appmain.c cleanup

* reformatting
* whitespace fixes
* replace byte_t by uint8_t
This commit is contained in:
pwpiwi 2020-01-10 08:21:07 +01:00
parent a749b1e58b
commit 1d04b933df

View file

@ -37,14 +37,14 @@
#include "hfsnoop.h" #include "hfsnoop.h"
#include "fpgaloader.h" #include "fpgaloader.h"
#ifdef WITH_LCD #ifdef WITH_LCD
#include "LCD.h" #include "LCD.h"
#endif #endif
static uint32_t hw_capabilities; static uint32_t hw_capabilities;
// Craig Young - 14a stand-alone code // Craig Young - 14a stand-alone code
#ifdef WITH_ISO14443a #ifdef WITH_ISO14443a
#include "iso14443a.h" #include "iso14443a.h"
#endif #endif
//============================================================================= //=============================================================================
@ -53,33 +53,31 @@ static uint32_t hw_capabilities;
// is the order in which they go out on the wire. // is the order in which they go out on the wire.
//============================================================================= //=============================================================================
#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
uint8_t ToSend[TOSEND_BUFFER_SIZE]; uint8_t ToSend[TOSEND_BUFFER_SIZE];
int ToSendMax; int ToSendMax;
static int ToSendBit; static int ToSendBit;
struct common_area common_area __attribute__((section(".commonarea"))); struct common_area common_area __attribute__((section(".commonarea")));
void ToSendReset(void) void ToSendReset(void) {
{
ToSendMax = -1; ToSendMax = -1;
ToSendBit = 8; ToSendBit = 8;
} }
void ToSendStuffBit(int b) void ToSendStuffBit(int b) {
{ if (ToSendBit >= 8) {
if(ToSendBit >= 8) {
ToSendMax++; ToSendMax++;
ToSend[ToSendMax] = 0; ToSend[ToSendMax] = 0;
ToSendBit = 0; ToSendBit = 0;
} }
if(b) { if (b) {
ToSend[ToSendMax] |= (1 << (7 - ToSendBit)); ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
} }
ToSendBit++; ToSendBit++;
if(ToSendMax >= sizeof(ToSend)) { if (ToSendMax >= sizeof(ToSend)) {
ToSendBit = 0; ToSendBit = 0;
DbpString("ToSendStuffBit overflowed!"); DbpString("ToSendStuffBit overflowed!");
} }
@ -89,19 +87,11 @@ void ToSendStuffBit(int b)
// Debug print functions, to go out over USB, to the usual PC-side client. // Debug print functions, to go out over USB, to the usual PC-side client.
//============================================================================= //=============================================================================
void DbpString(char *str) void DbpString(char *str) {
{ uint8_t len = strlen(str);
byte_t len = strlen(str); cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(uint8_t*)str,len);
cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
} }
#if 0
void DbpIntegers(int x1, int x2, int x3)
{
cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
}
#endif
void Dbprintf(const char *fmt, ...) { void Dbprintf(const char *fmt, ...) {
// should probably limit size here; oh well, let's just use a big buffer // should probably limit size here; oh well, let's just use a big buffer
char output_string[128]; char output_string[128];
@ -118,26 +108,26 @@ void Dbprintf(const char *fmt, ...) {
void Dbhexdump(int len, uint8_t *d, bool bAsci) { void Dbhexdump(int len, uint8_t *d, bool bAsci) {
int l=0,i; int l=0,i;
char ascii[9]; char ascii[9];
while (len>0) { while (len>0) {
if (len>8) l=8; if (len>8) l=8;
else l=len; else l=len;
memcpy(ascii,d,l); memcpy(ascii,d,l);
ascii[l]=0; ascii[l]=0;
// filter safe ascii // filter safe ascii
for (i=0;i<l;i++) for (i = 0; i < l; i++)
if (ascii[i]<32 || ascii[i]>126) ascii[i]='.'; if (ascii[i]<32 || ascii[i]>126) ascii[i] = '.';
if (bAsci) { if (bAsci) {
Dbprintf("%-8s %*D",ascii,l,d," "); Dbprintf("%-8s %*D",ascii, l, d, " ");
} else { } else {
Dbprintf("%*D",l,d," "); Dbprintf("%*D", l, d, " ");
} }
len-=8; len -= 8;
d+=8; d += 8;
} }
} }
@ -146,12 +136,11 @@ void Dbhexdump(int len, uint8_t *d, bool bAsci) {
// in ADC units (0 to 1023). Also a routine to average 32 samples and // in ADC units (0 to 1023). Also a routine to average 32 samples and
// return that. // return that.
