mirror of
https://github.com/Tautulli/Tautulli.git
synced 2025-07-15 01:32:57 -07:00
Initial Commit
This commit is contained in:
commit
88daa3fb91
1311 changed files with 256240 additions and 0 deletions
32
lib/enum/LICENSE
Normal file
32
lib/enum/LICENSE
Normal file
|
@ -0,0 +1,32 @@
|
|||
Copyright (c) 2013, Ethan Furman.
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
Redistributions of source code must retain the above
|
||||
copyright notice, this list of conditions and the
|
||||
following disclaimer.
|
||||
|
||||
Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following
|
||||
disclaimer in the documentation and/or other materials
|
||||
provided with the distribution.
|
||||
|
||||
Neither the name Ethan Furman nor the names of any
|
||||
contributors may be used to endorse or promote products
|
||||
derived from this software without specific prior written
|
||||
permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
POSSIBILITY OF SUCH DAMAGE.
|
2
lib/enum/README
Normal file
2
lib/enum/README
Normal file
|
@ -0,0 +1,2 @@
|
|||
enum34 is the new Python stdlib enum module available in Python 3.4
|
||||
backported for previous versions of Python from 2.4 to 3.3.
|
790
lib/enum/__init__.py
Normal file
790
lib/enum/__init__.py
Normal file
|
@ -0,0 +1,790 @@
|
|||
"""Python Enumerations"""
|
||||
|
||||
import sys as _sys
|
||||
|
||||
__all__ = ['Enum', 'IntEnum', 'unique']
|
||||
|
||||
version = 1, 0, 4
|
||||
|
||||
pyver = float('%s.%s' % _sys.version_info[:2])
|
||||
|
||||
try:
|
||||
any
|
||||
except NameError:
|
||||
def any(iterable):
|
||||
for element in iterable:
|
||||
if element:
|
||||
return True
|
||||
return False
|
||||
|
||||
try:
|
||||
from collections import OrderedDict
|
||||
except ImportError:
|
||||
OrderedDict = None
|
||||
|
||||
try:
|
||||
basestring
|
||||
except NameError:
|
||||
# In Python 2 basestring is the ancestor of both str and unicode
|
||||
# in Python 3 it's just str, but was missing in 3.1
|
||||
basestring = str
|
||||
|
||||
try:
|
||||
unicode
|
||||
except NameError:
|
||||
# In Python 3 unicode no longer exists (it's just str)
|
||||
unicode = str
|
||||
|
||||
class _RouteClassAttributeToGetattr(object):
|
||||
"""Route attribute access on a class to __getattr__.
|
||||
|
||||
This is a descriptor, used to define attributes that act differently when
|
||||
accessed through an instance and through a class. Instance access remains
|
||||
normal, but access to an attribute through a class will be routed to the
|
||||
class's __getattr__ method; this is done by raising AttributeError.
|
||||
|
||||
"""
|
||||
def __init__(self, fget=None):
|
||||
self.fget = fget
|
||||
|
||||
def __get__(self, instance, ownerclass=None):
|
||||
if instance is None:
|
||||
raise AttributeError()
|
||||
return self.fget(instance)
|
||||
|
||||
def __set__(self, instance, value):
|
||||
raise AttributeError("can't set attribute")
|
||||
|
||||
def __delete__(self, instance):
|
||||
raise AttributeError("can't delete attribute")
|
||||
|
||||
|
||||
def _is_descriptor(obj):
|
||||
"""Returns True if obj is a descriptor, False otherwise."""
|
||||
return (
|
||||
hasattr(obj, '__get__') or
|
||||
hasattr(obj, '__set__') or
|
||||
hasattr(obj, '__delete__'))
|
||||
|
||||
|
||||
def _is_dunder(name):
|
||||
"""Returns True if a __dunder__ name, False otherwise."""
|
||||
return (name[:2] == name[-2:] == '__' and
|
||||
name[2:3] != '_' and
|
||||
name[-3:-2] != '_' and
|
||||
len(name) > 4)
|
||||
|
||||
|
||||
def _is_sunder(name):
|
||||
"""Returns True if a _sunder_ name, False otherwise."""
|
||||
return (name[0] == name[-1] == '_' and
|
||||
name[1:2] != '_' and
|
||||
name[-2:-1] != '_' and
|
||||
len(name) > 2)
|
||||
|
||||
|
||||
def _make_class_unpicklable(cls):
|
||||
"""Make the given class un-picklable."""
|
||||
def _break_on_call_reduce(self, protocol=None):
|
||||
raise TypeError('%r cannot be pickled' % self)
|
||||
cls.__reduce_ex__ = _break_on_call_reduce
|
||||
cls.__module__ = '<unknown>'
|
||||
|
||||
|
||||
class _EnumDict(dict):
|
||||
"""Track enum member order and ensure member names are not reused.
|
||||
|
||||
EnumMeta will use the names found in self._member_names as the
|
||||
enumeration member names.
|
||||
|
||||
"""
|
||||
def __init__(self):
|
||||
super(_EnumDict, self).__init__()
|
||||
self._member_names = []
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
"""Changes anything not dundered or not a descriptor.
|
||||
|
||||
If a descriptor is added with the same name as an enum member, the name
|
||||
is removed from _member_names (this may leave a hole in the numerical
|
||||
sequence of values).
|
||||
|
||||
If an enum member name is used twice, an error is raised; duplicate
|
||||
values are not checked for.
|
||||
|
||||
Single underscore (sunder) names are reserved.
|
||||
|
||||
Note: in 3.x __order__ is simply discarded as a not necessary piece
|
||||
leftover from 2.x
|
||||
|
||||
"""
|
||||
if pyver >= 3.0 and key == '__order__':
|
||||
return
|
||||
if _is_sunder(key):
|
||||
raise ValueError('_names_ are reserved for future Enum use')
|
||||
elif _is_dunder(key):
|
||||
pass
|
||||
elif key in self._member_names:
|
||||
# descriptor overwriting an enum?
|
||||
raise TypeError('Attempted to reuse key: %r' % key)
|
||||
elif not _is_descriptor(value):
|
||||
if key in self:
|
||||
# enum overwriting a descriptor?
|
||||
raise TypeError('Key already defined as: %r' % self[key])
|
||||
self._member_names.append(key)
|
||||
super(_EnumDict, self).__setitem__(key, value)
|
||||
|
||||
|
||||
# Dummy value for Enum as EnumMeta explicity checks for it, but of course until
|
||||
# EnumMeta finishes running the first time the Enum class doesn't exist. This
|
||||
# is also why there are checks in EnumMeta like `if Enum is not None`
|
||||
Enum = None
|
||||
|
||||
|
||||
class EnumMeta(type):
|
||||
"""Metaclass for Enum"""
|
||||
@classmethod
|
||||
def __prepare__(metacls, cls, bases):
|
||||
return _EnumDict()
|
||||
|
||||
def __new__(metacls, cls, bases, classdict):
|
||||
# an Enum class is final once enumeration items have been defined; it
|
||||
# cannot be mixed with other types (int, float, etc.) if it has an
|
||||
# inherited __new__ unless a new __new__ is defined (or the resulting
|
||||
# class will fail).
|
||||
if type(classdict) is dict:
|
||||
original_dict = classdict
|
||||
classdict = _EnumDict()
|
||||
for k, v in original_dict.items():
|
||||
classdict[k] = v
|
||||
|
||||
member_type, first_enum = metacls._get_mixins_(bases)
|
||||
__new__, save_new, use_args = metacls._find_new_(classdict, member_type,
|
||||
first_enum)
|
||||
# save enum items into separate mapping so they don't get baked into
|
||||
# the new class
|
||||
members = dict((k, classdict[k]) for k in classdict._member_names)
|
||||
for name in classdict._member_names:
|
||||
del classdict[name]
|
||||
|
||||
# py2 support for definition order
|
||||
__order__ = classdict.get('__order__')
|
||||
if __order__ is None:
|
||||
if pyver < 3.0:
|
||||
try:
|
||||
__order__ = [name for (name, value) in sorted(members.items(), key=lambda item: item[1])]
|
||||
except TypeError:
|
||||
__order__ = [name for name in sorted(members.keys())]
|
||||
else:
|
||||
__order__ = classdict._member_names
|
||||
else:
|
||||
del classdict['__order__']
|
||||
if pyver < 3.0:
|
||||
__order__ = __order__.replace(',', ' ').split()
|
||||
aliases = [name for name in members if name not in __order__]
