cleaning up iclass.c and optimized_cipher.c

* add iclass.h
* reformatting
* whitespace fixes
* (no functional changes)
This commit is contained in:
pwpiwi 2019-08-21 22:10:24 +02:00
commit 17505ce2a7
5 changed files with 829 additions and 923 deletions

View file

@ -24,6 +24,7 @@
#include "legicrfsim.h" #include "legicrfsim.h"
#include "hitag2.h" #include "hitag2.h"
#include "hitagS.h" #include "hitagS.h"
#include "iclass.h"
#include "iso14443b.h" #include "iso14443b.h"
#include "iso15693.h" #include "iso15693.h"
#include "lfsampling.h" #include "lfsampling.h"

View file

@ -26,10 +26,6 @@ extern const uint8_t OddByteParity[256];
extern int rsamples; // = 0; extern int rsamples; // = 0;
extern uint8_t trigger; extern uint8_t trigger;
// This may be used (sparingly) to declare a function to be copied to
// and executed from RAM
#define RAMFUNC __attribute((long_call, section(".ramfunc")))
/// appmain.h /// appmain.h
void ReadMem(int addr); void ReadMem(int addr);
void __attribute__((noreturn)) AppMain(void); void __attribute__((noreturn)) AppMain(void);
@ -144,21 +140,6 @@ void ReaderMifareDES(uint32_t param, uint32_t param2, uint8_t * datain);
int DesfireAPDU(uint8_t *cmd, size_t cmd_len, uint8_t *dataout); int DesfireAPDU(uint8_t *cmd, size_t cmd_len, uint8_t *dataout);
size_t CreateAPDU( uint8_t *datain, size_t len, uint8_t *dataout); size_t CreateAPDU( uint8_t *datain, size_t len, uint8_t *dataout);
/// iclass.h
void RAMFUNC SnoopIClass(void);
void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain);
void ReaderIClass(uint8_t arg0);
void ReaderIClass_Replay(uint8_t arg0,uint8_t *MAC);
void IClass_iso14443A_GetPublic(uint8_t arg0);
void iClass_Authentication(uint8_t *MAC);
void iClass_WriteBlock(uint8_t blockNo, uint8_t *data);
void iClass_ReadBlk(uint8_t blockNo);
bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata);
void iClass_Dump(uint8_t blockno, uint8_t numblks);
void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data);
void iClass_ReadCheck(uint8_t blockNo, uint8_t keyType);
// cmd.h // cmd.h
bool cmd_receive(UsbCommand* cmd); bool cmd_receive(UsbCommand* cmd);
bool cmd_send(uint32_t cmd, uint32_t arg0, uint32_t arg1, uint32_t arg2, void* data, size_t len); bool cmd_send(uint32_t cmd, uint32_t arg0, uint32_t arg1, uint32_t arg2, void* data, size_t len);

