authentication!\n\n");
if (argc < 6 ) {
printf(" syntax: %s <uid> <nt> <{nr}> <{ar}> <{at}> [enc] [enc...]\n\n", argv[0]);
return 1;
}
int encc = argc - 6;
int enclen[encc];
uint8_t enc[encc][120];
sscanf(argv[1], "%x", &uid);
sscanf(argv[2], "%x", &nt);
sscanf(argv[3], "%x", &nr_enc);
sscanf(argv[4], "%x", &ar_enc);
sscanf(argv[5], "%x", &at_enc);
for (int i = 0; i < encc; i++) {
enclen[i] = strlen(argv[i + 6]) / 2;
for (int i2 = 0; i2 < enclen[i]; i2++) {
sscanf(argv[i+6] + i2*2,"%2x", (unsigned int*)&enc[i][i2]);
}
}
printf("Recovering key for:\n");
printf(" uid: %08x\n", uid);
printf(" nt: %08x\n", nt);
printf(" {nr}: %08x\n", nr_enc);
printf(" {ar}: %08x\n", ar_enc);
printf(" {at}: %08x\n", at_enc);
for (int i = 0; i < encc; i++) {
printf("{enc%d}: ", i);
for (int i2 = 0; i2 < enclen[i]; i2++) {
printf("%02x", enc[i][i2]);
}
printf("\n");
}
printf("\nLFSR successors of the tag challenge:\n");
printf(" nt' : %08x\n",prng_successor(nt, 64));
printf(" nt'': %08x\n",prng_successor(nt, 96));
// Extract the keystream from the messages
ks2 = ar_enc ^ prng_successor(nt, 64);
ks3 = at_enc ^ prng_successor(nt, 96);
revstate = lfsr_recovery64(ks2, ks3);
printf("\nKeystream used to generate {ar} and {at}:\n");
printf(" ks2: %08x\n",ks2);
printf(" ks3: %08x\n",ks3);
// Decrypting communication using keystream if presented
if (argc > 6 ) {
printf("\nDecrypted communication:\n");
uint8_t ks4;
int rollb = 0;
for (int i = 0; i < encc; i++) {
printf("{dec%d}: ", i);
for (int i2 = 0; i2 < enclen[i]; i2++) {
ks4 = crypto1_byte(revstate, 0, 0);
printf("%02x", ks4 ^ enc[i][i2]);
rollb += 1;
}
printf("\n");
}
for (int i = 0; i < rollb; i++) {
lfsr_rollback_byte(revstate, 0, 0);
}
}
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, nr_enc, 1);
lfsr_rollback_word(revstate, uid ^ nt, 0);
crypto1_get_lfsr(revstate, &key);
crypto1_destroy(revstate);
printf("\nFound Key: [%012" PRIx64"]\n\n",key);
}
#endif

View file

@ -1,6 +1,7 @@
VPATH = ../../common/crapto1
CC = gcc
LD = gcc
CFLAGS = -Wall -O4 -c
CFLAGS = -I../../common -DSTANDALONE_TOOL -Wall -O4
LDFLAGS =
OBJS = crypto1.o crapto1.o
@ -10,13 +11,10 @@ EXES = nonce2key
all: $(OBJS) $(EXES)
%.o : %.c
$(CC) $(CFLAGS) -o $@ $<
$(CC) $(CFLAGS) -c -o $@ $<
% : %.c
$(LD) $(LDFLAGS) -o $@ $(OBJS) $<
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $(OBJS) $<
crypto1test: libnfc $(OBJS)
$(LD) $(LDFLAGS) -o crypto1test crypto1test.c $(OBJS)
clean:
rm -f $(OBJS) $(EXES)