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
static int ReadAdc(int ch) static int ReadAdc(int ch) {
{ // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
// Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
// AMPL_HI is a high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant // AMPL_HI is a high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
// of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged. // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
// //
// The maths are: // The maths are:
// If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
// //
@ -159,20 +148,19 @@ static int ReadAdc(int ch)
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
AT91C_BASE_ADC->ADC_MR = AT91C_BASE_ADC->ADC_MR =
ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch); AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) {}; while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) {};
return AT91C_BASE_ADC->ADC_CDR[ch] & 0x3ff; return AT91C_BASE_ADC->ADC_CDR[ch] & 0x3ff;
} }
int AvgAdc(int ch) // was static - merlok int AvgAdc(int ch) { // was static - merlok{
{
int i; int i;
int a = 0; int a = 0;
@ -183,10 +171,9 @@ int AvgAdc(int ch) // was static - merlok
return (a + 15) >> 5; return (a + 15) >> 5;
} }
static int AvgAdc_Voltage_HF(void) static int AvgAdc_Voltage_HF(void) {
{
int AvgAdc_Voltage_Low, AvgAdc_Voltage_High; int AvgAdc_Voltage_Low, AvgAdc_Voltage_High;
AvgAdc_Voltage_Low= (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10; AvgAdc_Voltage_Low= (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10;
// if voltage range is about to be exceeded, use high voltage ADC channel if available (RDV40 only) // if voltage range is about to be exceeded, use high voltage ADC channel if available (RDV40 only)
if (AvgAdc_Voltage_Low > MAX_ADC_HF_VOLTAGE_LOW - 300) { if (AvgAdc_Voltage_Low > MAX_ADC_HF_VOLTAGE_LOW - 300) {
@ -198,13 +185,11 @@ static int AvgAdc_Voltage_HF(void)
return AvgAdc_Voltage_Low; return AvgAdc_Voltage_Low;
} }
static int AvgAdc_Voltage_LF(void) static int AvgAdc_Voltage_LF(void) {
{
return (MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10; return (MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10;
} }
void MeasureAntennaTuningLfOnly(int *vLf125, int *vLf134, int *peakf, int *peakv, uint8_t LF_Results[]) void MeasureAntennaTuningLfOnly(int *vLf125, int *vLf134, int *peakf, int *peakv, uint8_t LF_Results[]) {
{
int i, adcval = 0, peak = 0; int i, adcval = 0, peak = 0;
/* /*
@ -219,17 +204,17 @@ void MeasureAntennaTuningLfOnly(int *vLf125, int *vLf134, int *peakf, int *peakv
FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
SpinDelay(50); SpinDelay(50);
for (i=255; i>=19; i--) { for (i = 255; i >= 19; i--) {
WDT_HIT(); WDT_HIT();
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
SpinDelay(20); SpinDelay(20);
adcval = AvgAdc_Voltage_LF(); adcval = AvgAdc_Voltage_LF();
if (i==95) *vLf125 = adcval; // voltage at 125Khz if (i == 95) *vLf125 = adcval; // voltage at 125Khz
if (i==89) *vLf134 = adcval; // voltage at 134Khz if (i == 89) *vLf134 = adcval; // voltage at 134Khz
LF_Results[i] = adcval >> 9; // scale int to fit in byte for graphing purposes LF_Results[i] = adcval >> 9; // scale int to fit in byte for graphing purposes
if(LF_Results[i] > peak) { if (LF_Results[i] > peak) {
*peakv = adcval; *peakv = adcval;
peak = LF_Results[i]; peak = LF_Results[i];
*peakf = i; *peakf = i;
@ -237,13 +222,12 @@ void MeasureAntennaTuningLfOnly(int *vLf125, int *vLf134, int *peakf, int *peakv
} }
} }
for (i=18; i >= 0; i--) LF_Results[i] = 0; for (i = 18; i >= 0; i--) LF_Results[i] = 0;
return; return;
} }
void MeasureAntennaTuningHfOnly(int *vHf) void MeasureAntennaTuningHfOnly(int *vHf) {
{
// Let the FPGA drive the high-frequency antenna around 13.56 MHz. // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
LED_A_ON(); LED_A_ON();
FpgaDownloadAndGo(FPGA_BITSTREAM_HF); FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
@ -254,8 +238,7 @@ void MeasureAntennaTuningHfOnly(int *vHf)
return; return;
} }
void MeasureAntennaTuning(int mode) void MeasureAntennaTuning(int mode) {
{
uint8_t LF_Results[256] = {0}; uint8_t LF_Results[256] = {0};
int peakv = 0, peakf = 0; int peakv = 0, peakf = 0;
int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
@ -281,9 +264,8 @@ void MeasureAntennaTuning(int mode)
return; return;
} }
void MeasureAntennaTuningHf(void) void MeasureAntennaTuningHf(void) {
{ int vHf = 0; // in mV
int vHf = 0; // in mV
DbpString("Measuring HF antenna, press button to exit"); DbpString("Measuring HF antenna, press button to exit");
@ -305,8 +287,7 @@ void MeasureAntennaTuningHf(void)
} }
void ReadMem(int addr) void ReadMem(int addr) {
{
const uint8_t *data = ((uint8_t *)addr); const uint8_t *data = ((uint8_t *)addr);
Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x", Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
@ -319,22 +300,20 @@ extern struct version_information version_information;
extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__; extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
void set_hw_capabilities(void) void set_hw_capabilities(void) {
{
if (I2C_is_available()) { if (I2C_is_available()) {
hw_capabilities |= HAS_SMARTCARD_SLOT; hw_capabilities |= HAS_SMARTCARD_SLOT;
} }
if (false) { // TODO: implement a test if (false) { // TODO: implement a test
hw_capabilities |= HAS_EXTRA_FLASH_MEM; hw_capabilities |= HAS_EXTRA_FLASH_MEM;
} }
} }
void SendVersion(void) void SendVersion(void) {
{
set_hw_capabilities(); set_hw_capabilities();
char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */ char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
char VersionString[USB_CMD_DATA_SIZE] = { '\0' }; char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
@ -343,7 +322,7 @@ void SendVersion(void)
* pointer, then use it. * pointer, then use it.
