Upgrade crapto1 library to v3.3 (#232)

- fix standalone tools mfkey32, mfkey64 and nonce2key to use common crapto1 library
- fix compiler warnings in tools/mfkey/mfkey64.c and tools/nonce2key/nonce2key.c
- allow crapto1.c to compile on ARM hosts
- add @iceman1001's readme.txt to tools/mfkey
This commit is contained in:
pwpiwi 2017-03-12 15:05:54 +01:00 committed by GitHub
commit 0ca9bc0e99
10 changed files with 150 additions and 195 deletions

View file

@ -15,11 +15,10 @@
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, US$
Copyright (C) 2008-2008 bla <blapost@gmail.com>
Copyright (C) 2008-2014 bla <blapost@gmail.com>
*/
#include "crapto1.h"
#include <stdlib.h>
#include <stdbool.h>
#if !defined LOWMEM && defined __GNUC__
static uint8_t filterlut[1 << 20];
@ -95,12 +94,10 @@ static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop,
bucket_info->numbuckets = nonempty_bucket;
}
}
/** binsearch
* Binary search for the first occurence of *stop's MSB in sorted [start,stop]
*/
static inline uint32_t*
binsearch(uint32_t *start, uint32_t *stop)
static inline uint32_t* binsearch(uint32_t *start, uint32_t *stop)
{
uint32_t mid, val = *stop & 0xff000000;
while(start != stop)
@ -132,41 +129,34 @@ static inline void
extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
{
in <<= 24;
for(uint32_t *p = tbl; p <= *end; p++) {
*p <<= 1;
if(filter(*p) != filter(*p | 1)) { // replace
*p |= filter(*p) ^ bit;
update_contribution(p, m1, m2);
*p ^= in;
} else if(filter(*p) == bit) { // insert
*++*end = p[1];
p[1] = p[0] | 1;
update_contribution(p, m1, m2);
*p++ ^= in;
update_contribution(p, m1, m2);
*p ^= in;
} else { // drop
*p-- = *(*end)--;
}
}
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else if(filter(*tbl) == bit) {
*++*end = tbl[1];
tbl[1] = tbl[0] | 1;
update_contribution(tbl, m1, m2);
*tbl++ ^= in;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else
*tbl-- = *(*end)--;
}
/** extend_table_simple
* using a bit of the keystream extend the table of possible lfsr states
*/
static inline void
extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
static inline void extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
{
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) { // replace
if(filter(*tbl) ^ filter(*tbl | 1))
*tbl |= filter(*tbl) ^ bit;
} else if(filter(*tbl) == bit) { // insert
else if(filter(*tbl) == bit) {
*++*end = *++tbl;
*tbl = tbl[-1] | 1;
} else // drop
} else
*tbl-- = *(*end)--;
}
@ -179,7 +169,7 @@ recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
struct Crypto1State *sl, uint32_t in, bucket_array_t bucket)
{
uint32_t *o, *e;
uint32_t *o, *e, i;
bucket_info_t bucket_info;
if(rem == -1) {
@ -188,24 +178,26 @@ recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
for(o = o_head; o <= o_tail; ++o, ++sl) {
sl->even = *o;
sl->odd = *e ^ parity(*o & LF_POLY_ODD);
sl[1].odd = sl[1].even = 0;
}
}
sl->odd = sl->even = 0;
return sl;
}
for(uint32_t i = 0; i < 4 && rem--; i++) {
extend_table(o_head, &o_tail, (oks >>= 1) & 1,
LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);
for(i = 0; i < 4 && rem--; i++) {
oks >>= 1;
eks >>= 1;
in >>= 2;
extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1,
LF_POLY_ODD << 1, 0);
if(o_head > o_tail)
return sl;
extend_table(e_head, &e_tail, (eks >>= 1) & 1,
LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, (in >>= 2) & 3);
extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD,
LF_POLY_EVEN << 1 | 1, in & 3);
if(e_head > e_tail)
return sl;
}
bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket);
for (int i = bucket_info.numbuckets - 1; i >= 0; i--) {
@ -228,7 +220,6 @@ struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
uint32_t *even_head = 0, *even_tail = 0, eks = 0;
int i;
// split the keystream into an odd and even part
for(i = 31; i >= 0; i -= 2)
oks = oks << 1 | BEBIT(ks2, i);
for(i = 30; i >= 0; i -= 2)
@ -238,6 +229,8 @@ struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
even_head = even_tail = malloc(sizeof(uint32_t) << 21);
statelist = malloc(sizeof(struct Crypto1State) << 18);
if(!odd_tail-- || !even_tail-- || !statelist) {
free(statelist);
statelist = 0;
goto out;
}
statelist->odd = statelist->even = 0;
@ -253,7 +246,6 @@ struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
}
// initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
for(i = 1 << 20; i >= 0; --i) {
if(filter(i) == (oks & 1))
*++odd_tail = i;
@ -261,22 +253,15 @@ struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
*++even_tail = i;
}
// extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
for(i = 0; i < 4; i++) {
extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
}
// the statelists now contain all states which could have generated the last 10 Bits of the keystream.
// 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
// parameter into account.
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00); // Byte swapping
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);
recover(odd_head, odd_tail, oks,
even_head, even_tail, eks, 11, statelist, in << 1, bucket);
out:
free(odd_head);
free(even_head);
@ -324,12 +309,12 @@ struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
sl->odd = sl->even = 0;
for(i = 30; i >= 0; i -= 2) {
oks[i >> 1] = BIT(ks2, i ^ 24);
oks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
oks[i >> 1] = BEBIT(ks2, i);
oks[16 + (i >> 1)] = BEBIT(ks3, i);
}
for(i = 31; i >= 0; i -= 2) {
eks[i >> 1] = BIT(ks2, i ^ 24);
eks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
eks[i >> 1] = BEBIT(ks2, i);
eks[16 + (i >> 1)] = BEBIT(ks3, i);
}
for(i = 0xfffff; i >= 0; --i) {
@ -380,41 +365,44 @@ struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