View file

@ -1,494 +0,0 @@
/* crapto1.c
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, US$
Copyright (C) 2008-2008 bla <blapost@gmail.com>
*/
#include "crapto1.h"
#include <stdlib.h>
#if !defined LOWMEM && defined __GNUC__
static uint8_t filterlut[1 << 20];
static void __attribute__((constructor)) fill_lut()
{
uint32_t i;
for(i = 0; i < 1 << 20; ++i)
filterlut[i] = filter(i);
}
#define filter(x) (filterlut[(x) & 0xfffff])
#endif
static void quicksort(uint32_t* const start, uint32_t* const stop)
{
uint32_t *it = start + 1, *rit = stop;
if(it > rit)
return;
while(it < rit)
if(*it <= *start)
++it;
else if(*rit > *start)
--rit;
else
*it ^= (*it ^= *rit, *rit ^= *it);
if(*rit >= *start)
--rit;
if(rit != start)
*rit ^= (*rit ^= *start, *start ^= *rit);
quicksort(start, rit - 1);
quicksort(rit + 1, stop);
}
/** binsearch
* Binary search for the first occurence of *stop's MSB in sorted [start,stop]
*/
static inline uint32_t*
binsearch(uint32_t *start, uint32_t *stop)
{
uint32_t mid, val = *stop & 0xff000000;
while(start != stop)
if(start[mid = (stop - start) >> 1] > val)
stop = &start[mid];
else
start += mid + 1;
return start;
}
/** update_contribution
* helper, calculates the partial linear feedback contributions and puts in MSB
*/
static inline void
update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)
{
uint32_t p = *item >> 25;
p = p << 1 | parity(*item & mask1);
p = p << 1 | parity(*item & mask2);
*item = p << 24 | (*item & 0xffffff);
}
/** extend_table
* using a bit of the keystream extend the table of possible lfsr states
*/
static inline void
extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
{
in <<= 24;
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else if(filter(*tbl) == bit) {
*++*end = tbl[1];
tbl[1] = tbl[0] | 1;
update_contribution(tbl, m1, m2);
*tbl++ ^= in;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else
*tbl-- = *(*end)--;
}
/** extend_table_simple
* using a bit of the keystream extend the table of possible lfsr states
*/
static inline void
extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
{
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit;
} else if(filter(*tbl) == bit) {
*++*end = *++tbl;
*tbl = tbl[-1] | 1;
} else
*tbl-- = *(*end)--;
}
/** recover
* recursively narrow down the search space, 4 bits of keystream at a time
*/
static struct Crypto1State*
recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
struct Crypto1State *sl, uint32_t in)
{
uint32_t *o, *e, i;
if(rem == -1) {
for(e = e_head; e <= e_tail; ++e) {
*e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);
for(o = o_head; o <= o_tail; ++o, ++sl) {
sl->even = *o;
sl->odd = *e ^ parity(*o & LF_POLY_ODD);
sl[1].odd = sl[1].even = 0;
}
}
return sl;
}
for(i = 0; i < 4 && rem--; i++) {
extend_table(o_head, &o_tail, (oks >>= 1) & 1,
LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);
if(o_head > o_tail)
return sl;
extend_table(e_head, &e_tail, (eks >>= 1) & 1,
LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, (in >>= 2) & 3);
if(e_head > e_tail)
return sl;
}
quicksort(o_head, o_tail);
quicksort(e_head, e_tail);
while(o_tail >= o_head && e_tail >= e_head)
if(((*o_tail ^ *e_tail) >> 24) == 0) {
o_tail = binsearch(o_head, o = o_tail);
e_tail = binsearch(e_head, e = e_tail);
sl = recover(o_tail--, o, oks,
e_tail--, e, eks, rem, sl, in);
}
else if(*o_tail > *e_tail)
o_tail = binsearch(o_head, o_tail) - 1;
else
e_tail = binsearch(e_head, e_tail) - 1;
return sl;
}
/** lfsr_recovery
* recover the state of the lfsr given 32 bits of the keystream