|
||||
__order__ += aliases
|
||||
|
||||
# check for illegal enum names (any others?)
|
||||
invalid_names = set(members) & set(['mro'])
|
||||
if invalid_names:
|
||||
raise ValueError('Invalid enum member name(s): %s' % (
|
||||
', '.join(invalid_names), ))
|
||||
|
||||
# create our new Enum type
|
||||
enum_class = super(EnumMeta, metacls).__new__(metacls, cls, bases, classdict)
|
||||
enum_class._member_names_ = [] # names in random order
|
||||
if OrderedDict is not None:
|
||||
enum_class._member_map_ = OrderedDict()
|
||||
else:
|
||||
enum_class._member_map_ = {} # name->value map
|
||||
enum_class._member_type_ = member_type
|
||||
|
||||
# Reverse value->name map for hashable values.
|
||||
enum_class._value2member_map_ = {}
|
||||
|
||||
# instantiate them, checking for duplicates as we go
|
||||
# we instantiate first instead of checking for duplicates first in case
|
||||
# a custom __new__ is doing something funky with the values -- such as
|
||||
# auto-numbering ;)
|
||||
if __new__ is None:
|
||||
__new__ = enum_class.__new__
|
||||
for member_name in __order__:
|
||||
value = members[member_name]
|
||||
if not isinstance(value, tuple):
|
||||
args = (value, )
|
||||
else:
|
||||
args = value
|
||||
if member_type is tuple: # special case for tuple enums
|
||||
args = (args, ) # wrap it one more time
|
||||
if not use_args or not args:
|
||||
enum_member = __new__(enum_class)
|
||||
if not hasattr(enum_member, '_value_'):
|
||||
enum_member._value_ = value
|
||||
else:
|
||||
enum_member = __new__(enum_class, *args)
|
||||
if not hasattr(enum_member, '_value_'):
|
||||
enum_member._value_ = member_type(*args)
|
||||
value = enum_member._value_
|
||||
enum_member._name_ = member_name
|
||||
enum_member.__objclass__ = enum_class
|
||||
enum_member.__init__(*args)
|
||||
# If another member with the same value was already defined, the
|
||||
# new member becomes an alias to the existing one.
|
||||
for name, canonical_member in enum_class._member_map_.items():
|
||||
if canonical_member.value == enum_member._value_:
|
||||
enum_member = canonical_member
|
||||
break
|
||||
else:
|
||||
# Aliases don't appear in member names (only in __members__).
|
||||
enum_class._member_names_.append(member_name)
|
||||
enum_class._member_map_[member_name] = enum_member
|
||||
try:
|
||||
# This may fail if value is not hashable. We can't add the value
|
||||
# to the map, and by-value lookups for this value will be
|
||||
# linear.
|
||||
enum_class._value2member_map_[value] = enum_member
|
||||
except TypeError:
|
||||
pass
|
||||
|
||||
|
||||
# If a custom type is mixed into the Enum, and it does not know how
|
||||
# to pickle itself, pickle.dumps will succeed but pickle.loads will
|
||||
# fail. Rather than have the error show up later and possibly far
|
||||
# from the source, sabotage the pickle protocol for this class so
|
||||
# that pickle.dumps also fails.
|
||||
#
|
||||
# However, if the new class implements its own __reduce_ex__, do not
|
||||
# sabotage -- it's on them to make sure it works correctly. We use
|
||||
# __reduce_ex__ instead of any of the others as it is preferred by
|
||||
# pickle over __reduce__, and it handles all pickle protocols.
|
||||
unpicklable = False
|
||||
if '__reduce_ex__' not in classdict:
|
||||
if member_type is not object:
|
||||
methods = ('__getnewargs_ex__', '__getnewargs__',
|
||||
'__reduce_ex__', '__reduce__')
|
||||
if not any(m in member_type.__dict__ for m in methods):
|
||||
_make_class_unpicklable(enum_class)
|
||||
unpicklable = True
|
||||
|
||||
|
||||
# double check that repr and friends are not the mixin's or various
|
||||
# things break (such as pickle)
|
||||
for name in ('__repr__', '__str__', '__format__', '__reduce_ex__'):
|
||||
class_method = getattr(enum_class, name)
|
||||
obj_method = getattr(member_type, name, None)
|
||||
enum_method = getattr(first_enum, name, None)
|
||||
if name not in classdict and class_method is not enum_method:
|
||||
if name == '__reduce_ex__' and unpicklable:
|
||||
continue
|
||||
setattr(enum_class, name, enum_method)
|
||||
|
||||
# method resolution and int's are not playing nice
|
||||
# Python's less than 2.6 use __cmp__
|
||||
|
||||
if pyver < 2.6:
|
||||
|
||||
if issubclass(enum_class, int):
|
||||
setattr(enum_class, '__cmp__', getattr(int, '__cmp__'))
|
||||
|
||||
elif pyver < 3.0:
|
||||
|
||||
if issubclass(enum_class, int):
|
||||
for method in (
|
||||
'__le__',
|
||||
'__lt__',
|
||||
'__gt__',
|
||||
'__ge__',
|
||||
'__eq__',
|
||||
'__ne__',
|
||||
'__hash__',
|
||||
):
|
||||
setattr(enum_class, method, getattr(int, method))
|
||||
|
||||
# replace any other __new__ with our own (as long as Enum is not None,
|
||||
# anyway) -- again, this is to support pickle
|
||||
if Enum is not None:
|
||||
# if the user defined their own __new__, save it before it gets
|
||||
# clobbered in case they subclass later
|
||||
if save_new:
|
||||
setattr(enum_class, '__member_new__', enum_class.__dict__['__new__'])
|
||||
setattr(enum_class, '__new__', Enum.__dict__['__new__'])
|
||||
return enum_class
|
||||
|
||||
def __call__(cls, value, names=None, module=None, type=None):
|
||||
"""Either returns an existing member, or creates a new enum class.
|
||||
|
||||
This method is used both when an enum class is given a value to match
|
||||
to an enumeration member (i.e. Color(3)) and for the functional API
|
||||
(i.e. Color = Enum('Color', names='red green blue')).
|
||||
|
||||
When used for the functional API: `module`, if set, will be stored in
|
||||
the new class' __module__ attribute; `type`, if set, will be mixed in
|
||||
as the first base class.
|
||||
|
||||
Note: if `module` is not set this routine will attempt to discover the
|
||||
calling module by walking the frame stack; if this is unsuccessful
|
||||
the resulting class will not be pickleable.
|
||||
|
||||
"""
|
||||
if names is None: # simple value lookup
|
||||
return cls.__new__(cls, value)
|
||||
# otherwise, functional API: we're creating a new Enum type
|
||||
return cls._create_(value, names, module=module, type=type)
|
||||
|
||||
def __contains__(cls, member):
|
||||
return isinstance(member, cls) and member.name in cls._member_map_
|
||||
|
||||
def __delattr__(cls, attr):
|
||||
# nicer error message when someone tries to delete an attribute
|
||||
# (see issue19025).
|
||||
if attr in cls._member_map_:
|
||||
raise AttributeError(
|
||||
"%s: cannot delete Enum member." % cls.__name__)
|
||||
super(EnumMeta, cls).__delattr__(attr)
|
||||
|
||||
def __dir__(self):
|
||||
return (['__class__', '__doc__', '__members__', '__module__'] +
|
||||
self._member_names_)
|
||||
|
||||
@property
|
||||
def __members__(cls):
|
||||
"""Returns a mapping of member name->value.
|
||||
|
||||
This mapping lists all enum members, including aliases. Note that this
|
||||
is a copy of the internal mapping.
|
||||
|
||||
"""
|
||||
return cls._member_map_.copy()
|
||||
|
||||
def __getattr__(cls, name):
|
||||
"""Return the enum member matching `name`
|
||||
|
||||
We use __getattr__ instead of descriptors or inserting into the enum
|
||||
class' __dict__ in order to support `name` and `value` being both
|
||||
properties for enum members (which live in the class' __dict__) and
|
||||
enum members themselves.
|
||||
|
||||
"""
|
||||
if _is_dunder(name):
|
||||
raise AttributeError(name)
|
||||
try:
|
||||
return cls._member_map_[name]
|
||||
except KeyError:
|
||||
raise AttributeError(name)
|
||||
|
||||
def __getitem__(cls, name):
|
||||
return cls._member_map_[name]
|
||||
|
||||
def __iter__(cls):
|
||||
return (cls._member_map_[name] for name in cls._member_names_)
|
||||
|
||||
def __reversed__(cls):
|
||||
return (cls._member_map_[name] for name in reversed(cls._member_names_))
|
||||
|
||||
def __len__(cls):
|
||||
return len(cls._member_names_)
|
||||
|
||||
def __repr__(cls):
|
||||
return "<enum %r>" % cls.__name__
|
||||
|
||||
def __setattr__(cls, name, value):
|
||||
"""Block attempts to reassign Enum members.
