plexpy/lib/urllib3/util/wait.py
dependabot[bot] af1aed0b6b
Bump requests from 2.27.1 to 2.28.1 (#1781)
* Bump requests from 2.27.1 to 2.28.1

Bumps [requests](https://github.com/psf/requests) from 2.27.1 to 2.28.1.
- [Release notes](https://github.com/psf/requests/releases)
- [Changelog](https://github.com/psf/requests/blob/main/HISTORY.md)
- [Commits](https://github.com/psf/requests/compare/v2.27.1...v2.28.1)

---
updated-dependencies:
- dependency-name: requests
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>

* Update requests==2.28.1

* Update urllib3==1.26.12

* Update certifi==2022.9.24

* Update idna==3.4

* Update charset-normalizer==2.1.1

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: JonnyWong16 <9099342+JonnyWong16@users.noreply.github.com>

[skip ci]
2022-11-12 17:12:19 -08:00

152 lines
5.3 KiB
Python

import errno
import select
import sys
from functools import partial
try:
from time import monotonic
except ImportError:
from time import time as monotonic
__all__ = ["NoWayToWaitForSocketError", "wait_for_read", "wait_for_write"]
class NoWayToWaitForSocketError(Exception):
pass
# How should we wait on sockets?
#
# There are two types of APIs you can use for waiting on sockets: the fancy
# modern stateful APIs like epoll/kqueue, and the older stateless APIs like
# select/poll. The stateful APIs are more efficient when you have a lots of
# sockets to keep track of, because you can set them up once and then use them
# lots of times. But we only ever want to wait on a single socket at a time
# and don't want to keep track of state, so the stateless APIs are actually
# more efficient. So we want to use select() or poll().
#
# Now, how do we choose between select() and poll()? On traditional Unixes,
# select() has a strange calling convention that makes it slow, or fail
# altogether, for high-numbered file descriptors. The point of poll() is to fix
# that, so on Unixes, we prefer poll().
#
# On Windows, there is no poll() (or at least Python doesn't provide a wrapper
# for it), but that's OK, because on Windows, select() doesn't have this
# strange calling convention; plain select() works fine.
#
# So: on Windows we use select(), and everywhere else we use poll(). We also
# fall back to select() in case poll() is somehow broken or missing.
if sys.version_info >= (3, 5):
# Modern Python, that retries syscalls by default
def _retry_on_intr(fn, timeout):
return fn(timeout)
else:
# Old and broken Pythons.
def _retry_on_intr(fn, timeout):
if timeout is None:
deadline = float("inf")
else:
deadline = monotonic() + timeout
while True:
try:
return fn(timeout)
# OSError for 3 <= pyver < 3.5, select.error for pyver <= 2.7
except (OSError, select.error) as e:
# 'e.args[0]' incantation works for both OSError and select.error
if e.args[0] != errno.EINTR:
raise
else:
timeout = deadline - monotonic()
if timeout < 0:
timeout = 0
if timeout == float("inf"):
timeout = None
continue
def select_wait_for_socket(sock, read=False, write=False, timeout=None):
if not read and not write:
raise RuntimeError("must specify at least one of read=True, write=True")
rcheck = []
wcheck = []
if read:
rcheck.append(sock)
if write:
wcheck.append(sock)
# When doing a non-blocking connect, most systems signal success by
# marking the socket writable. Windows, though, signals success by marked
# it as "exceptional". We paper over the difference by checking the write
# sockets for both conditions. (The stdlib selectors module does the same
# thing.)
fn = partial(select.select, rcheck, wcheck, wcheck)
rready, wready, xready = _retry_on_intr(fn, timeout)
return bool(rready or wready or xready)
def poll_wait_for_socket(sock, read=False, write=False, timeout=None):
if not read and not write:
raise RuntimeError("must specify at least one of read=True, write=True")
mask = 0
if read:
mask |= select.POLLIN
if write:
mask |= select.POLLOUT
poll_obj = select.poll()
poll_obj.register(sock, mask)
# For some reason, poll() takes timeout in milliseconds
def do_poll(t):
if t is not None:
t *= 1000
return poll_obj.poll(t)
return bool(_retry_on_intr(do_poll, timeout))
def null_wait_for_socket(*args, **kwargs):
raise NoWayToWaitForSocketError("no select-equivalent available")
def _have_working_poll():
# Apparently some systems have a select.poll that fails as soon as you try
# to use it, either due to strange configuration or broken monkeypatching
# from libraries like eventlet/greenlet.
try:
poll_obj = select.poll()
_retry_on_intr(poll_obj.poll, 0)
except (AttributeError, OSError):
return False
else:
return True
def wait_for_socket(*args, **kwargs):
# We delay choosing which implementation to use until the first time we're
# called. We could do it at import time, but then we might make the wrong
# decision if someone goes wild with monkeypatching select.poll after
# we're imported.
global wait_for_socket
if _have_working_poll():
wait_for_socket = poll_wait_for_socket
elif hasattr(select, "select"):
wait_for_socket = select_wait_for_socket
else: # Platform-specific: Appengine.
wait_for_socket = null_wait_for_socket
return wait_for_socket(*args, **kwargs)
def wait_for_read(sock, timeout=None):
"""Waits for reading to be available on a given socket.
Returns True if the socket is readable, or False if the timeout expired.
"""
return wait_for_socket(sock, read=True, timeout=timeout)
def wait_for_write(sock, timeout=None):
"""Waits for writing to be available on a given socket.
Returns True if the socket is readable, or False if the timeout expired.
"""
return wait_for_socket(sock, write=True, timeout=timeout)