plexpy/lib/more_itertools/recipes.pyi
dependabot[bot] 6b1b6d0f32
Bump tempora from 5.1.0 to 5.2.1 (#1977)
* Bump tempora from 5.1.0 to 5.2.1

Bumps [tempora](https://github.com/jaraco/tempora) from 5.1.0 to 5.2.1.
- [Release notes](https://github.com/jaraco/tempora/releases)
- [Changelog](https://github.com/jaraco/tempora/blob/main/CHANGES.rst)
- [Commits](https://github.com/jaraco/tempora/compare/v5.1.0...v5.2.1)

---
updated-dependencies:
- dependency-name: tempora
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>

* Update tempora==5.2.1

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: JonnyWong16 <9099342+JonnyWong16@users.noreply.github.com>

[skip ci]
2023-03-02 20:54:54 -08:00

119 lines
4 KiB
Python

"""Stubs for more_itertools.recipes"""
from __future__ import annotations
from typing import (
Any,
Callable,
Iterable,
Iterator,
overload,
Sequence,
Type,
TypeVar,
)
# Type and type variable definitions
_T = TypeVar('_T')
_U = TypeVar('_U')
def take(n: int, iterable: Iterable[_T]) -> list[_T]: ...
def tabulate(
function: Callable[[int], _T], start: int = ...
) -> Iterator[_T]: ...
def tail(n: int, iterable: Iterable[_T]) -> Iterator[_T]: ...
def consume(iterator: Iterable[object], n: int | None = ...) -> None: ...
@overload
def nth(iterable: Iterable[_T], n: int) -> _T | None: ...
@overload
def nth(iterable: Iterable[_T], n: int, default: _U) -> _T | _U: ...
def all_equal(iterable: Iterable[object]) -> bool: ...
def quantify(
iterable: Iterable[_T], pred: Callable[[_T], bool] = ...
) -> int: ...
def pad_none(iterable: Iterable[_T]) -> Iterator[_T | None]: ...
def padnone(iterable: Iterable[_T]) -> Iterator[_T | None]: ...
def ncycles(iterable: Iterable[_T], n: int) -> Iterator[_T]: ...
def dotproduct(vec1: Iterable[object], vec2: Iterable[object]) -> object: ...
def flatten(listOfLists: Iterable[Iterable[_T]]) -> Iterator[_T]: ...
def repeatfunc(
func: Callable[..., _U], times: int | None = ..., *args: Any
) -> Iterator[_U]: ...
def pairwise(iterable: Iterable[_T]) -> Iterator[tuple[_T, _T]]: ...
def grouper(
iterable: Iterable[_T],
n: int,
incomplete: str = ...,
fillvalue: _U = ...,
) -> Iterator[tuple[_T | _U, ...]]: ...
def roundrobin(*iterables: Iterable[_T]) -> Iterator[_T]: ...
def partition(
pred: Callable[[_T], object] | None, iterable: Iterable[_T]
) -> tuple[Iterator[_T], Iterator[_T]]: ...
def powerset(iterable: Iterable[_T]) -> Iterator[tuple[_T, ...]]: ...
def unique_everseen(
iterable: Iterable[_T], key: Callable[[_T], _U] | None = ...
) -> Iterator[_T]: ...
def unique_justseen(
iterable: Iterable[_T], key: Callable[[_T], object] | None = ...
) -> Iterator[_T]: ...
@overload
def iter_except(
func: Callable[[], _T],
exception: Type[BaseException] | tuple[Type[BaseException], ...],
first: None = ...,
) -> Iterator[_T]: ...
@overload
def iter_except(
func: Callable[[], _T],
exception: Type[BaseException] | tuple[Type[BaseException], ...],
first: Callable[[], _U],
) -> Iterator[_T | _U]: ...
@overload
def first_true(
iterable: Iterable[_T], *, pred: Callable[[_T], object] | None = ...
) -> _T | None: ...
@overload
def first_true(
iterable: Iterable[_T],
default: _U,
pred: Callable[[_T], object] | None = ...,
) -> _T | _U: ...
def random_product(
*args: Iterable[_T], repeat: int = ...
) -> tuple[_T, ...]: ...
def random_permutation(
iterable: Iterable[_T], r: int | None = ...
) -> tuple[_T, ...]: ...
def random_combination(iterable: Iterable[_T], r: int) -> tuple[_T, ...]: ...
def random_combination_with_replacement(
iterable: Iterable[_T], r: int
) -> tuple[_T, ...]: ...
def nth_combination(
iterable: Iterable[_T], r: int, index: int
) -> tuple[_T, ...]: ...
def prepend(value: _T, iterator: Iterable[_U]) -> Iterator[_T | _U]: ...
def convolve(signal: Iterable[_T], kernel: Iterable[_T]) -> Iterator[_T]: ...
def before_and_after(
predicate: Callable[[_T], bool], it: Iterable[_T]
) -> tuple[Iterator[_T], Iterator[_T]]: ...
def triplewise(iterable: Iterable[_T]) -> Iterator[tuple[_T, _T, _T]]: ...
def sliding_window(
iterable: Iterable[_T], n: int
) -> Iterator[tuple[_T, ...]]: ...
def subslices(iterable: Iterable[_T]) -> Iterator[list[_T]]: ...
def polynomial_from_roots(roots: Sequence[int]) -> list[int]: ...
def iter_index(
iterable: Iterable[object],
value: Any,
start: int | None = ...,
) -> Iterator[int]: ...
def sieve(n: int) -> Iterator[int]: ...
def batched(
iterable: Iterable[_T],
n: int,
) -> Iterator[list[_T]]: ...
def transpose(
it: Iterable[Iterable[_T]],
) -> tuple[Iterator[_T], ...]: ...
def matmul(m1: Sequence[_T], m2: Sequence[_T]) -> Iterator[list[_T]]: ...
def factor(n: int) -> Iterator[int]: ...