|
||||
|
||||
A simple assignment to the class namespace only changes one of the
|
||||
several possible ways to get an Enum member from the Enum class,
|
||||
resulting in an inconsistent Enumeration.
|
||||
|
||||
"""
|
||||
member_map = cls.__dict__.get('_member_map_', {})
|
||||
if name in member_map:
|
||||
raise AttributeError('Cannot reassign members.')
|
||||
super(EnumMeta, cls).__setattr__(name, value)
|
||||
|
||||
def _create_(cls, class_name, names=None, module=None, type=None):
|
||||
"""Convenience method to create a new Enum class.
|
||||
|
||||
`names` can be:
|
||||
|
||||
* A string containing member names, separated either with spaces or
|
||||
commas. Values are auto-numbered from 1.
|
||||
* An iterable of member names. Values are auto-numbered from 1.
|
||||
* An iterable of (member name, value) pairs.
|
||||
* A mapping of member name -> value.
|
||||
|
||||
"""
|
||||
if pyver < 3.0:
|
||||
# if class_name is unicode, attempt a conversion to ASCII
|
||||
if isinstance(class_name, unicode):
|
||||
try:
|
||||
class_name = class_name.encode('ascii')
|
||||
except UnicodeEncodeError:
|
||||
raise TypeError('%r is not representable in ASCII' % class_name)
|
||||
metacls = cls.__class__
|
||||
if type is None:
|
||||
bases = (cls, )
|
||||
else:
|
||||
bases = (type, cls)
|
||||
classdict = metacls.__prepare__(class_name, bases)
|
||||
__order__ = []
|
||||
|
||||
# special processing needed for names?
|
||||
if isinstance(names, basestring):
|
||||
names = names.replace(',', ' ').split()
|
||||
if isinstance(names, (tuple, list)) and isinstance(names[0], basestring):
|
||||
names = [(e, i+1) for (i, e) in enumerate(names)]
|
||||
|
||||
# Here, names is either an iterable of (name, value) or a mapping.
|
||||
for item in names:
|
||||
if isinstance(item, basestring):
|
||||
member_name, member_value = item, names[item]
|
||||
else:
|
||||
member_name, member_value = item
|
||||
classdict[member_name] = member_value
|
||||
__order__.append(member_name)
|
||||
# only set __order__ in classdict if name/value was not from a mapping
|
||||
if not isinstance(item, basestring):
|
||||
classdict['__order__'] = ' '.join(__order__)
|
||||
enum_class = metacls.__new__(metacls, class_name, bases, classdict)
|
||||
|
||||
# TODO: replace the frame hack if a blessed way to know the calling
|
||||
# module is ever developed
|
||||
if module is None:
|
||||
try:
|
||||
module = _sys._getframe(2).f_globals['__name__']
|
||||
except (AttributeError, ValueError):
|
||||
pass
|
||||
if module is None:
|
||||
_make_class_unpicklable(enum_class)
|
||||
else:
|
||||
enum_class.__module__ = module
|
||||
|
||||
return enum_class
|
||||
|
||||
@staticmethod
|
||||
def _get_mixins_(bases):
|
||||
"""Returns the type for creating enum members, and the first inherited
|
||||
enum class.
|
||||
|
||||
bases: the tuple of bases that was given to __new__
|
||||
|
||||
"""
|
||||
if not bases or Enum is None:
|
||||
return object, Enum
|
||||
|
||||
|
||||
# double check that we are not subclassing a class with existing
|
||||
# enumeration members; while we're at it, see if any other data
|
||||
# type has been mixed in so we can use the correct __new__
|
||||
member_type = first_enum = None
|
||||
for base in bases:
|
||||
if (base is not Enum and
|
||||
issubclass(base, Enum) and
|
||||
base._member_names_):
|
||||
raise TypeError("Cannot extend enumerations")
|
||||
# base is now the last base in bases
|
||||
if not issubclass(base, Enum):
|
||||
raise TypeError("new enumerations must be created as "
|
||||
"`ClassName([mixin_type,] enum_type)`")
|
||||
|
||||
# get correct mix-in type (either mix-in type of Enum subclass, or
|
||||
# first base if last base is Enum)
|
||||
if not issubclass(bases[0], Enum):
|
||||
member_type = bases[0] # first data type
|
||||
first_enum = bases[-1] # enum type
|
||||
else:
|
||||
for base in bases[0].__mro__:
|
||||
# most common: (IntEnum, int, Enum, object)
|
||||
# possible: (<Enum 'AutoIntEnum'>, <Enum 'IntEnum'>,
|
||||
# <class 'int'>, <Enum 'Enum'>,
|
||||
# <class 'object'>)
|
||||
if issubclass(base, Enum):
|
||||
if first_enum is None:
|
||||
first_enum = base
|
||||
else:
|
||||
if member_type is None:
|
||||
member_type = base
|
||||
|
||||
return member_type, first_enum
|
||||
|
||||
if pyver < 3.0:
|
||||
@staticmethod
|
||||
def _find_new_(classdict, member_type, first_enum):
|
||||
"""Returns the __new__ to be used for creating the enum members.
|
||||
|
||||
classdict: the class dictionary given to __new__
|
||||
member_type: the data type whose __new__ will be used by default
|
||||
first_enum: enumeration to check for an overriding __new__
|
||||
|
||||
"""
|
||||
# now find the correct __new__, checking to see of one was defined
|
||||
# by the user; also check earlier enum classes in case a __new__ was
|
||||
# saved as __member_new__
|
||||
__new__ = classdict.get('__new__', None)
|
||||
if __new__:
|
||||
return None, True, True # __new__, save_new, use_args
|
||||
|
||||
N__new__ = getattr(None, '__new__')
|
||||
O__new__ = getattr(object, '__new__')
|
||||
if Enum is None:
|
||||
E__new__ = N__new__
|
||||
else:
|
||||
E__new__ = Enum.__dict__['__new__']
|
||||
# check all possibles for __member_new__ before falling back to
|
||||
# __new__
|
||||
for method in ('__member_new__', '__new__'):
|
||||
for possible in (member_type, first_enum):
|
||||
try:
|
||||
target = possible.__dict__[method]
|
||||
except (AttributeError, KeyError):
|
||||
target = getattr(possible, method, None)
|
||||
if target not in [
|
||||
None,
|
||||
N__new__,
|
||||
O__new__,
|
||||
E__new__,
|
||||
]:
|
||||
if method == '__member_new__':
|
||||
classdict['__new__'] = target
|
||||
return None, False, True
|
||||
if isinstance(target, staticmethod):
|
||||
target = target.__get__(member_type)
|
||||
__new__ = target
|
||||
break
|
||||
if __new__ is not None:
|
||||
break
|
||||
else:
|
||||
__new__ = object.__new__
|
||||
|
||||
# if a non-object.__new__ is used then whatever value/tuple was
|
||||
# assigned to the enum member name will be passed to __new__ and to the
|
||||
# new enum member's __init__
|
||||
if __new__ is object.__new__:
|
||||
use_args = False
|
||||
else:
|
||||
use_args = True
|
||||
|
||||
return __new__, False, use_args
|
||||
else:
|
||||
@staticmethod
|
||||
def _find_new_(classdict, member_type, first_enum):
|
||||
"""Returns the __new__ to be used for creating the enum members.