* additionally you can use the in parameter to specify the value
* that was fed into the lfsr at the time the keystream was generated
*/
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
{
struct Crypto1State *statelist;
uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
uint32_t *even_head = 0, *even_tail = 0, eks = 0;
int i;
for(i = 31; i >= 0; i -= 2)
oks = oks << 1 | BEBIT(ks2, i);
for(i = 30; i >= 0; i -= 2)
eks = eks << 1 | BEBIT(ks2, i);
odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
even_head = even_tail = malloc(sizeof(uint32_t) << 21);
statelist = malloc(sizeof(struct Crypto1State) << 18);
if(!odd_tail-- || !even_tail-- || !statelist)
goto out;
statelist->odd = statelist->even = 0;
for(i = 1 << 20; i >= 0; --i) {
if(filter(i) == (oks & 1))
*++odd_tail = i;
if(filter(i) == (eks & 1))
*++even_tail = i;
}
for(i = 0; i < 4; i++) {
extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
}
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);
recover(odd_head, odd_tail, oks,
even_head, even_tail, eks, 11, statelist, in << 1);
out:
free(odd_head);
free(even_head);
return statelist;
}
static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
0x7EC7EE90, 0x7F63F748, 0x79117020};
static const uint32_t T1[] = {
0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};
static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
/** Reverse 64 bits of keystream into possible cipher states
* Variation mentioned in the paper. Somewhat optimized version
*/
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
{
struct Crypto1State *statelist, *sl;
uint8_t oks[32], eks[32], hi[32];
uint32_t low = 0, win = 0;
uint32_t *tail, table[1 << 16];
int i, j;
sl = statelist = malloc(sizeof(struct Crypto1State) << 4);
if(!sl)
return 0;
sl->odd = sl->even = 0;
for(i = 30; i >= 0; i -= 2) {
oks[i >> 1] = BIT(ks2, i ^ 24);
oks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
}
for(i = 31; i >= 0; i -= 2) {
eks[i >> 1] = BIT(ks2, i ^ 24);
eks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
}
for(i = 0xfffff; i >= 0; --i) {
if (filter(i) != oks[0])
continue;
*(tail = table) = i;
for(j = 1; tail >= table && j < 29; ++j)
extend_table_simple(table, &tail, oks[j]);
if(tail < table)
continue;
for(j = 0; j < 19; ++j)
low = low << 1 | parity(i & S1[j]);
for(j = 0; j < 32; ++j)
hi[j] = parity(i & T1[j]);
for(; tail >= table; --tail) {
for(j = 0; j < 3; ++j) {
*tail = *tail << 1;
*tail |= parity((i & C1[j]) ^ (*tail & C2[j]));
if(filter(*tail) != oks[29 + j])
goto continue2;
}
for(j = 0; j < 19; ++j)
win = win << 1 | parity(*tail & S2[j]);
win ^= low;
for(j = 0; j < 32; ++j) {
win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);
if(filter(win) != eks[j])
goto continue2;
}
*tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);
sl->odd = *tail ^ parity(LF_POLY_ODD & win);
sl->even = win;
++sl;
sl->odd = sl->even = 0;
continue2:;
}
}
return statelist;
}
/** lfsr_rollback_bit
* Rollback the shift register in order to get previous states
*/
void lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
{
int out;
s->odd &= 0xffffff;
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
out = s->even & 1;
out ^= LF_POLY_EVEN & (s->even >>= 1);
out ^= LF_POLY_ODD & s->odd;
out ^= !!in;
out ^= filter(s->odd) & !!fb;
s->even |= parity(out) << 23;
}
/** lfsr_rollback_byte
* Rollback the shift register in order to get previous states
*/
void lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
{
int i;
for (i = 7; i >= 0; --i)
lfsr_rollback_bit(s, BEBIT(in, i), fb);