*/ */
char *bootrom_version = *(char**)&_bootphase1_version_pointer; char *bootrom_version = *(char**)&_bootphase1_version_pointer;
if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) { if (bootrom_version < &_flash_start || bootrom_version >= &_flash_end) {
strcat(VersionString, "bootrom version information appears invalid\n"); strcat(VersionString, "bootrom version information appears invalid\n");
} else { } else {
FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version); FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
@ -357,14 +336,14 @@ void SendVersion(void)
strncat(VersionString, fpga_version_information[i], sizeof(VersionString) - strlen(VersionString) - 1); strncat(VersionString, fpga_version_information[i], sizeof(VersionString) - strlen(VersionString) - 1);
strncat(VersionString, "\n", sizeof(VersionString) - strlen(VersionString) - 1); strncat(VersionString, "\n", sizeof(VersionString) - strlen(VersionString) - 1);
} }
// test availability of SmartCard slot // test availability of SmartCard slot
if (I2C_is_available()) { if (I2C_is_available()) {
strncat(VersionString, "SmartCard Slot: available\n", sizeof(VersionString) - strlen(VersionString) - 1); strncat(VersionString, "SmartCard Slot: available\n", sizeof(VersionString) - strlen(VersionString) - 1);
} else { } else {
strncat(VersionString, "SmartCard Slot: not available\n", sizeof(VersionString) - strlen(VersionString) - 1); strncat(VersionString, "SmartCard Slot: not available\n", sizeof(VersionString) - strlen(VersionString) - 1);
} }
// Send Chip ID and used flash memory // Send Chip ID and used flash memory
uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start; uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
uint32_t compressed_data_section_size = common_area.arg1; uint32_t compressed_data_section_size = common_area.arg1;
@ -373,18 +352,17 @@ void SendVersion(void)
// measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time. // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
// Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included. // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
void printUSBSpeed(void) void printUSBSpeed(void) {
{
Dbprintf("USB Speed:"); Dbprintf("USB Speed:");
Dbprintf(" Sending USB packets to client..."); Dbprintf(" Sending USB packets to client...");
#define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
uint8_t *test_data = BigBuf_get_addr(); uint8_t *test_data = BigBuf_get_addr();
uint32_t end_time; uint32_t end_time;
uint32_t start_time = end_time = GetTickCount(); uint32_t start_time = end_time = GetTickCount();
uint32_t bytes_transferred = 0; uint32_t bytes_transferred = 0;
LED_B_ON(); LED_B_ON();
while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) { while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE); cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
@ -395,16 +373,15 @@ void printUSBSpeed(void)
Dbprintf(" Time elapsed: %dms", end_time - start_time); Dbprintf(" Time elapsed: %dms", end_time - start_time);
Dbprintf(" Bytes transferred: %d", bytes_transferred); Dbprintf(" Bytes transferred: %d", bytes_transferred);
Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s", Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
1000 * bytes_transferred / (end_time - start_time)); 1000 * bytes_transferred / (end_time - start_time));
} }
/** /**
* Prints runtime information about the PM3. * Prints runtime information about the PM3.
**/ **/
void SendStatus(void) void SendStatus(void) {
{
BigBuf_print_status(); BigBuf_print_status();
Fpga_print_status(); Fpga_print_status();
#ifdef WITH_SMARTCARD #ifdef WITH_SMARTCARD
@ -424,20 +401,18 @@ void SendStatus(void)
#define OPTS 2 #define OPTS 2
void StandAloneMode() void StandAloneMode() {
{
DbpString("Stand-alone mode! No PC necessary."); DbpString("Stand-alone mode! No PC necessary.");
// Oooh pretty -- notify user we're in elite samy mode now // Oooh pretty -- notify user we're in elite samy mode now
LED(LED_RED, 200); LED(LED_RED, 200);
LED(LED_ORANGE, 200); LED(LED_ORANGE, 200);
LED(LED_GREEN, 200); LED(LED_GREEN, 200);
LED(LED_ORANGE, 200); LED(LED_ORANGE, 200);
LED(LED_RED, 200); LED(LED_RED, 200);
LED(LED_ORANGE, 200); LED(LED_ORANGE, 200);
LED(LED_GREEN, 200); LED(LED_GREEN, 200);
LED(LED_ORANGE, 200); LED(LED_ORANGE, 200);
LED(LED_RED, 200); LED(LED_RED, 200);
} }
#endif #endif
@ -445,8 +420,7 @@ void StandAloneMode()
#ifdef WITH_ISO14443a_StandAlone #ifdef WITH_ISO14443a_StandAlone
void StandAloneMode14a() void StandAloneMode14a() {
{
StandAloneMode(); StandAloneMode();
FpgaDownloadAndGo(FPGA_BITSTREAM_HF); FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
@ -462,14 +436,12 @@ void StandAloneMode14a()
LED(selected + 1, 0); LED(selected + 1, 0);
for (;;) for (;;) {
{
usb_poll(); usb_poll();
WDT_HIT(); WDT_HIT();
SpinDelay(300); SpinDelay(300);