|
||||
|
||||
classdict: the class dictionary given to __new__
|
||||
member_type: the data type whose __new__ will be used by default
|
||||
first_enum: enumeration to check for an overriding __new__
|
||||
|
||||
"""
|
||||
# now find the correct __new__, checking to see of one was defined
|
||||
# by the user; also check earlier enum classes in case a __new__ was
|
||||
# saved as __member_new__
|
||||
__new__ = classdict.get('__new__', None)
|
||||
|
||||
# should __new__ be saved as __member_new__ later?
|
||||
save_new = __new__ is not None
|
||||
|
||||
if __new__ is None:
|
||||
# check all possibles for __member_new__ before falling back to
|
||||
# __new__
|
||||
for method in ('__member_new__', '__new__'):
|
||||
for possible in (member_type, first_enum):
|
||||
target = getattr(possible, method, None)
|
||||
if target not in (
|
||||
None,
|
||||
None.__new__,
|
||||
object.__new__,
|
||||
Enum.__new__,
|
||||
):
|
||||
__new__ = target
|
||||
break
|
||||
if __new__ is not None:
|
||||
break
|
||||
else:
|
||||
__new__ = object.__new__
|
||||
|
||||
# if a non-object.__new__ is used then whatever value/tuple was
|
||||
# assigned to the enum member name will be passed to __new__ and to the
|
||||
# new enum member's __init__
|
||||
if __new__ is object.__new__:
|
||||
use_args = False
|
||||
else:
|
||||
use_args = True
|
||||
|
||||
return __new__, save_new, use_args
|
||||
|
||||
|
||||
########################################################
|
||||
# In order to support Python 2 and 3 with a single
|
||||
# codebase we have to create the Enum methods separately
|
||||
# and then use the `type(name, bases, dict)` method to
|
||||
# create the class.
|
||||
########################################################
|
||||
temp_enum_dict = {}
|
||||
temp_enum_dict['__doc__'] = "Generic enumeration.\n\n Derive from this class to define new enumerations.\n\n"
|
||||
|
||||
def __new__(cls, value):
|
||||
# all enum instances are actually created during class construction
|
||||
# without calling this method; this method is called by the metaclass'
|
||||
# __call__ (i.e. Color(3) ), and by pickle
|
||||
if type(value) is cls:
|
||||
# For lookups like Color(Color.red)
|
||||
value = value.value
|
||||
#return value
|
||||
# by-value search for a matching enum member
|
||||
# see if it's in the reverse mapping (for hashable values)
|
||||
try:
|
||||
if value in cls._value2member_map_:
|
||||
return cls._value2member_map_[value]
|
||||
except TypeError:
|
||||
# not there, now do long search -- O(n) behavior
|
||||
for member in cls._member_map_.values():
|
||||
if member.value == value:
|
||||
return member
|
||||
raise ValueError("%s is not a valid %s" % (value, cls.__name__))
|
||||
temp_enum_dict['__new__'] = __new__
|
||||
del __new__
|
||||
|
||||
def __repr__(self):
|
||||
return "<%s.%s: %r>" % (
|
||||
self.__class__.__name__, self._name_, self._value_)
|
||||
temp_enum_dict['__repr__'] = __repr__
|
||||
del __repr__
|
||||
|
||||
def __str__(self):
|
||||
return "%s.%s" % (self.__class__.__name__, self._name_)
|
||||
temp_enum_dict['__str__'] = __str__
|
||||
del __str__
|
||||
|
||||
def __dir__(self):
|
||||
added_behavior = [
|
||||
m
|
||||
for cls in self.__class__.mro()
|
||||
for m in cls.__dict__
|
||||
if m[0] != '_'
|
||||
]
|
||||
return (['__class__', '__doc__', '__module__', ] + added_behavior)
|
||||
temp_enum_dict['__dir__'] = __dir__
|
||||
del __dir__
|
||||
|
||||
def __format__(self, format_spec):
|
||||
# mixed-in Enums should use the mixed-in type's __format__, otherwise
|
||||
# we can get strange results with the Enum name showing up instead of
|
||||
# the value
|
||||
|
||||
# pure Enum branch
|
||||
if self._member_type_ is object:
|
||||
cls = str
|
||||
val = str(self)
|
||||
# mix-in branch
|
||||
else:
|
||||
cls = self._member_type_
|
||||
val = self.value
|
||||
return cls.__format__(val, format_spec)
|
||||
temp_enum_dict['__format__'] = __format__
|
||||
del __format__
|
||||
|
||||
|
||||
####################################
|
||||
# Python's less than 2.6 use __cmp__
|
||||
|
||||
if pyver < 2.6:
|
||||
|
||||
def __cmp__(self, other):
|
||||
if type(other) is self.__class__:
|
||||
if self is other:
|
||||
return 0
|
||||
return -1
|
||||
return NotImplemented
|
||||
raise TypeError("unorderable types: %s() and %s()" % (self.__class__.__name__, other.__class__.__name__))
|
||||
temp_enum_dict['__cmp__'] = __cmp__
|
||||
del __cmp__
|
||||
|
||||
else:
|
||||
|
||||
def __le__(self, other):
|
||||
raise TypeError("unorderable types: %s() <= %s()" % (self.__class__.__name__, other.__class__.__name__))
|
||||
temp_enum_dict['__le__'] = __le__
|
||||
del __le__
|
||||
|
||||
def __lt__(self, other):
|
||||
raise TypeError("unorderable types: %s() < %s()" % (self.__class__.__name__, other.__class__.__name__))
|
||||
temp_enum_dict['__lt__'] = __lt__
|
||||
del __lt__
|
||||
|
||||
def __ge__(self, other):
|
||||
raise TypeError("unorderable types: %s() >= %s()" % (self.__class__.__name__, other.__class__.__name__))
|
||||
temp_enum_dict['__ge__'] = __ge__
|
||||
del __ge__
|
||||
|
||||
def __gt__(self, other):
|
||||
raise TypeError("unorderable types: %s() > %s()" % (self.__class__.__name__, other.__class__.__name__))
|
||||
temp_enum_dict['__gt__'] = __gt__
|
||||
del __gt__
|
||||
|
||||
|
||||
def __eq__(self, other):
|
||||
if type(other) is self.__class__:
|
||||
return self is other
|
||||
return NotImplemented
|
||||
temp_enum_dict['__eq__'] = __eq__
|
||||
del __eq__
|
||||
|
||||
def __ne__(self, other):
|
||||
if type(other) is self.__class__:
|
||||
return self is not other
|
||||
return NotImplemented
|
||||
temp_enum_dict['__ne__'] = __ne__
|
||||
del __ne__
|
||||
|
||||
def __hash__(self):
|
||||
return hash(self._name_)
|
||||
temp_enum_dict['__hash__'] = __hash__
|
||||
del __hash__
|
||||
|
||||
def __reduce_ex__(self, proto):
|
||||
return self.__class__, (self._value_, )
|
||||
temp_enum_dict['__reduce_ex__'] = __reduce_ex__
|
||||
del __reduce_ex__
|
||||
|
||||
# _RouteClassAttributeToGetattr is used to provide access to the `name`
|
||||
# and `value` properties of enum members while keeping some measure of
|
||||
# protection from modification, while still allowing for an enumeration
|
||||
# to have members named `name` and `value`. This works because enumeration
|
||||
# members are not set directly on the enum class -- __getattr__ is
|
||||
# used to look them up.
|
||||
|
||||
@_RouteClassAttributeToGetattr
|
||||
def name(self):
|
||||
return self._name_
|
||||
temp_enum_dict['name'] = name
|
||||
del name
|
||||
|
||||
@_RouteClassAttributeToGetattr
|
||||
def value(self):
|
||||
return self._value_
|
||||
temp_enum_dict['value'] = value
|
||||
del value
|
||||
|
||||
Enum = EnumMeta('Enum', (object, ), temp_enum_dict)
|
||||
del temp_enum_dict
|
||||
|
||||
# Enum has now been created
|
||||
###########################
|
||||
|
||||
class IntEnum(int, Enum):
|
||||
"""Enum where members are also (and must be) ints"""
|
||||
|
||||
|
||||
def unique(enumeration):
|
||||
"""Class decorator that ensures only unique members exist in an enumeration."""
|
||||
duplicates = []
|
||||
for name, member in enumeration.__members__.items():
|
||||
if name != member.name:
|
||||
duplicates.append((name, member.name))
|
||||
if duplicates:
|
||||
duplicate_names = ', '.join(
|
||||
["%s -> %s" % (alias, name) for (alias, name) in duplicates]
|
||||
)
|
||||
raise ValueError('duplicate names found in %r: %s' %
|
||||
(enumeration, duplicate_names)
|
||||
)
|
||||
return enumeration
|
725
lib/enum/doc/enum.rst
Normal file
725
lib/enum/doc/enum.rst
Normal file
|
@ -0,0 +1,725 @@
|
|||
``enum`` --- support for enumerations
|
||||
========================================
|
||||
|
||||
.. :synopsis: enumerations are sets of symbolic names bound to unique, constant
|
||||
values.