File diff suppressed because it is too large Load diff

View file

@ -100,9 +100,7 @@ uint8_t xopt__select(bool x, bool y, uint8_t r)
} }
*/ */
void opt_successor(const uint8_t* k, State *s, bool y, State* successor) void opt_successor(const uint8_t *k, State *s, bool y, State *successor) {
{
uint8_t Tt = 1 & opt_T(s); uint8_t Tt = 1 & opt_T(s);
successor->t = (s->t >> 1); successor->t = (s->t >> 1);
@ -111,83 +109,72 @@ void opt_successor(const uint8_t* k, State *s, bool y, State* successor)
successor->b = s->b >> 1; successor->b = s->b >> 1;
successor->b |= (opt_B(s) ^ (s->r & 0x1)) << 7; successor->b |= (opt_B(s) ^ (s->r & 0x1)) << 7;
successor->r = (k[opt__select(Tt,y,s->r)] ^ successor->b) + s->l ; successor->r = (k[opt__select(Tt, y, s->r)] ^ successor->b) + s->l ;
successor->l = successor->r+s->r; successor->l = successor->r + s->r;
} }
void opt_suc(const uint8_t* k,State* s, uint8_t *in, uint8_t length, bool add32Zeroes) void opt_suc(const uint8_t *k, State *s, uint8_t *in, uint8_t length, bool add32Zeroes) {
{
State x2; State x2;
int i; for (int i = 0; i < length; i++) {
uint8_t head = 0; uint8_t head;
for(i =0 ; i < length ; i++)
{
head = 1 & (in[i] >> 7); head = 1 & (in[i] >> 7);
opt_successor(k,s,head,&x2); opt_successor(k, s, head, &x2);
head = 1 & (in[i] >> 6); head = 1 & (in[i] >> 6);
opt_successor(k,&x2,head,s); opt_successor(k, &x2, head, s);
head = 1 & (in[i] >> 5); head = 1 & (in[i] >> 5);
opt_successor(k,s,head,&x2); opt_successor(k, s, head, &x2);
head = 1 & (in[i] >> 4); head = 1 & (in[i] >> 4);
opt_successor(k,&x2,head,s); opt_successor(k, &x2, head, s);
head = 1 & (in[i] >> 3); head = 1 & (in[i] >> 3);
opt_successor(k,s,head,&x2); opt_successor(k, s, head, &x2);
head = 1 & (in[i] >> 2); head = 1 & (in[i] >> 2);
opt_successor(k,&x2,head,s); opt_successor(k, &x2, head, s);
head = 1 & (in[i] >> 1); head = 1 & (in[i] >> 1);
opt_successor(k,s,head,&x2); opt_successor(k, s, head, &x2);
head = 1 & in[i]; head = 1 & in[i];
opt_successor(k,&x2,head,s); opt_successor(k, &x2, head, s);
} }
//For tag MAC, an additional 32 zeroes //For tag MAC, an additional 32 zeroes
if(add32Zeroes) if (add32Zeroes) {
for(i =0 ; i < 16 ; i++) for(int i = 0; i < 16; i++) {
{ opt_successor(k, s, 0, &x2);
opt_successor(k,s,0,&x2); opt_successor(k, &x2, 0, s);
opt_successor(k,&x2,0,s); }
} }
} }
void opt_output(const uint8_t* k,State* s, uint8_t *buffer) void opt_output(const uint8_t *k, State *s, uint8_t *buffer) {
{ State temp = {0, 0, 0, 0};
uint8_t times = 0; for (uint8_t times = 0; times < 4; times++) {
uint8_t bout = 0; uint8_t bout = 0;
State temp = {0,0,0,0};
for( ; times < 4 ; times++)
{
bout =0;
bout |= (s->r & 0x4) << 5; bout |= (s->r & 0x4) << 5;
opt_successor(k,s,0,&temp); opt_successor(k, s, 0, &temp);
bout |= (temp.r & 0x4) << 4; bout |= (temp.r & 0x4) << 4;
opt_successor(k,&temp,0,s); opt_successor(k, &temp, 0, s);
bout |= (s->r & 0x4) << 3; bout |= (s->r & 0x4) << 3;
opt_successor(k,s,0,&temp); opt_successor(k, s, 0, &temp);
bout |= (temp.r & 0x4) << 2; bout |= (temp.r & 0x4) << 2;
opt_successor(k,&temp,0,s); opt_successor(k, &temp, 0, s);
bout |= (s->r & 0x4) << 1; bout |= (s->r & 0x4) << 1;
opt_successor(k,s,0,&temp); opt_successor(k, s, 0, &temp);
bout |= (temp.r & 0x4) ; bout |= (temp.r & 0x4) ;
opt_successor(k,&temp,0,s); opt_successor(k, &temp, 0, s);
bout |= (s->r & 0x4) >> 1; bout |= (s->r & 0x4) >> 1;
opt_successor(k,s,0,&temp); opt_successor(k, s, 0, &temp);
bout |= (temp.r & 0x4) >> 2; bout |= (temp.r & 0x4) >> 2;
opt_successor(k,&temp,0,s); opt_successor(k, &temp, 0, s);
buffer[times] = bout; buffer[times] = bout;
} }
} }
void opt_MAC(uint8_t* k, uint8_t* input, uint8_t* out) void opt_MAC(uint8_t *k, uint8_t *input, uint8_t *out) {
{
State _init = { State _init = {
((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l ((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l
((k[0] ^ 0x4c) + 0x21) & 0xFF,// r ((k[0] ^ 0x4c) + 0x21) & 0xFF,// r
@ -195,52 +182,51 @@ void opt_MAC(uint8_t* k, uint8_t* input, uint8_t* out)
0xE012 // t 0xE012 // t
}; };
opt_suc(k,&_init,input,12, false); opt_suc(k, &_init, input, 12, false);
//printf("\noutp "); //printf("\noutp ");
opt_output(k,&_init, out); opt_output(k, &_init, out);
} }
uint8_t rev_byte(uint8_t b) { uint8_t rev_byte(uint8_t b) {
b = (b & 0xF0) >> 4 | (b & 0x0F) << 4; b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
b = (b & 0xCC) >> 2 | (b & 0x33) << 2; b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