if (GotoRecord || !cardRead[selected]) if (GotoRecord || !cardRead[selected]) {
{
GotoRecord = false; GotoRecord = false;
LEDsoff(); LEDsoff();
LED(selected + 1, 0); LED(selected + 1, 0);
@ -484,48 +456,42 @@ void StandAloneMode14a()
uint32_t cuid; uint32_t cuid;
iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
for ( ; ; ) for ( ; ; ) {
{
WDT_HIT(); WDT_HIT();
if (BUTTON_PRESS()) { if (BUTTON_PRESS()) {
if (cardRead[selected]) { if (cardRead[selected]) {
Dbprintf("Button press detected -- replaying card in bank[%d]", selected); Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
break; break;
} } else if (cardRead[(selected+1)%OPTS]) {
else if (cardRead[(selected+1)%OPTS]) {
Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS); Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
selected = (selected+1)%OPTS; selected = (selected+1)%OPTS;
break; break;
} } else {
else {
Dbprintf("Button press detected but no stored tag to play. (Ignoring button)"); Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
SpinDelay(300); SpinDelay(300);
} }
} }
if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0, true)) if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0, true))
continue; continue;
else else {
{
Dbprintf("Read UID:"); Dbhexdump(10,uid,0); Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
memcpy(readUID,uid,10*sizeof(uint8_t)); memcpy(readUID,uid,10*sizeof(uint8_t));
uint8_t *dst = (uint8_t *)&uid_tmp1; uint8_t *dst = (uint8_t *)&uid_tmp1;
// Set UID byte order // Set UID byte order
for (int i=0; i<4; i++) for (int i = 0; i < 4; i++)
dst[i] = uid[3-i]; dst[i] = uid[3-i];
dst = (uint8_t *)&uid_tmp2; dst = (uint8_t *)&uid_tmp2;
for (int i=0; i<4; i++) for (int i = 0; i < 4; i++)
dst[i] = uid[7-i]; dst[i] = uid[7-i];
if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) { if (uid_1st[(selected+1) % OPTS] == uid_tmp1 && uid_2nd[(selected+1) % OPTS] == uid_tmp2) {
Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping."); Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
} } else {
else {
if (uid_tmp2) { if (uid_tmp2) {
Dbprintf("Bank[%d] received a 7-byte UID",selected); Dbprintf("Bank[%d] received a 7-byte UID", selected);
uid_1st[selected] = (uid_tmp1)>>8; uid_1st[selected] = (uid_tmp1)>>8;
uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8); uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
} } else {
else { Dbprintf("Bank[%d] received a 4-byte UID", selected);
Dbprintf("Bank[%d] received a 4-byte UID",selected);
uid_1st[selected] = uid_tmp1; uid_1st[selected] = uid_tmp1;
uid_2nd[selected] = uid_tmp2; uid_2nd[selected] = uid_tmp2;
} }
@ -533,8 +499,8 @@ void StandAloneMode14a()
} }
} }
} }
Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]); Dbprintf("ATQA = %02X%02X", hi14a_card[selected].atqa[0], hi14a_card[selected].atqa[1]);
Dbprintf("SAK = %02X",hi14a_card[selected].sak); Dbprintf("SAK = %02X", hi14a_card[selected].sak);
LEDsoff(); LEDsoff();
LED(LED_GREEN, 200); LED(LED_GREEN, 200);
LED(LED_ORANGE, 200); LED(LED_ORANGE, 200);
@ -548,10 +514,7 @@ void StandAloneMode14a()
playing = true; playing = true;
cardRead[selected] = true; cardRead[selected] = true;
} } else if (GotoClone) { /* MF Classic UID clone */
/* MF Classic UID clone */
else if (GotoClone)
{
GotoClone=false; GotoClone=false;
LEDsoff(); LEDsoff();
LED(selected + 1, 0); LED(selected + 1, 0);
@ -562,8 +525,7 @@ void StandAloneMode14a()
Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]); Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
// wait for button to be released // wait for button to be released
while(BUTTON_PRESS()) while(BUTTON_PRESS()) {
{
// Delay cloning until card is in place // Delay cloning until card is in place
WDT_HIT(); WDT_HIT();
} }
@ -604,29 +566,26 @@ void StandAloneMode14a()
if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) { if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected); Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
playing = true; playing = true;
} } else {
else { Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0], oldBlock0[1], oldBlock0[2], oldBlock0[3]);
Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]); memcpy(newBlock0, oldBlock0, 16);
memcpy(newBlock0,oldBlock0,16);
// Copy uid_1st for bank (2nd is for longer UIDs not supported if classic) // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
newBlock0[0] = uid_1st[selected]>>24; newBlock0[0] = uid_1st[selected] >> 24;
newBlock0[1] = 0xFF & (uid_1st[selected]>>16); newBlock0[1] = 0xFF & (uid_1st[selected] >> 16);
newBlock0[2] = 0xFF & (uid_1st[selected]>>8); newBlock0[2] = 0xFF & (uid_1st[selected] >> 8);
newBlock0[3] = 0xFF & (uid_1st[selected]); newBlock0[3] = 0xFF & (uid_1st[selected]);
newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3]; newBlock0[4] = newBlock0[0] ^ newBlock0[1] ^ newBlock0[2] ^ newBlock0[3];
// arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