|
||||
.. :moduleauthor:: Ethan Furman <ethan@stoneleaf.us>
|
||||
.. :sectionauthor:: Barry Warsaw <barry@python.org>,
|
||||
.. :sectionauthor:: Eli Bendersky <eliben@gmail.com>,
|
||||
.. :sectionauthor:: Ethan Furman <ethan@stoneleaf.us>
|
||||
|
||||
----------------
|
||||
|
||||
An enumeration is a set of symbolic names (members) bound to unique, constant
|
||||
values. Within an enumeration, the members can be compared by identity, and
|
||||
the enumeration itself can be iterated over.
|
||||
|
||||
|
||||
Module Contents
|
||||
---------------
|
||||
|
||||
This module defines two enumeration classes that can be used to define unique
|
||||
sets of names and values: ``Enum`` and ``IntEnum``. It also defines
|
||||
one decorator, ``unique``.
|
||||
|
||||
``Enum``
|
||||
|
||||
Base class for creating enumerated constants. See section `Functional API`_
|
||||
for an alternate construction syntax.
|
||||
|
||||
``IntEnum``
|
||||
|
||||
Base class for creating enumerated constants that are also subclasses of ``int``.
|
||||
|
||||
``unique``
|
||||
|
||||
Enum class decorator that ensures only one name is bound to any one value.
|
||||
|
||||
|
||||
Creating an Enum
|
||||
----------------
|
||||
|
||||
Enumerations are created using the ``class`` syntax, which makes them
|
||||
easy to read and write. An alternative creation method is described in
|
||||
`Functional API`_. To define an enumeration, subclass ``Enum`` as
|
||||
follows::
|
||||
|
||||
>>> from enum import Enum
|
||||
>>> class Color(Enum):
|
||||
... red = 1
|
||||
... green = 2
|
||||
... blue = 3
|
||||
|
||||
Note: Nomenclature
|
||||
|
||||
- The class ``Color`` is an *enumeration* (or *enum*)
|
||||
- The attributes ``Color.red``, ``Color.green``, etc., are
|
||||
*enumeration members* (or *enum members*).
|
||||
- The enum members have *names* and *values* (the name of
|
||||
``Color.red`` is ``red``, the value of ``Color.blue`` is
|
||||
``3``, etc.)
|
||||
|
||||
Note:
|
||||
|
||||
Even though we use the ``class`` syntax to create Enums, Enums
|
||||
are not normal Python classes. See `How are Enums different?`_ for
|
||||
more details.
|
||||
|
||||
Enumeration members have human readable string representations::
|
||||
|
||||
>>> print(Color.red)
|
||||
Color.red
|
||||
|
||||
...while their ``repr`` has more information::
|
||||
|
||||
>>> print(repr(Color.red))
|
||||
<Color.red: 1>
|
||||
|
||||
The *type* of an enumeration member is the enumeration it belongs to::
|
||||
|
||||
>>> type(Color.red)
|
||||
<enum 'Color'>
|
||||
>>> isinstance(Color.green, Color)
|
||||
True
|
||||
>>>
|
||||
|
||||
Enum members also have a property that contains just their item name::
|
||||
|
||||
>>> print(Color.red.name)
|
||||
red
|
||||
|
||||
Enumerations support iteration. In Python 3.x definition order is used; in
|
||||
Python 2.x the definition order is not available, but class attribute
|
||||
``__order__`` is supported; otherwise, value order is used::
|
||||
|
||||
>>> class Shake(Enum):
|
||||
... __order__ = 'vanilla chocolate cookies mint' # only needed in 2.x
|
||||
... vanilla = 7
|
||||
... chocolate = 4
|
||||
... cookies = 9
|
||||
... mint = 3
|
||||
...
|
||||
>>> for shake in Shake:
|
||||
... print(shake)
|
||||
...
|
||||
Shake.vanilla
|
||||
Shake.chocolate
|
||||
Shake.cookies
|
||||
Shake.mint
|
||||
|
||||
The ``__order__`` attribute is always removed, and in 3.x it is also ignored
|
||||
(order is definition order); however, in the stdlib version it will be ignored
|
||||
but not removed.
|
||||
|
||||
Enumeration members are hashable, so they can be used in dictionaries and sets::
|
||||
|
||||
>>> apples = {}
|
||||
>>> apples[Color.red] = 'red delicious'
|
||||
>>> apples[Color.green] = 'granny smith'
|
||||
>>> apples == {Color.red: 'red delicious', Color.green: 'granny smith'}
|
||||
True
|
||||
|
||||
|
||||
Programmatic access to enumeration members and their attributes
|
||||
---------------------------------------------------------------
|
||||
|
||||
Sometimes it's useful to access members in enumerations programmatically (i.e.
|
||||
situations where ``Color.red`` won't do because the exact color is not known
|
||||
at program-writing time). ``Enum`` allows such access::
|
||||
|
||||
>>> Color(1)
|
||||
<Color.red: 1>
|
||||
>>> Color(3)
|
||||
<Color.blue: 3>
|
||||
|
||||
If you want to access enum members by *name*, use item access::
|
||||
|
||||
>>> Color['red']
|
||||
<Color.red: 1>
|
||||
>>> Color['green']
|
||||
<Color.green: 2>
|
||||
|
||||
If have an enum member and need its ``name`` or ``value``::
|
||||
|
||||
>>> member = Color.red
|
||||
>>> member.name
|
||||
'red'
|
||||
>>> member.value
|
||||
1
|
||||
|
||||
|
||||
Duplicating enum members and values
|
||||
-----------------------------------
|
||||
|
||||
Having two enum members (or any other attribute) with the same name is invalid;
|
||||
in Python 3.x this would raise an error, but in Python 2.x the second member
|
||||
simply overwrites the first::
|
||||
|
||||
>>> # python 2.x
|
||||
>>> class Shape(Enum):
|
||||
... square = 2
|
||||
... square = 3
|
||||
...
|
||||
>>> Shape.square
|
||||
<Shape.square: 3>
|
||||
|
||||
>>> # python 3.x
|
||||
>>> class Shape(Enum):
|
||||
... square = 2
|
||||
... square = 3
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
TypeError: Attempted to reuse key: 'square'
|
||||
|
||||
However, two enum members are allowed to have the same value. Given two members
|
||||
A and B with the same value (and A defined first), B is an alias to A. By-value
|
||||
lookup of the value of A and B will return A. By-name lookup of B will also
|
||||
return A::
|
||||
|
||||
>>> class Shape(Enum):
|
||||
... __order__ = 'square diamond circle alias_for_square' # only needed in 2.x
|
||||
... square = 2
|
||||
... diamond = 1
|
||||
... circle = 3
|
||||
... alias_for_square = 2
|
||||
...
|
||||
>>> Shape.square
|
||||
<Shape.square: 2>
|
||||
>>> Shape.alias_for_square
|
||||
<Shape.square: 2>
|
||||
>>> Shape(2)
|
||||
<Shape.square: 2>
|
||||
|
||||
|
||||
Allowing aliases is not always desirable. ``unique`` can be used to ensure
|
||||
that none exist in a particular enumeration::
|
||||
|
||||
>>> from enum import unique
|
||||
>>> @unique
|
||||
... class Mistake(Enum):
|
||||
... __order__ = 'one two three four' # only needed in 2.x
|
||||
... one = 1
|
||||
... two = 2
|
||||
... three = 3
|
||||
... four = 3
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: duplicate names found in <enum 'Mistake'>: four -> three
|
||||
|
||||
Iterating over the members of an enum does not provide the aliases::
|
||||
|
||||
>>> list(Shape)
|
||||
[<Shape.square: 2>, <Shape.diamond: 1>, <Shape.circle: 3>]
|
||||
|
||||
The special attribute ``__members__`` is a dictionary mapping names to members.
|
||||
It includes all names defined in the enumeration, including the aliases::
|
||||
|
||||
>>> for name, member in sorted(Shape.__members__.items()):
|
||||
... name, member
|
||||
...