}
/** lfsr_rollback_word
* Rollback the shift register in order to get previous states
*/
void lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
{
int i;
for (i = 31; i >= 0; --i)
lfsr_rollback_bit(s, BEBIT(in, i), fb);
}
/** nonce_distance
* x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
*/
static uint16_t *dist = 0;
int nonce_distance(uint32_t from, uint32_t to)
{
uint16_t x, i;
if(!dist) {
dist = malloc(2 << 16);
if(!dist)
return -1;
for (x = i = 1; i; ++i) {
dist[(x & 0xff) << 8 | x >> 8] = i;
x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
}
}
return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
}
static uint32_t fastfwd[2][8] = {
{ 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
{ 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
/** lfsr_prefix_ks
*
* Is an exported helper function from the common prefix attack
* Described in the "dark side" paper. It returns an -1 terminated array
* of possible partial(21 bit) secret state.
* The required keystream(ks) needs to contain the keystream that was used to
* encrypt the NACK which is observed when varying only the 4 last bits of Nr
* only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
*/
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
{
uint32_t *candidates = malloc(4 << 21);
uint32_t c, entry;
int size, i;
if(!candidates)
return 0;
size = (1 << 21) - 1;
for(i = 0; i <= size; ++i)
candidates[i] = i;
for(c = 0; c < 8; ++c)
for(i = 0;i <= size; ++i) {
entry = candidates[i] ^ fastfwd[isodd][c];
if(filter(entry >> 1) == BIT(ks[c], isodd))
if(filter(entry) == BIT(ks[c], isodd + 2))
continue;
candidates[i--] = candidates[size--];
}
candidates[size + 1] = -1;
return candidates;
}
/** brute_top
* helper function which eliminates possible secret states using parity bits
*/
static struct Crypto1State*
brute_top(uint32_t prefix, uint32_t rresp, unsigned char parities[8][8],
uint32_t odd, uint32_t even, struct Crypto1State* sl)
{
struct Crypto1State s;
uint32_t ks1, nr, ks2, rr, ks3, good, c;
for(c = 0; c < 8; ++c) {
s.odd = odd ^ fastfwd[1][c];
s.even = even ^ fastfwd[0][c];
lfsr_rollback_bit(&s, 0, 0);
lfsr_rollback_bit(&s, 0, 0);
lfsr_rollback_bit(&s, 0, 0);
lfsr_rollback_word(&s, 0, 0);
lfsr_rollback_word(&s, prefix | c << 5, 1);
sl->odd = s.odd;
sl->even = s.even;
ks1 = crypto1_word(&s, prefix | c << 5, 1);
ks2 = crypto1_word(&s,0,0);
ks3 = crypto1_word(&s, 0,0);
nr = ks1 ^ (prefix | c << 5);
rr = ks2 ^ rresp;
good = 1;
good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ BIT(ks3, 24);
if(!good)
return sl;
}
return ++sl;
}
/** lfsr_common_prefix
* Implentation of the common prefix attack.
* Requires the 28 bit constant prefix used as reader nonce (pfx)
* The reader response used (rr)
* The keystream used to encrypt the observed NACK's (ks)
* The parity bits (par)
* It returns a zero terminated list of possible cipher states after the
* tag nonce was fed in
*/
struct Crypto1State*
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])
{
struct Crypto1State *statelist, *s;
uint32_t *odd, *even, *o, *e, top;
odd = lfsr_prefix_ks(ks, 1);
even = lfsr_prefix_ks(ks, 0);
statelist = malloc((sizeof *statelist) << 20);
if(!statelist || !odd || !even)
return 0;
s = statelist;
for(o = odd; *o != 0xffffffff; ++o)
for(e = even; *e != 0xffffffff; ++e)
for(top = 0; top < 64; ++top) {
*o = (*o & 0x1fffff) | (top << 21);
*e = (*e & 0x1fffff) | (top >> 3) << 21;
s = brute_top(pfx, rr, par, *o, *e, s);
}
s->odd = s->even = 0;
free(odd);
free(even);
return statelist;
}