/** lfsr_rollback_bit
* Rollback the shift register in order to get previous states
*/
void lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
{
int out;
uint32_t tmp;
uint8_t ret;
uint32_t t;
s->odd &= 0xffffff;
tmp = s->odd;
s->odd = s->even;
s->even = tmp;
t = s->odd, s->odd = s->even, s->even = t;
out = s->even & 1;
out ^= LF_POLY_EVEN & (s->even >>= 1);
out ^= LF_POLY_ODD & s->odd;
out ^= !!in;
out ^= filter(s->odd) & !!fb;
out ^= (ret = filter(s->odd)) & !!fb;
s->even |= parity(out) << 23;
return ret;
}
/** lfsr_rollback_byte
* Rollback the shift register in order to get previous states
*/
void lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
{
int i;
int i, ret=0;
for (i = 7; i >= 0; --i)
lfsr_rollback_bit(s, BEBIT(in, i), fb);
ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
return ret;
}
/** lfsr_rollback_word
* Rollback the shift register in order to get previous states
*/
void lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
{
int i;
uint32_t ret = 0;
for (i = 31; i >= 0; --i)
lfsr_rollback_bit(s, BEBIT(in, i), fb);
ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
return ret;
}
/** nonce_distance
@ -440,112 +428,86 @@ int nonce_distance(uint32_t from, uint32_t to)
static uint32_t fastfwd[2][8] = {
{ 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
{ 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
/** lfsr_prefix_ks
*
* Is an exported helper function from the common prefix attack
* Described in the "dark side" paper. It returns an -1 terminated array
* of possible partial(21 bit) secret state.
* The required keystream(ks) needs to contain the keystream that was used to
* encrypt the NACK which is observed when varying only the 4 last bits of Nr
* encrypt the NACK which is observed when varying only the 3 last bits of Nr
* only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
*/
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
{
uint32_t *candidates = malloc(4 << 21);
uint32_t c, entry;
int size, i;
uint32_t c, entry, *candidates = malloc(4 << 10);
int i, size = 0, good;
if(!candidates)
return 0;
size = (1 << 21) - 1;
for(i = 0; i <= size; ++i)
candidates[i] = i;
for(c = 0; c < 8; ++c)
for(i = 0;i <= size; ++i) {
entry = candidates[i] ^ fastfwd[isodd][c];
if(filter(entry >> 1) == BIT(ks[c], isodd))
if(filter(entry) == BIT(ks[c], isodd + 2))
continue;
candidates[i--] = candidates[size--];
for(i = 0; i < 1 << 21; ++i) {
for(c = 0, good = 1; good && c < 8; ++c) {
entry = i ^ fastfwd[isodd][c];
good &= (BIT(ks[c], isodd) == filter(entry >> 1));
good &= (BIT(ks[c], isodd + 2) == filter(entry));
}
candidates[size + 1] = -1;
if(good)
candidates[size++] = i;
}
candidates[size] = -1;
return candidates;
}
/** brute_top
/** check_pfx_parity
* helper function which eliminates possible secret states using parity bits
*/
static struct Crypto1State*
brute_top(uint32_t prefix, uint32_t rresp, unsigned char parities[8][8],
uint32_t odd, uint32_t even, struct Crypto1State* sl)
check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8],
uint32_t odd, uint32_t even, struct Crypto1State* sl)
{
struct Crypto1State s;
uint32_t ks1, nr, ks2, rr, ks3, good, c;
uint32_t ks1, nr, ks2, rr, ks3, c, good = 1, no_par = 1;
bool no_par = true;
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 8; j++) {
if (parities[i][j] != 0) {
no_par = false;
no_par = 0;
break;
}
}
}
for(c = 0; c < 8; ++c) {
s.odd = odd ^ fastfwd[1][c];
s.even = even ^ fastfwd[0][c];
for(c = 0; good && c < 8; ++c) {
sl->odd = odd ^ fastfwd[1][c];
sl->even = even ^ fastfwd[0][c];
lfsr_rollback_bit(&s, 0, 0);
lfsr_rollback_bit(&s, 0, 0);
lfsr_rollback_bit(&s, 0, 0);
lfsr_rollback_bit(sl, 0, 0);
lfsr_rollback_bit(sl, 0, 0);
lfsr_rollback_word(&s, 0, 0);
lfsr_rollback_word(&s, prefix | c << 5, 1);
sl->odd = s.odd;
sl->even = s.even;
ks3 = lfsr_rollback_bit(sl, 0, 0);
ks2 = lfsr_rollback_word(sl, 0, 0);
ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);
if (no_par)
break;
ks1 = crypto1_word(&s, prefix | c << 5, 1);
ks2 = crypto1_word(&s,0,0);
ks3 = crypto1_word(&s, 0,0);
nr = ks1 ^ (prefix | c << 5);
rr = ks2 ^ rresp;
good = 1;
good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ BIT(ks3, 24);
if(!good)
return sl;
good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
}
return ++sl;
return sl + good;
}
/** lfsr_common_prefix
* Implentation of the common prefix attack.
* Requires the 28 bit constant prefix used as reader nonce (pfx)
* The reader response used (rr)
* The keystream used to encrypt the observed NACK's (ks)
* The parity bits (par)
* It returns a zero terminated list of possible cipher states after the
* tag nonce was fed in
*/
struct Crypto1State*
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])
@ -556,29 +518,24 @@ lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])
odd = lfsr_prefix_ks(ks, 1);
even = lfsr_prefix_ks(ks, 0);
statelist = malloc((sizeof *statelist) << 21); //how large should be?
if(!statelist || !odd || !even)
{
free(statelist);
free(odd);
free(even);
return 0;
s = statelist = malloc((sizeof *statelist) << 20);
if(!s || !odd || !even) {
free(statelist);
statelist = 0;
goto out;
}
s = statelist;
for(o = odd; *o != -1; ++o)
for(e = even; *e != -1; ++e)
for(o = odd; *o + 1; ++o)
for(e = even; *e + 1; ++e)
for(top = 0; top < 64; ++top) {
*o = (*o & 0x1fffff) | (top << 21);
*e = (*e & 0x1fffff) | (top >> 3) << 21;
s = brute_top(pfx, rr, par, *o, *e, s);
*o += 1 << 21;
*e += (!(top & 7) + 1) << 21;
s = check_pfx_parity(pfx, rr, par, *o, *e, s);
}
s->odd = s->even = -1;
//printf("state count = %d\n",s-statelist);
s->odd = s->even = 0;
out:
free(odd);
free(even);
return statelist;
}