b = (b & 0xAA) >> 1 | (b & 0x55) << 1; b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
return b; return b;
} }
void opt_reverse_arraybytecpy(uint8_t* dest, uint8_t *src, size_t len)
{ void opt_reverse_arraybytecpy(uint8_t *dest, uint8_t *src, size_t len) {
uint8_t i; for (size_t i = 0; i < len; i++) {
for( i =0; i< len ; i++)
dest[i] = rev_byte(src[i]); dest[i] = rev_byte(src[i]);
}
} }
void opt_doReaderMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]) void opt_doReaderMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]) {
{
static uint8_t cc_nr[12]; static uint8_t cc_nr[12];
opt_reverse_arraybytecpy(cc_nr, cc_nr_p, 12);
opt_reverse_arraybytecpy(cc_nr, cc_nr_p,12); uint8_t dest[] = {0, 0, 0, 0, 0, 0, 0, 0};
uint8_t dest []= {0,0,0,0,0,0,0,0}; opt_MAC(div_key_p, cc_nr, dest);
opt_MAC(div_key_p,cc_nr, dest);
//The output MAC must also be reversed //The output MAC must also be reversed
opt_reverse_arraybytecpy(mac, dest,4); opt_reverse_arraybytecpy(mac, dest, 4);
return; return;
} }
void opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4])
{ void opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4]) {
static uint8_t cc_nr[8+4+4]; static uint8_t cc_nr[8+4+4];
opt_reverse_arraybytecpy(cc_nr, cc_p,12); opt_reverse_arraybytecpy(cc_nr, cc_p, 12);
State _init = { State _init = {
((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l
((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r
0x4c, // b 0x4c, // b
0xE012 // t 0xE012 // t
}; };
opt_suc(div_key_p,&_init,cc_nr, 12,true); opt_suc(div_key_p, &_init,cc_nr, 12, true);
uint8_t dest []= {0,0,0,0}; uint8_t dest[] = {0, 0, 0, 0};
opt_output(div_key_p,&_init, dest); opt_output(div_key_p, &_init, dest);
//The output MAC must also be reversed //The output MAC must also be reversed
opt_reverse_arraybytecpy(mac, dest,4); opt_reverse_arraybytecpy(mac, dest, 4);
return; return;
} }
/** /**
* The tag MAC can be divided (both can, but no point in dividing the reader mac) into * The tag MAC can be divided (both can, but no point in dividing the reader mac) into
* two functions, since the first 8 bytes are known, we can pre-calculate the state * two functions, since the first 8 bytes are known, we can pre-calculate the state
@ -249,19 +235,19 @@ void opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4])
* @param div_key_p * @param div_key_p
* @return the cipher state * @return the cipher state
*/ */
State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p) State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p) {
{
static uint8_t cc_nr[8]; static uint8_t cc_nr[8];
opt_reverse_arraybytecpy(cc_nr, cc_p,8); opt_reverse_arraybytecpy(cc_nr, cc_p, 8);
State _init = { State _init = {
((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l
((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r
0x4c, // b 0x4c, // b
0xE012 // t 0xE012 // t
}; };
opt_suc(div_key_p,&_init,cc_nr, 8,false); opt_suc(div_key_p, &_init, cc_nr, 8, false);
return _init; return _init;
} }
/** /**
* The second part of the tag MAC calculation, since the CC is already calculated into the state, * The second part of the tag MAC calculation, since the CC is already calculated into the state,
* this function is fed only the NR, and internally feeds the remaining 32 0-bits to generate the tag * this function is fed only the NR, and internally feeds the remaining 32 0-bits to generate the tag
@ -271,15 +257,14 @@ State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p)
* @param mac - where to store the MAC * @param mac - where to store the MAC
* @param div_key_p - the key to use * @param div_key_p - the key to use
*/ */
void opt_doTagMAC_2(State _init, uint8_t* nr, uint8_t mac[4], const uint8_t* div_key_p) void opt_doTagMAC_2(State _init, uint8_t *nr, uint8_t mac[4], const uint8_t *div_key_p) {
{ static uint8_t _nr[4];
static uint8_t _nr [4];
opt_reverse_arraybytecpy(_nr, nr, 4); opt_reverse_arraybytecpy(_nr, nr, 4);
opt_suc(div_key_p,&_init,_nr, 4, true); opt_suc(div_key_p, &_init, _nr, 4, true);
//opt_suc(div_key_p,&_init,nr, 4, false); //opt_suc(div_key_p, &_init,nr, 4, false);
uint8_t dest []= {0,0,0,0}; uint8_t dest[] = {0, 0, 0, 0};
opt_output(div_key_p,&_init, dest); opt_output(div_key_p, &_init, dest);
//The output MAC must also be reversed //The output MAC must also be reversed
opt_reverse_arraybytecpy(mac, dest,4); opt_reverse_arraybytecpy(mac, dest, 4);
return; return;
} }