MifareCSetBlock(0, 0xFF,0, newBlock0); MifareCSetBlock(0, 0xFF, 0, newBlock0);
MifareCGetBlock(0x3F, 1, 0, testBlock0); MifareCGetBlock(0x3F, 1, 0, testBlock0);
if (memcmp(testBlock0,newBlock0,16)==0) if (memcmp(testBlock0, newBlock0, 16) == 0) {
{
DbpString("Cloned successfull!"); DbpString("Cloned successfull!");
cardRead[selected] = false; // Only if the card was cloned successfully should we clear it cardRead[selected] = false; // Only if the card was cloned successfully should we clear it
playing = false; playing = false;
GotoRecord = true; GotoRecord = true;
selected = (selected+1) % OPTS; selected = (selected+1) % OPTS;
} } else {
else {
Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected); Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
playing = true; playing = true;
} }
@ -634,10 +593,9 @@ void StandAloneMode14a()
LEDsoff(); LEDsoff();
LED(selected + 1, 0); LED(selected + 1, 0);
} } else if (playing) {
// Change where to record (or begin playing) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
else if (playing) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected]) // Change where to record (or begin playing)
{
LEDsoff(); LEDsoff();
LED(selected + 1, 0); LED(selected + 1, 0);
@ -649,31 +607,26 @@ void StandAloneMode14a()
int button_action = BUTTON_HELD(1000); int button_action = BUTTON_HELD(1000);
if (button_action == 0) { // No button action, proceed with sim if (button_action == 0) { // No button action, proceed with sim
uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected); Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected], uid_2nd[selected], selected);
if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) { if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
DbpString("Mifare Classic"); DbpString("Mifare Classic");
SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data); // Mifare Classic SimulateIso14443aTag(1, uid_1st[selected], uid_2nd[selected], data); // Mifare Classic
} } else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
DbpString("Mifare Ultralight"); DbpString("Mifare Ultralight");
SimulateIso14443aTag(2,uid_1st[selected],uid_2nd[selected],data); // Mifare Ultralight SimulateIso14443aTag(2, uid_1st[selected], uid_2nd[selected], data); // Mifare Ultralight
} } else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
DbpString("Mifare DESFire"); DbpString("Mifare DESFire");
SimulateIso14443aTag(3,uid_1st[selected],uid_2nd[selected],data); // Mifare DESFire SimulateIso14443aTag(3, uid_1st[selected], uid_2nd[selected], data); // Mifare DESFire
} } else {
else {
Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation"); Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data); SimulateIso14443aTag(1, uid_1st[selected], uid_2nd[selected], data);
} }
} } else if (button_action == BUTTON_SINGLE_CLICK) {
else if (button_action == BUTTON_SINGLE_CLICK) {
selected = (selected + 1) % OPTS; selected = (selected + 1) % OPTS;
Dbprintf("Done playing. Switching to record mode on bank %d",selected); Dbprintf("Done playing. Switching to record mode on bank %d",selected);
GotoRecord = true; GotoRecord = true;
break; break;
} } else if (button_action == BUTTON_HOLD) {
else if (button_action == BUTTON_HOLD) {
Dbprintf("Playtime over. Begin cloning..."); Dbprintf("Playtime over. Begin cloning...");
GotoClone = true; GotoClone = true;
break; break;
@ -688,10 +641,11 @@ void StandAloneMode14a()
} }
} }
} }
#elif WITH_LF_StandAlone #elif WITH_LF_StandAlone
// samy's sniff and repeat routine // samy's sniff and repeat routine
void SamyRun() void SamyRun() {
{
StandAloneMode(); StandAloneMode();
FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
@ -703,8 +657,7 @@ void SamyRun()
// Turn on selected LED // Turn on selected LED
LED(selected + 1, 0); LED(selected + 1, 0);
for (;;) for (;;) {
{
usb_poll(); usb_poll();
WDT_HIT(); WDT_HIT();
@ -713,8 +666,7 @@ void SamyRun()
SpinDelay(300); SpinDelay(300);
// Button was held for a second, begin recording // Button was held for a second, begin recording
if (button_pressed > 0 && cardRead == 0) if (button_pressed > 0 && cardRead == 0) {
{
LEDsoff(); LEDsoff();
LED(selected + 1, 0); LED(selected + 1, 0);
LED(LED_RED2, 0); LED(LED_RED2, 0);
@ -742,51 +694,46 @@ void SamyRun()
// If we were previously playing, set playing off // If we were previously playing, set playing off
// so next button push begins playing what we recorded // so next button push begins playing what we recorded
playing = 0; playing = 0;
cardRead = 1; cardRead = 1;
}
else if (button_pressed > 0 && cardRead == 1) } else if (button_pressed > 0 && cardRead == 1) {
{ LEDsoff();
LEDsoff(); LED(selected + 1, 0);
LED(selected + 1, 0); LED(LED_ORANGE, 0);
LED(LED_ORANGE, 0);
// record // record
if (tops[selected] > 0) if (tops[selected] > 0)