|
||||
('alias_for_square', <Shape.square: 2>)
|
||||
('circle', <Shape.circle: 3>)
|
||||
('diamond', <Shape.diamond: 1>)
|
||||
('square', <Shape.square: 2>)
|
||||
|
||||
The ``__members__`` attribute can be used for detailed programmatic access to
|
||||
the enumeration members. For example, finding all the aliases::
|
||||
|
||||
>>> [name for name, member in Shape.__members__.items() if member.name != name]
|
||||
['alias_for_square']
|
||||
|
||||
Comparisons
|
||||
-----------
|
||||
|
||||
Enumeration members are compared by identity::
|
||||
|
||||
>>> Color.red is Color.red
|
||||
True
|
||||
>>> Color.red is Color.blue
|
||||
False
|
||||
>>> Color.red is not Color.blue
|
||||
True
|
||||
|
||||
Ordered comparisons between enumeration values are *not* supported. Enum
|
||||
members are not integers (but see `IntEnum`_ below)::
|
||||
|
||||
>>> Color.red < Color.blue
|
||||
Traceback (most recent call last):
|
||||
File "<stdin>", line 1, in <module>
|
||||
TypeError: unorderable types: Color() < Color()
|
||||
|
||||
.. warning::
|
||||
|
||||
In Python 2 *everything* is ordered, even though the ordering may not
|
||||
make sense. If you want your enumerations to have a sensible ordering
|
||||
check out the `OrderedEnum`_ recipe below.
|
||||
|
||||
|
||||
Equality comparisons are defined though::
|
||||
|
||||
>>> Color.blue == Color.red
|
||||
False
|
||||
>>> Color.blue != Color.red
|
||||
True
|
||||
>>> Color.blue == Color.blue
|
||||
True
|
||||
|
||||
Comparisons against non-enumeration values will always compare not equal
|
||||
(again, ``IntEnum`` was explicitly designed to behave differently, see
|
||||
below)::
|
||||
|
||||
>>> Color.blue == 2
|
||||
False
|
||||
|
||||
|
||||
Allowed members and attributes of enumerations
|
||||
----------------------------------------------
|
||||
|
||||
The examples above use integers for enumeration values. Using integers is
|
||||
short and handy (and provided by default by the `Functional API`_), but not
|
||||
strictly enforced. In the vast majority of use-cases, one doesn't care what
|
||||
the actual value of an enumeration is. But if the value *is* important,
|
||||
enumerations can have arbitrary values.
|
||||
|
||||
Enumerations are Python classes, and can have methods and special methods as
|
||||
usual. If we have this enumeration::
|
||||
|
||||
>>> class Mood(Enum):
|
||||
... funky = 1
|
||||
... happy = 3
|
||||
...
|
||||
... def describe(self):
|
||||
... # self is the member here
|
||||
... return self.name, self.value
|
||||
...
|
||||
... def __str__(self):
|
||||
... return 'my custom str! {0}'.format(self.value)
|
||||
...
|
||||
... @classmethod
|
||||
... def favorite_mood(cls):
|
||||
... # cls here is the enumeration
|
||||
... return cls.happy
|
||||
|
||||
Then::
|
||||
|
||||
>>> Mood.favorite_mood()
|
||||
<Mood.happy: 3>
|
||||
>>> Mood.happy.describe()
|
||||
('happy', 3)
|
||||
>>> str(Mood.funky)
|
||||
'my custom str! 1'
|
||||
|
||||
The rules for what is allowed are as follows: _sunder_ names (starting and
|
||||
ending with a single underscore) are reserved by enum and cannot be used;
|
||||
all other attributes defined within an enumeration will become members of this
|
||||
enumeration, with the exception of *__dunder__* names and descriptors (methods
|
||||
are also descriptors).
|
||||
|
||||
Note:
|
||||
|
||||
If your enumeration defines ``__new__`` and/or ``__init__`` then
|
||||
whatever value(s) were given to the enum member will be passed into
|
||||
those methods. See `Planet`_ for an example.
|
||||
|
||||
|
||||
Restricted subclassing of enumerations
|
||||
--------------------------------------
|
||||
|
||||
Subclassing an enumeration is allowed only if the enumeration does not define
|
||||
any members. So this is forbidden::
|
||||
|
||||
>>> class MoreColor(Color):
|
||||
... pink = 17
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
TypeError: Cannot extend enumerations
|
||||
|
||||
But this is allowed::
|
||||
|
||||
>>> class Foo(Enum):
|
||||
... def some_behavior(self):
|
||||
... pass
|
||||
...
|
||||
>>> class Bar(Foo):
|
||||
... happy = 1
|
||||
... sad = 2
|
||||
...
|
||||
|
||||
Allowing subclassing of enums that define members would lead to a violation of
|
||||
some important invariants of types and instances. On the other hand, it makes
|
||||
sense to allow sharing some common behavior between a group of enumerations.
|
||||
(See `OrderedEnum`_ for an example.)
|
||||
|
||||
|
||||
Pickling
|
||||
--------
|
||||
|
||||
Enumerations can be pickled and unpickled::
|
||||
|
||||
>>> from enum.test_enum import Fruit
|
||||
>>> from pickle import dumps, loads
|
||||
>>> Fruit.tomato is loads(dumps(Fruit.tomato, 2))
|
||||
True
|
||||
|
||||
The usual restrictions for pickling apply: picklable enums must be defined in
|
||||
the top level of a module, since unpickling requires them to be importable
|
||||
from that module.
|
||||
|
||||
Note:
|
||||
|
||||
With pickle protocol version 4 (introduced in Python 3.4) it is possible
|
||||
to easily pickle enums nested in other classes.
|
||||
|
||||
|
||||
|
||||
Functional API
|
||||
--------------
|
||||
|
||||
The ``Enum`` class is callable, providing the following functional API::
|
||||
|
||||
>>> Animal = Enum('Animal', 'ant bee cat dog')
|
||||
>>> Animal
|
||||
<enum 'Animal'>
|
||||
>>> Animal.ant
|
||||
<Animal.ant: 1>
|
||||
>>> Animal.ant.value
|
||||
1
|
||||
>>> list(Animal)
|
||||
[<Animal.ant: 1>, <Animal.bee: 2>, <Animal.cat: 3>, <Animal.dog: 4>]
|
||||
|
||||
The semantics of this API resemble ``namedtuple``. The first argument
|
||||
of the call to ``Enum`` is the name of the enumeration.
|
||||
|
||||
The second argument is the *source* of enumeration member names. It can be a
|
||||
whitespace-separated string of names, a sequence of names, a sequence of
|
||||
2-tuples with key/value pairs, or a mapping (e.g. dictionary) of names to
|
||||
values. The last two options enable assigning arbitrary values to
|
||||
enumerations; the others auto-assign increasing integers starting with 1. A
|
||||
new class derived from ``Enum`` is returned. In other words, the above
|
||||
assignment to ``Animal`` is equivalent to::
|
||||
|
||||
>>> class Animals(Enum):
|
||||
... ant = 1
|
||||
... bee = 2
|
||||
... cat = 3
|
||||
... dog = 4
|
||||
|
||||
Pickling enums created with the functional API can be tricky as frame stack
|
||||
implementation details are used to try and figure out which module the
|
||||
enumeration is being created in (e.g. it will fail if you use a utility
|
||||
function in separate module, and also may not work on IronPython or Jython).
|
||||
The solution is to specify the module name explicitly as follows::
|
||||
|
||||
>>> Animals = Enum('Animals', 'ant bee cat dog', module=__name__)
|
||||
|
||||
Derived Enumerations
|
||||
--------------------
|
||||
|
||||
IntEnum
|
||||
^^^^^^^
|
||||
|
||||
A variation of ``Enum`` is provided which is also a subclass of
|
||||
``int``. Members of an ``IntEnum`` can be compared to integers;
|
||||
by extension, integer enumerations of different types can also be compared
|
||||
to each other::
|
||||
|
||||
>>> from enum import IntEnum
|
||||
>>> class Shape(IntEnum):
|
||||
... circle = 1
|
||||
... square = 2
|
||||
...
|
||||
>>> class Request(IntEnum):
|
||||
... post = 1
|
||||
... get = 2
|
||||
...
|
||||
>>> Shape == 1
|
||||
False
|
||||
>>> Shape.circle == 1
|
||||
True
|
||||
>>> Shape.circle == Request.post
|
||||
True
|
||||
|
||||
However, they still can't be compared to standard ``Enum`` enumerations::
|
||||
|
||||
>>> class Shape(IntEnum):
|
||||
... circle = 1
|
||||
... square = 2
|
||||
...
|
||||
>>> class Color(Enum):
|
||||
... red = 1
|
||||
... green = 2
|
||||
...