View file

@ -1,94 +0,0 @@
/* crapto1.h
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, US$
Copyright (C) 2008-2008 bla <blapost@gmail.com>
*/
#ifndef CRAPTO1_INCLUDED
#define CRAPTO1_INCLUDED
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
struct Crypto1State {uint32_t odd, even;};
struct Crypto1State* crypto1_create(uint64_t);
void crypto1_destroy(struct Crypto1State*);
void crypto1_get_lfsr(struct Crypto1State*, uint64_t*);
uint8_t crypto1_bit(struct Crypto1State*, uint8_t, int);
uint8_t crypto1_byte(struct Crypto1State*, uint8_t, int);
uint32_t crypto1_word(struct Crypto1State*, uint32_t, int);
uint32_t prng_successor(uint32_t x, uint32_t n);
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in);
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3);
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd);
struct Crypto1State*
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]);
void lfsr_rollback_bit(struct Crypto1State* s, uint32_t in, int fb);
void lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb);
void lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb);
int nonce_distance(uint32_t from, uint32_t to);
#define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\
uint32_t __n = 0,__M = 0, N = 0;\
int __i;\
for(; __n < 1 << 16; N = prng_successor(__M = ++__n, 16))\
for(__i = FSIZE - 1; __i >= 0; __i--)\
if(BIT(FILTER, __i) ^ parity(__M & 0xFF01))\
break;\
else if(__i)\
__M = prng_successor(__M, (__i == 7) ? 48 : 8);\
else
#define LF_POLY_ODD (0x29CE5C)
#define LF_POLY_EVEN (0x870804)
#define BIT(x, n) ((x) >> (n) & 1)
#define BEBIT(x, n) BIT(x, (n) ^ 24)
static inline int parity(uint32_t x)
{
#if !defined __i386__ || !defined __GNUC__
x ^= x >> 16;
x ^= x >> 8;
x ^= x >> 4;
return BIT(0x6996, x & 0xf);
#else
asm( "movl %1, %%eax\n"
"mov %%ax, %%cx\n"
"shrl $0x10, %%eax\n"
"xor %%ax, %%cx\n"
"xor %%ch, %%cl\n"
"setpo %%al\n"
"movzx %%al, %0\n": "=r"(x) : "r"(x): "eax","ecx");
return x;
#endif
}
static inline int filter(uint32_t const x)
{
uint32_t f;
f = 0xf22c0 >> (x & 0xf) & 16;
f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8;
f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4;
f |= 0x1e458 >> (x >> 12 & 0xf) & 2;
f |= 0x0d938 >> (x >> 16 & 0xf) & 1;
return BIT(0xEC57E80A, f);
}
#ifdef __cplusplus
}
#endif
#endif

View file

@ -1,93 +0,0 @@
/* crypto1.c
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, US
Copyright (C) 2008-2008 bla <blapost@gmail.com>
*/
#include "crapto1.h"
#include <stdlib.h>
#define SWAPENDIAN(x)\
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
struct Crypto1State * crypto1_create(uint64_t key)
{
struct Crypto1State *s = malloc(sizeof(*s));
int i;
for(i = 47;s && i > 0; i -= 2) {
s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7);
s->even = s->even << 1 | BIT(key, i ^ 7);
}
return s;
}
void crypto1_destroy(struct Crypto1State *state)
{
free(state);
}
void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr)
{
int i;
for(*lfsr = 0, i = 23; i >= 0; --i) {
*lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3);
*lfsr = *lfsr << 1 | BIT(state->even, i ^ 3);
}
}
uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
{
uint32_t feedin;
uint8_t ret = filter(s->odd);
feedin = ret & !!is_encrypted;
feedin ^= !!in;
feedin ^= LF_POLY_ODD & s->odd;
feedin ^= LF_POLY_EVEN & s->even;
s->even = s->even << 1 | parity(feedin);
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
return ret;
}
uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted)
{
uint8_t i, ret = 0;
for (i = 0; i < 8; ++i)
ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i;
return ret;
}
uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
{
uint32_t i, ret = 0;
for (i = 0; i < 4; ++i, in <<= 8)
ret = ret << 8 | crypto1_byte(s, in >> 24, is_encrypted);
return ret;
}
/* prng_successor
* helper used to obscure the keystream during authentication
*/
uint32_t prng_successor(uint32_t x, uint32_t n)
{
SWAPENDIAN(x);
while(n--)
x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31;
return SWAPENDIAN(x);
}