Dbprintf("Cloning %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]); Dbprintf("Cloning %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
else else
Dbprintf("Cloning %x %x%08x", selected, high[selected], low[selected]); Dbprintf("Cloning %x %x%08x", selected, high[selected], low[selected]);
// wait for button to be released // wait for button to be released
while(BUTTON_PRESS()) while(BUTTON_PRESS())
WDT_HIT(); WDT_HIT();
/* need this delay to prevent catching some weird data */ /* need this delay to prevent catching some weird data */
SpinDelay(500); SpinDelay(500);
CopyHIDtoT55x7(tops[selected] & 0x000FFFFF, high[selected], low[selected], (tops[selected] != 0 && ((high[selected]& 0xFFFFFFC0) != 0)), 0x1D); CopyHIDtoT55x7(tops[selected] & 0x000FFFFF, high[selected], low[selected], (tops[selected] != 0 && ((high[selected]& 0xFFFFFFC0) != 0)), 0x1D);
if (tops[selected] > 0) if (tops[selected] > 0)
Dbprintf("Cloned %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]); Dbprintf("Cloned %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
else else
Dbprintf("Cloned %x %x%08x", selected, high[selected], low[selected]); Dbprintf("Cloned %x %x%08x", selected, high[selected], low[selected]);
LEDsoff(); LEDsoff();
LED(selected + 1, 0); LED(selected + 1, 0);
// Finished recording // Finished recording
// If we were previously playing, set playing off // If we were previously playing, set playing off
// so next button push begins playing what we recorded // so next button push begins playing what we recorded
playing = 0; playing = 0;
cardRead = 0;
}
// Change where to record (or begin playing) cardRead = 0;
else if (button_pressed)
{ } else if (button_pressed) {
// Change where to record (or begin playing)
// Next option if we were previously playing // Next option if we were previously playing
if (playing) if (playing)
selected = (selected + 1) % OPTS; selected = (selected + 1) % OPTS;
@ -796,8 +743,7 @@ void SamyRun()
LED(selected + 1, 0); LED(selected + 1, 0);
// Begin transmitting // Begin transmitting
if (playing) if (playing) {
{
LED(LED_GREEN, 0); LED(LED_GREEN, 0);
DbpString("Playing"); DbpString("Playing");
// wait for button to be released // wait for button to be released
@ -807,15 +753,14 @@ void SamyRun()
Dbprintf("%x %x%08x%08x", selected, tops[selected], high[selected], low[selected]); Dbprintf("%x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
else else
Dbprintf("%x %x%08x", selected, high[selected], low[selected]); Dbprintf("%x %x%08x", selected, high[selected], low[selected]);
CmdHIDsimTAG(tops[selected], high[selected], low[selected], 0); CmdHIDsimTAG(tops[selected], high[selected], low[selected], 0);
DbpString("Done playing"); DbpString("Done playing");
if (BUTTON_HELD(1000) > 0) if (BUTTON_HELD(1000) > 0) {
{
DbpString("Exiting"); DbpString("Exiting");
LEDsoff(); LEDsoff();
return; return;
} }
/* We pressed a button so ignore it here with a delay */ /* We pressed a button so ignore it here with a delay */
SpinDelay(300); SpinDelay(300);
@ -825,8 +770,7 @@ void SamyRun()
playing = !playing; playing = !playing;
LEDsoff(); LEDsoff();
LED(selected + 1, 0); LED(selected + 1, 0);
} } else
else
while(BUTTON_PRESS()) while(BUTTON_PRESS())
WDT_HIT(); WDT_HIT();
} }
@ -834,6 +778,7 @@ void SamyRun()
} }
#endif #endif
/* /*
OBJECTIVE OBJECTIVE
Listen and detect an external reader. Determine the best location Listen and detect an external reader. Determine the best location
@ -869,10 +814,10 @@ static const char LIGHT_SCHEME[] = {
0xE, /* -XXX | 86% of maximum current detected */ 0xE, /* -XXX | 86% of maximum current detected */
0xF, /* XXXX | 100% of maximum current detected */ 0xF, /* XXXX | 100% of maximum current detected */
}; };
static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]); static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
void ListenReaderField(int limit) void ListenReaderField(int limit) {
{
int lf_av, lf_av_new=0, lf_baseline= 0, lf_max; int lf_av, lf_av_new=0, lf_baseline= 0, lf_max;
int hf_av, hf_av_new=0, hf_baseline= 0, hf_max; int hf_av, hf_av_new=0, hf_baseline= 0, hf_max;
int mode=1, display_val, display_max, i; int mode=1, display_val, display_max, i;
@ -892,13 +837,13 @@ void ListenReaderField(int limit)
lf_av = lf_max = AvgAdc_Voltage_LF(); lf_av = lf_max = AvgAdc_Voltage_LF();
if(limit != HF_ONLY) { if (limit != HF_ONLY) {
Dbprintf("LF 125/134kHz Baseline: %dmV", lf_av); Dbprintf("LF 125/134kHz Baseline: %dmV", lf_av);
lf_baseline = lf_av; lf_baseline = lf_av;
} }
hf_av = hf_max = AvgAdc_Voltage_HF(); hf_av = hf_max = AvgAdc_Voltage_HF();
if (limit != LF_ONLY) { if (limit != LF_ONLY) {
Dbprintf("HF 13.56MHz Baseline: %dmV", hf_av); Dbprintf("HF 13.56MHz Baseline: %dmV", hf_av);
hf_baseline = hf_av; hf_baseline = hf_av;
@ -919,7 +864,8 @@ void ListenReaderField(int limit)
return; return;
break; break;
} }
while (BUTTON_PRESS()); while (BUTTON_PRESS())
/* wait */;
} }
WDT_HIT(); WDT_HIT();