|
||||
>>> Shape.circle == Color.red
|
||||
False
|
||||
|
||||
``IntEnum`` values behave like integers in other ways you'd expect::
|
||||
|
||||
>>> int(Shape.circle)
|
||||
1
|
||||
>>> ['a', 'b', 'c'][Shape.circle]
|
||||
'b'
|
||||
>>> [i for i in range(Shape.square)]
|
||||
[0, 1]
|
||||
|
||||
For the vast majority of code, ``Enum`` is strongly recommended,
|
||||
since ``IntEnum`` breaks some semantic promises of an enumeration (by
|
||||
being comparable to integers, and thus by transitivity to other
|
||||
unrelated enumerations). It should be used only in special cases where
|
||||
there's no other choice; for example, when integer constants are
|
||||
replaced with enumerations and backwards compatibility is required with code
|
||||
that still expects integers.
|
||||
|
||||
|
||||
Others
|
||||
^^^^^^
|
||||
|
||||
While ``IntEnum`` is part of the ``enum`` module, it would be very
|
||||
simple to implement independently::
|
||||
|
||||
class IntEnum(int, Enum):
|
||||
pass
|
||||
|
||||
This demonstrates how similar derived enumerations can be defined; for example
|
||||
a ``StrEnum`` that mixes in ``str`` instead of ``int``.
|
||||
|
||||
Some rules:
|
||||
|
||||
1. When subclassing ``Enum``, mix-in types must appear before
|
||||
``Enum`` itself in the sequence of bases, as in the ``IntEnum``
|
||||
example above.
|
||||
2. While ``Enum`` can have members of any type, once you mix in an
|
||||
additional type, all the members must have values of that type, e.g.
|
||||
``int`` above. This restriction does not apply to mix-ins which only
|
||||
add methods and don't specify another data type such as ``int`` or
|
||||
``str``.
|
||||
3. When another data type is mixed in, the ``value`` attribute is *not the
|
||||
same* as the enum member itself, although it is equivalant and will compare
|
||||
equal.
|
||||
4. %-style formatting: ``%s`` and ``%r`` call ``Enum``'s ``__str__`` and
|
||||
``__repr__`` respectively; other codes (such as ``%i`` or ``%h`` for
|
||||
IntEnum) treat the enum member as its mixed-in type.
|
||||
|
||||
Note: Prior to Python 3.4 there is a bug in ``str``'s %-formatting: ``int``
|
||||
subclasses are printed as strings and not numbers when the ``%d``, ``%i``,
|
||||
or ``%u`` codes are used.
|
||||
5. ``str.__format__`` (or ``format``) will use the mixed-in
|
||||
type's ``__format__``. If the ``Enum``'s ``str`` or
|
||||
``repr`` is desired use the ``!s`` or ``!r`` ``str`` format codes.
|
||||
|
||||
|
||||
Decorators
|
||||
----------
|
||||
|
||||
unique
|
||||
^^^^^^
|
||||
|
||||
A ``class`` decorator specifically for enumerations. It searches an
|
||||
enumeration's ``__members__`` gathering any aliases it finds; if any are
|
||||
found ``ValueError`` is raised with the details::
|
||||
|
||||
>>> @unique
|
||||
... class NoDupes(Enum):
|
||||
... first = 'one'
|
||||
... second = 'two'
|
||||
... third = 'two'
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: duplicate names found in <enum 'NoDupes'>: third -> second
|
||||
|
||||
|
||||
Interesting examples
|
||||
--------------------
|
||||
|
||||
While ``Enum`` and ``IntEnum`` are expected to cover the majority of
|
||||
use-cases, they cannot cover them all. Here are recipes for some different
|
||||
types of enumerations that can be used directly, or as examples for creating
|
||||
one's own.
|
||||
|
||||
|
||||
AutoNumber
|
||||
^^^^^^^^^^
|
||||
|
||||
Avoids having to specify the value for each enumeration member::
|
||||
|
||||
>>> class AutoNumber(Enum):
|
||||
... def __new__(cls):
|
||||
... value = len(cls.__members__) + 1
|
||||
... obj = object.__new__(cls)
|
||||
... obj._value_ = value
|
||||
... return obj
|
||||
...
|
||||
>>> class Color(AutoNumber):
|
||||
... __order__ = "red green blue" # only needed in 2.x
|
||||
... red = ()
|
||||
... green = ()
|
||||
... blue = ()
|
||||
...
|
||||
>>> Color.green.value == 2
|
||||
True
|
||||
|
||||
Note:
|
||||
|
||||
The `__new__` method, if defined, is used during creation of the Enum
|
||||
members; it is then replaced by Enum's `__new__` which is used after
|
||||
class creation for lookup of existing members. Due to the way Enums are
|
||||
supposed to behave, there is no way to customize Enum's `__new__`.
|
||||
|
||||
|
||||
UniqueEnum
|
||||
^^^^^^^^^^
|
||||
|
||||
Raises an error if a duplicate member name is found instead of creating an
|
||||
alias::
|
||||
|
||||
>>> class UniqueEnum(Enum):
|
||||
... def __init__(self, *args):
|
||||
... cls = self.__class__
|
||||
... if any(self.value == e.value for e in cls):
|
||||
... a = self.name
|
||||
... e = cls(self.value).name
|
||||
... raise ValueError(
|
||||
... "aliases not allowed in UniqueEnum: %r --> %r"
|
||||
... % (a, e))
|
||||
...
|
||||
>>> class Color(UniqueEnum):
|
||||
... red = 1
|
||||
... green = 2
|
||||
... blue = 3
|
||||
... grene = 2
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: aliases not allowed in UniqueEnum: 'grene' --> 'green'
|
||||
|
||||
|
||||
OrderedEnum
|
||||
^^^^^^^^^^^
|
||||
|
||||
An ordered enumeration that is not based on ``IntEnum`` and so maintains
|
||||
the normal ``Enum`` invariants (such as not being comparable to other
|
||||
enumerations)::
|
||||
|
||||
>>> class OrderedEnum(Enum):
|
||||
... def __ge__(self, other):
|
||||
... if self.__class__ is other.__class__:
|
||||
... return self._value_ >= other._value_
|
||||
... return NotImplemented
|
||||
... def __gt__(self, other):
|
||||
... if self.__class__ is other.__class__:
|
||||
... return self._value_ > other._value_
|
||||
... return NotImplemented
|
||||
... def __le__(self, other):
|
||||
... if self.__class__ is other.__class__:
|
||||
... return self._value_ <= other._value_
|
||||
... return NotImplemented
|
||||
... def __lt__(self, other):
|
||||
... if self.__class__ is other.__class__:
|
||||
... return self._value_ < other._value_
|
||||
... return NotImplemented
|
||||
...
|
||||
>>> class Grade(OrderedEnum):
|
||||
... __ordered__ = 'A B C D F'
|
||||
... A = 5
|
||||
... B = 4
|
||||
... C = 3
|
||||
... D = 2
|
||||
... F = 1
|
||||
...
|
||||
>>> Grade.C < Grade.A
|
||||
True
|
||||
|
||||
|
||||
Planet
|
||||
^^^^^^
|
||||
|
||||
If ``__new__`` or ``__init__`` is defined the value of the enum member
|
||||
will be passed to those methods::
|
||||
|
||||
>>> class Planet(Enum):
|
||||
... MERCURY = (3.303e+23, 2.4397e6)
|
||||
... VENUS = (4.869e+24, 6.0518e6)
|
||||
... EARTH = (5.976e+24, 6.37814e6)
|
||||
... MARS = (6.421e+23, 3.3972e6)
|
||||
... JUPITER = (1.9e+27, 7.1492e7)
|
||||
... SATURN = (5.688e+26, 6.0268e7)
|
||||
... URANUS = (8.686e+25, 2.5559e7)
|
||||
... NEPTUNE = (1.024e+26, 2.4746e7)
|
||||
... def __init__(self, mass, radius):
|
||||
... self.mass = mass # in kilograms
|
||||
... self.radius = radius # in meters
|
||||
... @property
|
||||
... def surface_gravity(self):
|
||||
... # universal gravitational constant (m3 kg-1 s-2)
|
||||
... G = 6.67300E-11
|
||||
... return G * self.mass / (self.radius * self.radius)
|
||||
...
|
||||
>>> Planet.EARTH.value
|
||||
(5.976e+24, 6378140.0)
|
||||
>>> Planet.EARTH.surface_gravity
|
||||
9.802652743337129
|
||||
|
||||
|
||||
How are Enums different?
|
||||
------------------------
|
||||
|
||||
Enums have a custom metaclass that affects many aspects of both derived Enum
|
||||
classes and their instances (members).