View file

@ -15,7 +15,7 @@
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, US$
Copyright (C) 2008-2008 bla <blapost@gmail.com>
Copyright (C) 2008-2014 bla <blapost@gmail.com>
*/
#ifndef CRAPTO1_INCLUDED
#define CRAPTO1_INCLUDED
@ -44,9 +44,9 @@ struct Crypto1State*
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]);
void lfsr_rollback_bit(struct Crypto1State* s, uint32_t in, int fb);
void lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb);
void lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb);
uint8_t lfsr_rollback_bit(struct Crypto1State* s, uint32_t in, int fb);
uint8_t lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb);
uint32_t lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb);
int nonce_distance(uint32_t from, uint32_t to);
#define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\
uint32_t __n = 0,__M = 0, N = 0;\

View file

@ -23,33 +23,34 @@
#define SWAPENDIAN(x)\
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
#if defined(__arm__)
#if defined(__arm__) && !defined(__linux__) && !defined(_WIN32) // bare metal ARM lacks malloc()/free()
void crypto1_create(struct Crypto1State *s, uint64_t key)
{
#else
struct Crypto1State * crypto1_create(uint64_t key)
{
struct Crypto1State *s = malloc(sizeof(*s));
#endif
int i;
for(i = 47;s && i > 0; i -= 2) {
s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7);
s->even = s->even << 1 | BIT(key, i ^ 7);
}
#if defined(__arm__)
return;
#else
return s;
#endif
}
#if defined(__arm__)
void crypto1_destroy(struct Crypto1State *state)
{
state->odd = 0;
state->even = 0;
}
#else
struct Crypto1State * crypto1_create(uint64_t key)
{
struct Crypto1State *s = malloc(sizeof(*s));
int i;
for(i = 47;s && i > 0; i -= 2) {
s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7);
s->even = s->even << 1 | BIT(key, i ^ 7);
}
return s;
}
void crypto1_destroy(struct Crypto1State *state)
{
free(state);
@ -65,8 +66,7 @@ void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr)
}
uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
{
uint32_t feedin;
uint32_t tmp;
uint32_t feedin, t;
uint8_t ret = filter(s->odd);
feedin = ret & !!is_encrypted;
@ -75,9 +75,7 @@ uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
feedin ^= LF_POLY_EVEN & s->even;
s->even = s->even << 1 | parity(feedin);
tmp = s->odd;
s->odd = s->even;
s->even = tmp;
t = s->odd, s->odd = s->even, s->even = t;
return ret;
}
@ -94,8 +92,8 @@ uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
{
uint32_t i, ret = 0;
for (i = 0; i < 4; ++i, in <<= 8)
ret = ret << 8 | crypto1_byte(s, in >> 24, is_encrypted);
for (i = 0; i < 32; ++i)
ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24);
return ret;
}