View file

@ -1,57 +1,195 @@
#include "crapto1.h"
//-----------------------------------------------------------------------------
// Merlok - June 2011
// Roel - Dec 2009
// Unknown author
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// MIFARE Darkside hack
//-----------------------------------------------------------------------------
#include <inttypes.h>
#include <stdio.h>
typedef unsigned char byte_t;
#include "crapto1/crapto1.h"
int main(const int argc, const char* argv[]) {
struct Crypto1State *state;
uint32_t pos, uid, nt, nr, rr, nr_diff, ks1, ks2;
byte_t bt, i, ks3x[8], par[8][8];
uint64_t key, key_recovered;
uint64_t par_info;
uint64_t ks_info;
nr = rr = 0;
if (argc < 5) {
printf("\nsyntax: %s <uid> <nt> <par> <ks>\n\n",argv[0]);
return 1;
}
sscanf(argv[1],"%08x",&uid);
sscanf(argv[2],"%08x",&nt);
sscanf(argv[3],"%016" SCNx64,&par_info);
sscanf(argv[4],"%016" SCNx64,&ks_info);
// Reset the last three significant bits of the reader nonce
nr &= 0xffffff1f;
printf("\nuid(%08x) nt(%08x) par(%016" PRIx64 ") ks(%016" PRIx64 ")\n\n",uid,nt,par_info,ks_info);
#if !defined(STANDALONE_TOOL)
#include <stdlib.h>
#include "mifarehost.h"
#include "util.h"
#include "ui.h"
for (pos=0; pos<8; pos++)
{
ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
bt = (par_info >> (pos*8)) & 0xff;
for (i=0; i<8; i++)
{
par[7-pos][i] = (bt >> i) & 0x01;
}
}
printf("|diff|{nr} |ks3|ks3^5|parity |\n");
printf("+----+--------+---+-----+---------------+\n");
for (i=0; i<8; i++)
{
nr_diff = nr | i << 5;
printf("| %02x |%08x|",i << 5, nr_diff);
printf(" %01x | %01x |",ks3x[i], ks3x[i]^5);
for (pos=0; pos<7; pos++) printf("%01x,",par[i][pos]);
printf("%01x|\n",par[i][7]);
}
state = lfsr_common_prefix(nr,rr,ks3x,par);
lfsr_rollback_word(state,uid^nt,0);
crypto1_get_lfsr(state,&key_recovered);
printf("\nkey recovered: %012" PRIx64 "\n\n",key_recovered);
crypto1_destroy(state);
return 0;
static int compar_state(const void * a, const void * b) {
// didn't work: (the result is truncated to 32 bits)
//return (*(int64_t*)b - *(int64_t*)a);
// better:
if (*(int64_t*)b == *(int64_t*)a) return 0;
else if (*(int64_t*)b > *(int64_t*)a) return 1;
else return -1;
}
#endif
int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key)
{
#if !defined(STANDALONE_TOOL)
static uint32_t last_uid;
static int64_t *last_keylist;
#endif
struct Crypto1State *state;
uint32_t i, pos, rr, nr_diff;
uint8_t bt, ks3x[8], par[8][8];
uint64_t key_recovered;
static uint32_t key_count = 0;
int64_t *state_s;
rr = 0;
#if !defined(STANDALONE_TOOL)
if (par_info == 0) {
printf("Parity is all zero, trying special attack! Just wait for few more seconds...");
}
if (last_uid != uid && last_keylist != NULL) {
free(last_keylist);
last_keylist = NULL;
}
last_uid = uid;
PrintAndLog("\nuid(%08x) nt(%08x) nr(%08" PRIx32") par(%016" PRIx64") ks(%016" PRIx64")\n\n", uid, nt, nr, par_info, ks_info);
#endif
// Reset the last three significant bits of the reader nonce
nr &= 0xffffff1f;
for (pos=0; pos<8; pos++) {
ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
bt = (par_info >> (pos*8)) & 0xff;
for (i=0; i<8; i++) {
par[7-pos][i] = (bt >> i) & 0x01;
}
}
printf("|diff|{nr} |ks3|ks3^5|parity |\n");
printf("+----+--------+---+-----+---------------+\n");
for (i=0; i<8; i++) {
nr_diff = nr | i << 5;
printf("| %02x |%08x|",i << 5, nr_diff);
printf(" %01x | %01x |",ks3x[i], ks3x[i]^5);
for (pos=0; pos<7; pos++)
printf("%01x,", par[i][pos]);
printf("%01x|\n", par[i][7]);