@ -933,7 +879,7 @@ void ListenReaderField(int limit)
lf_av_new = AvgAdc_Voltage_LF(); lf_av_new = AvgAdc_Voltage_LF();
// see if there's a significant change // see if there's a significant change
if (ABS((lf_av - lf_av_new)*100/(lf_av?lf_av:1)) > REPORT_CHANGE_PERCENT) { if (ABS((lf_av - lf_av_new) * 100 / (lf_av?lf_av:1)) > REPORT_CHANGE_PERCENT) {
Dbprintf("LF 125/134kHz Field Change: %5dmV", lf_av_new); Dbprintf("LF 125/134kHz Field Change: %5dmV", lf_av_new);
lf_av = lf_av_new; lf_av = lf_av_new;
if (lf_av > lf_max) if (lf_av > lf_max)
@ -950,9 +896,9 @@ void ListenReaderField(int limit)
} }
hf_av_new = AvgAdc_Voltage_HF(); hf_av_new = AvgAdc_Voltage_HF();
// see if there's a significant change // see if there's a significant change
if (ABS((hf_av - hf_av_new)*100/(hf_av?hf_av:1)) > REPORT_CHANGE_PERCENT) { if (ABS((hf_av - hf_av_new) * 100 / (hf_av?hf_av:1)) > REPORT_CHANGE_PERCENT) {
Dbprintf("HF 13.56MHz Field Change: %5dmV", hf_av_new); Dbprintf("HF 13.56MHz Field Change: %5dmV", hf_av_new);
hf_av = hf_av_new; hf_av = hf_av_new;
if (hf_av > hf_max) if (hf_av > hf_max)
@ -960,7 +906,7 @@ void ListenReaderField(int limit)
} }
} }
if(mode == 2) { if (mode == 2) {
if (limit == LF_ONLY) { if (limit == LF_ONLY) {
display_val = lf_av; display_val = lf_av;
display_max = lf_max; display_max = lf_max;
@ -976,8 +922,8 @@ void ListenReaderField(int limit)
display_max = lf_max; display_max = lf_max;
} }
} }
for (i=0; i<LIGHT_LEN; i++) { for (i = 0; i < LIGHT_LEN; i++) {
if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) { if (display_val >= (display_max / LIGHT_LEN * i) && display_val <= (display_max / LIGHT_LEN * (i+1))) {
if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF(); if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF(); if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF(); if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
@ -989,12 +935,13 @@ void ListenReaderField(int limit)
} }
} }
void UsbPacketReceived(uint8_t *packet, int len)
{ void UsbPacketReceived(uint8_t *packet, int len) {
UsbCommand *c = (UsbCommand *)packet; UsbCommand *c = (UsbCommand *)packet;
// Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]); // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
switch(c->cmd) { switch(c->cmd) {
#ifdef WITH_LF #ifdef WITH_LF
case CMD_SET_LF_SAMPLING_CONFIG: case CMD_SET_LF_SAMPLING_CONFIG:
@ -1058,7 +1005,7 @@ void UsbPacketReceived(uint8_t *packet, int len)
SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]); SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
break; break;
case CMD_INDALA_CLONE_TAG: case CMD_INDALA_CLONE_TAG:
CopyIndala64toT55x7(c->arg[0], c->arg[1]); CopyIndala64toT55x7(c->arg[0], c->arg[1]);
break; break;
case CMD_INDALA_CLONE_TAG_L: case CMD_INDALA_CLONE_TAG_L:
CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]); CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
@ -1109,16 +1056,16 @@ void UsbPacketReceived(uint8_t *packet, int len)
SnoopHitag(c->arg[0]); SnoopHitag(c->arg[0]);
break; break;
case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes); SimulateHitagTag((bool)c->arg[0], (uint8_t*)c->d.asBytes);
break; break;
case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes); ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
break; break;
case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes); SimulateHitagSTag((bool)c->arg[0],(uint8_t*)c->d.asBytes);
break; break;
case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
check_challenges_cmd((bool)c->arg[0], (byte_t*)c->d.asBytes, (uint8_t)c->arg[1]); check_challenges_cmd((bool)c->arg[0], (uint8_t*)c->d.asBytes, (uint8_t)c->arg[1]);
break; break;
case CMD_READ_HITAG_S://Reader for only Hitag S tags, args = key or challenge case CMD_READ_HITAG_S://Reader for only Hitag S tags, args = key or challenge
ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], false); ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], false);
@ -1140,19 +1087,19 @@ void UsbPacketReceived(uint8_t *packet, int len)
case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693: case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
AcquireRawAdcSamplesIso15693(); AcquireRawAdcSamplesIso15693();
break; break;
case CMD_SNOOP_ISO_15693: case CMD_SNOOP_ISO_15693:
SnoopIso15693(0, NULL); SnoopIso15693(0, NULL);
break; break;
case CMD_ISO_15693_COMMAND: case CMD_ISO_15693_COMMAND:
DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
break; break;
case CMD_ISO_15693_FIND_AFI: case CMD_ISO_15693_FIND_AFI:
BruteforceIso15693Afi(c->arg[0]); BruteforceIso15693Afi(c->arg[0]);
break; break;
case CMD_ISO_15693_DEBUG: case CMD_ISO_15693_DEBUG:
SetDebugIso15693(c->arg[0]); SetDebugIso15693(c->arg[0]);
break; break;
@ -1212,14 +1159,14 @@ void UsbPacketReceived(uint8_t *packet, int len)
case CMD_SIMULATE_TAG_ISO_14443a: case CMD_SIMULATE_TAG_ISO_14443a:
SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
break; break;
case CMD_EPA_PACE_COLLECT_NONCE: case CMD_EPA_PACE_COLLECT_NONCE:
EPA_PACE_Collect_Nonce(c); EPA_PACE_Collect_Nonce(c);
break; break;
case CMD_EPA_PACE_REPLAY: case CMD_EPA_PACE_REPLAY:
EPA_PACE_Replay(c); EPA_PACE_Replay(c);
break; break;
case CMD_READER_MIFARE: case CMD_READER_MIFARE:
ReaderMifare(c->arg[0]); ReaderMifare(c->arg[0]);
break; break;
@ -1235,7 +1182,7 @@ void UsbPacketReceived(uint8_t *packet, int len)
case CMD_MIFAREU_READCARD: case CMD_MIFAREU_READCARD:
MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break; break;
case CMD_MIFAREUC_SETPWD: case CMD_MIFAREUC_SETPWD:
MifareUSetPwd(c->arg[0], c->d.asBytes); MifareUSetPwd(c->arg[0], c->d.asBytes);
break; break;
case CMD_MIFARE_READSC: case CMD_MIFARE_READSC:
@ -1265,7 +1212,7 @@ void UsbPacketReceived(uint8_t *packet, int len)
case CMD_SIMULATE_MIFARE_CARD: case CMD_SIMULATE_MIFARE_CARD:
MifareSim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); MifareSim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break; break;
// emulator // emulator
case CMD_MIFARE_SET_DBGMODE: case CMD_MIFARE_SET_DBGMODE:
MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
@ -1282,7 +1229,7 @@ void UsbPacketReceived(uint8_t *packet, int len)
case CMD_MIFARE_EML_CARDLOAD: case CMD_MIFARE_EML_CARDLOAD:
MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break; break;
// Work with "magic Chinese" card // Work with "magic Chinese" card
case CMD_MIFARE_CWIPE: case CMD_MIFARE_CWIPE:
MifareCWipe(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); MifareCWipe(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
@ -1296,7 +1243,7 @@ void UsbPacketReceived(uint8_t *packet, int len)
case CMD_MIFARE_CIDENT: case CMD_MIFARE_CIDENT:
MifareCIdent(); MifareCIdent();
break; break;
// mifare sniffer // mifare sniffer
case CMD_MIFARE_SNIFFER: case CMD_MIFARE_SNIFFER:
SniffMifare(c->arg[0]); SniffMifare(c->arg[0]);
@ -1389,7 +1336,7 @@ void UsbPacketReceived(uint8_t *packet, int len)
ListenReaderField(c->arg[0]); ListenReaderField(c->arg[0]);
break; break;
case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(200); SpinDelay(200);
LED_D_OFF(); // LED D indicates field ON or OFF LED_D_OFF(); // LED D indicates field ON or OFF
@ -1409,8 +1356,8 @@ void UsbPacketReceived(uint8_t *packet, int len)
case CMD_DOWNLOADED_SIM_SAMPLES_125K: { case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
// iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before. // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
// to be able to use this one for uploading data to device // to be able to use this one for uploading data to device
// arg1 = 0 upload for LF usage // arg1 = 0 upload for LF usage
// 1 upload for HF usage // 1 upload for HF usage
if (c->arg[1] == 0) if (c->arg[1] == 0)
FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
@ -1421,7 +1368,7 @@ void UsbPacketReceived(uint8_t *packet, int len)
memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE); memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
cmd_send(CMD_ACK,0,0,0,0,0); cmd_send(CMD_ACK,0,0,0,0,0);
break; break;
} }
case CMD_READ_MEM: case CMD_READ_MEM:
ReadMem(c->arg[0]); ReadMem(c->arg[0]);
break; break;
@ -1481,7 +1428,7 @@ void UsbPacketReceived(uint8_t *packet, int len)
case CMD_DEVICE_INFO: { case CMD_DEVICE_INFO: {
uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS; uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT; if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0); cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
break; break;
} }
default: default:
@ -1490,8 +1437,9 @@ void UsbPacketReceived(uint8_t *packet, int len)
} }
} }
void __attribute__((noreturn)) AppMain(void)
{ void __attribute__((noreturn)) AppMain(void) {
SpinDelay(100); SpinDelay(100);
clear_trace(); clear_trace();
if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) { if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
@ -1503,7 +1451,7 @@ void __attribute__((noreturn)) AppMain(void)
common_area.flags.osimage_present = 1; common_area.flags.osimage_present = 1;
LEDsoff(); LEDsoff();
// Init USB device // Init USB device
usb_enable(); usb_enable();
@ -1526,21 +1474,21 @@ void __attribute__((noreturn)) AppMain(void)
FpgaDownloadAndGo(FPGA_BITSTREAM_HF); FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
StartTickCount(); StartTickCount();
#ifdef WITH_LCD #ifdef WITH_LCD
LCDInit(); LCDInit();
#endif #endif
byte_t rx[sizeof(UsbCommand)]; uint8_t rx[sizeof(UsbCommand)];
size_t rx_len; size_t rx_len;
for(;;) { for(;;) {
if (usb_poll()) { if (usb_poll()) {
rx_len = usb_read(rx,sizeof(UsbCommand)); rx_len = usb_read(rx, sizeof(UsbCommand));
if (rx_len) { if (rx_len) {
UsbPacketReceived(rx,rx_len); UsbPacketReceived(rx, rx_len);
} }
} }
WDT_HIT(); WDT_HIT();
#ifdef WITH_LF_StandAlone #ifdef WITH_LF_StandAlone