View file

@ -35,8 +35,9 @@
* *
****************************************************************************/ ****************************************************************************/
#ifndef OPTIMIZED_CIPHER_H #ifndef OPTIMIZED_CIPHER_H__
#define OPTIMIZED_CIPHER_H #define OPTIMIZED_CIPHER_H__
#include <stdint.h> #include <stdint.h>
/** /**
@ -57,6 +58,7 @@ typedef struct {
/** The reader MAC is MAC(key, CC * NR ) /** The reader MAC is MAC(key, CC * NR )
**/ **/
void opt_doReaderMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]); void opt_doReaderMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]);
/** /**
* The tag MAC is MAC(key, CC * NR * 32x0)) * The tag MAC is MAC(key, CC * NR * 32x0))
*/ */
@ -71,6 +73,7 @@ void opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4]);
* @return the cipher state * @return the cipher state
*/ */
State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p); State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p);
/** /**
* The second part of the tag MAC calculation, since the CC is already calculated into the state, * The second part of the tag MAC calculation, since the CC is already calculated into the state,
* this function is fed only the NR, and internally feeds the remaining 32 0-bits to generate the tag * this function is fed only the NR, and internally feeds the remaining 32 0-bits to generate the tag
@ -80,6 +83,6 @@ State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p);
* @param mac - where to store the MAC * @param mac - where to store the MAC
* @param div_key_p - the key to use * @param div_key_p - the key to use
*/ */
void opt_doTagMAC_2(State _init, uint8_t* nr, uint8_t mac[4], const uint8_t* div_key_p); void opt_doTagMAC_2(State _init, uint8_t *nr, uint8_t mac[4], const uint8_t *div_key_p);
#endif // OPTIMIZED_CIPHER_H #endif // OPTIMIZED_CIPHER_H__