}
printf("\n");
state = lfsr_common_prefix(nr, rr, ks3x, par);
state_s = (int64_t*)state;
//char filename[50] ;
//sprintf(filename, "nt_%08x_%d.txt", nt, nr);
//printf("name %s\n", filename);
//FILE* fp = fopen(filename,"w");
for (i = 0; (state) && ((state + i)->odd != -1); i++) {
lfsr_rollback_word(state+i, uid^nt, 0);
crypto1_get_lfsr(state + i, &key_recovered);
*(state_s + i) = key_recovered;
#if defined(STANDALONE_TOOL)
if (i < 20) {
printf("Possible key: %012" PRIx64 "\n", key_recovered);
}
#endif
}
#if defined(STANDALONE_TOOL)
if (i == 0) {
printf("No key found\n\n");
} else if (i >= 20) {
printf(" ... and %u more. You would need to run multiple times with different <nr> and calculate the intersection.\n", key_count - 20);
}
#endif
//fclose(fp);
if(!state)
return 1;
#if !defined(STANDALONE_TOOL)
qsort(state_s, i, sizeof(*state_s), compar_state);
*(state_s + i) = -1;
if (par_info == 0) {
if (last_keylist != NULL) {
//Create the intersection:
int64_t *p1, *p2, *p3;
p1 = p3 = last_keylist;
p2 = state_s;
while ( *p1 != -1 && *p2 != -1 ) {
if (compar_state(p1, p2) == 0) {
printf("p1:%" PRIx64" p2:%" PRIx64 " p3:%" PRIx64" key:%012" PRIx64 "\n",(uint64_t)(p1-last_keylist),(uint64_t)(p2-state_s),(uint64_t)(p3-last_keylist),*p1);
*p3++ = *p1++;
p2++;
}
else {
while (compar_state(p1, p2) == -1) ++p1;
while (compar_state(p1, p2) == 1) ++p2;
}
}
key_count = p3 - last_keylist;
} else {
key_count = 0;
}
} else {
last_keylist = state_s;
key_count = i;
}
printf("key_count:%d\n", key_count);
// The list may still contain several key candidates. Test each of them with mfCheckKeys
for (i = 0; i < key_count; i++) {
uint8_t keyBlock[6];
uint64_t key64;
key64 = *(last_keylist + i);
num_to_bytes(key64, 6, keyBlock);
key64 = 0;
if (!mfCheckKeys(0, 0, false, 1, keyBlock, &key64)) {
*key = key64;
free(last_keylist);
last_keylist = NULL;
if (par_info == 0)
free(state);
return 0;
}
}
free(last_keylist);
last_keylist = state_s;
return 1;
#else
crypto1_destroy(state);
return 0;
#endif
}
#if defined(STANDALONE_TOOL)
int main(const int argc, const char* argv[])
{
uint32_t uid, nt, nr;
uint64_t par_info;
uint64_t ks_info;
uint64_t key;
if (argc < 6) {
printf("\nsyntax: %s <uid> <nt> <nr> <par> <ks>\n\n",argv[0]);
return 1;
}
sscanf(argv[1],"%08x", &uid);
sscanf(argv[2],"%08x", &nt);
sscanf(argv[3],"%08x", &nr);
sscanf(argv[4],"%016" SCNx64,&par_info);
sscanf(argv[5],"%016" SCNx64,&ks_info);
return nonce2key(uid, nt, nr, par_info, ks_info, &key);
}
#endif

View file

@ -0,0 +1,20 @@
//-----------------------------------------------------------------------------
// Merlok - June 2011
// Roel - Dec 2009
// Unknown author
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// MIFARE Darkside hack
//-----------------------------------------------------------------------------
#ifndef __NONCE2KEY_H
#define __NONCE2KEY_H
#include <inttypes.h>
int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key);
#endif

View file

@ -0,0 +1,13 @@
To test the nonce2key tool.
:: tip
You can use the output from "hf mf mifare" to use with this tool.
:: sample
./nonce2key 1b2a28f5 73a4c24c 00000000 734b3b93eb4bd303 0d0d060f0f0f0200
If all parity bits are 0, it is assumed that this is a Mifare clone responding with NACK to all wrong authentication attempts.
In this case, a special attack is used (which usually results in many possible keys)
:: sample with all parity bits 0:
./nonce2key 2e086b1a 2210af4e 00000002 0000000000000000 050708040a030b06