|
||||
|
||||
|
||||
Enum Classes
|
||||
^^^^^^^^^^^^
|
||||
|
||||
The ``EnumMeta`` metaclass is responsible for providing the
|
||||
``__contains__``, ``__dir__``, ``__iter__`` and other methods that
|
||||
allow one to do things with an ``Enum`` class that fail on a typical
|
||||
class, such as ``list(Color)`` or ``some_var in Color``. ``EnumMeta`` is
|
||||
responsible for ensuring that various other methods on the final ``Enum``
|
||||
class are correct (such as ``__new__``, ``__getnewargs__``,
|
||||
``__str__`` and ``__repr__``)
|
||||
|
||||
|
||||
Enum Members (aka instances)
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
The most interesting thing about Enum members is that they are singletons.
|
||||
``EnumMeta`` creates them all while it is creating the ``Enum``
|
||||
class itself, and then puts a custom ``__new__`` in place to ensure
|
||||
that no new ones are ever instantiated by returning only the existing
|
||||
member instances.
|
||||
|
||||
|
||||
Finer Points
|
||||
^^^^^^^^^^^^
|
||||
|
||||
Enum members are instances of an Enum class, and even though they are
|
||||
accessible as ``EnumClass.member``, they are not accessible directly from
|
||||
the member::
|
||||
|
||||
>>> Color.red
|
||||
<Color.red: 1>
|
||||
>>> Color.red.blue
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
AttributeError: 'Color' object has no attribute 'blue'
|
||||
|
||||
Likewise, ``__members__`` is only available on the class.
|
||||
|
||||
In Python 3.x ``__members__`` is always an ``OrderedDict``, with the order being
|
||||
the definition order. In Python 2.7 ``__members__`` is an ``OrderedDict`` if
|
||||
``__order__`` was specified, and a plain ``dict`` otherwise. In all other Python
|
||||
2.x versions ``__members__`` is a plain ``dict`` even if ``__order__`` was specified
|
||||
as the ``OrderedDict`` type didn't exist yet.
|
||||
|
||||
If you give your ``Enum`` subclass extra methods, like the `Planet`_
|
||||
class above, those methods will show up in a `dir` of the member,
|
||||
but not of the class::
|
||||
|
||||
>>> dir(Planet)
|
||||
['EARTH', 'JUPITER', 'MARS', 'MERCURY', 'NEPTUNE', 'SATURN', 'URANUS',
|
||||
'VENUS', '__class__', '__doc__', '__members__', '__module__']
|
||||
>>> dir(Planet.EARTH)
|
||||
['__class__', '__doc__', '__module__', 'name', 'surface_gravity', 'value']
|
||||
|
||||
A ``__new__`` method will only be used for the creation of the
|
||||
``Enum`` members -- after that it is replaced. This means if you wish to
|
||||
change how ``Enum`` members are looked up you either have to write a
|
||||
helper function or a ``classmethod``.
|
790
lib/enum/enum.py
Normal file
790
lib/enum/enum.py
Normal file
|
@ -0,0 +1,790 @@
|
|||
"""Python Enumerations"""
|
||||
|
||||
import sys as _sys
|
||||
|
||||
__all__ = ['Enum', 'IntEnum', 'unique']
|
||||
|
||||
version = 1, 0, 4
|
||||
|
||||
pyver = float('%s.%s' % _sys.version_info[:2])
|
||||
|
||||
try:
|
||||
any
|
||||
except NameError:
|
||||
def any(iterable):
|
||||
for element in iterable:
|
||||
if element:
|
||||
return True
|
||||
return False
|
||||
|
||||
try:
|
||||
from collections import OrderedDict
|
||||
except ImportError:
|
||||
OrderedDict = None
|
||||
|
||||
try:
|
||||
basestring
|
||||
except NameError:
|
||||
# In Python 2 basestring is the ancestor of both str and unicode
|
||||
# in Python 3 it's just str, but was missing in 3.1
|
||||
basestring = str
|
||||
|
||||
try:
|
||||
unicode
|
||||
except NameError:
|
||||
# In Python 3 unicode no longer exists (it's just str)
|
||||
unicode = str
|
||||
|
||||
class _RouteClassAttributeToGetattr(object):
|
||||
"""Route attribute access on a class to __getattr__.
|
||||
|
||||
This is a descriptor, used to define attributes that act differently when
|
||||
accessed through an instance and through a class. Instance access remains
|
||||
normal, but access to an attribute through a class will be routed to the
|
||||
class's __getattr__ method; this is done by raising AttributeError.
|
||||
|
||||
"""
|
||||
def __init__(self, fget=None):
|
||||
self.fget = fget
|
||||
|
||||
def __get__(self, instance, ownerclass=None):
|
||||
if instance is None:
|
||||
raise AttributeError()
|
||||
return self.fget(instance)
|
||||
|
||||
def __set__(self, instance, value):
|
||||
raise AttributeError("can't set attribute")
|
||||
|
||||
def __delete__(self, instance):
|
||||
raise AttributeError("can't delete attribute")
|
||||
|
||||
|
||||
def _is_descriptor(obj):
|
||||
"""Returns True if obj is a descriptor, False otherwise."""
|
||||
return (
|
||||
hasattr(obj, '__get__') or
|
||||
hasattr(obj, '__set__') or
|
||||
hasattr(obj, '__delete__'))
|
||||
|
||||
|
||||
def _is_dunder(name):
|
||||
"""Returns True if a __dunder__ name, False otherwise."""
|
||||
return (name[:2] == name[-2:] == '__' and
|
||||
name[2:3] != '_' and
|
||||
name[-3:-2] != '_' and
|
||||
len(name) > 4)
|
||||
|
||||
|
||||
def _is_sunder(name):
|
||||
"""Returns True if a _sunder_ name, False otherwise."""
|
||||
return (name[0] == name[-1] == '_' and
|
||||
name[1:2] != '_' and
|
||||
name[-2:-1] != '_' and
|
||||
len(name) > 2)
|
||||
|
||||
|
||||
def _make_class_unpicklable(cls):
|
||||
"""Make the given class un-picklable."""
|
||||
def _break_on_call_reduce(self, protocol=None):
|
||||
raise TypeError('%r cannot be pickled' % self)
|
||||
cls.__reduce_ex__ = _break_on_call_reduce
|
||||
cls.__module__ = '<unknown>'
|
||||
|
||||
|
||||
class _EnumDict(dict):
|
||||
"""Track enum member order and ensure member names are not reused.
|
||||
|
||||
EnumMeta will use the names found in self._member_names as the
|
||||
enumeration member names.
|
||||
|
||||
"""
|
||||
def __init__(self):
|
||||
super(_EnumDict, self).__init__()
|
||||
self._member_names = []
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
"""Changes anything not dundered or not a descriptor.
|
||||
|
||||
If a descriptor is added with the same name as an enum member, the name
|
||||
is removed from _member_names (this may leave a hole in the numerical
|
||||
sequence of values).
|
||||
|
||||
If an enum member name is used twice, an error is raised; duplicate
|
||||
values are not checked for.
|
||||
|
||||
Single underscore (sunder) names are reserved.
|
||||
|
||||
Note: in 3.x __order__ is simply discarded as a not necessary piece
|
||||
leftover from 2.x
|
||||
|
||||
"""
|
||||
if pyver >= 3.0 and key == '__order__':
|
||||
return
|
||||
if _is_sunder(key):
|
||||
raise ValueError('_names_ are reserved for future Enum use')
|
||||
elif _is_dunder(key):
|
||||
pass
|
||||
elif key in self._member_names:
|
||||
# descriptor overwriting an enum?
|
||||
raise TypeError('Attempted to reuse key: %r' % key)
|
||||
elif not _is_descriptor(value):
|
||||
if key in self:
|
||||
# enum overwriting a descriptor?
|
||||
raise TypeError('Key already defined as: %r' % self[key])
|
||||
self._member_names.append(key)
|
||||
super(_EnumDict, self).__setitem__(key, value)
|
||||
|
||||
|
||||
# Dummy value for Enum as EnumMeta explicity checks for it, but of course until
|
||||
# EnumMeta finishes running the first time the Enum class doesn't exist. This
|
||||
# is also why there are checks in EnumMeta like `if Enum is not None`
|
||||
Enum = None
|
||||
|
||||
|
||||
class EnumMeta(type):
|
||||
"""Metaclass for Enum"""
|
||||
@classmethod
|
||||
def __prepare__(metacls, cls, bases):
|
||||
return _EnumDict()
|
||||
|
||||
def __new__(metacls, cls, bases, classdict):
|
||||
# an Enum class is final once enumeration items have been defined; it
|
||||
# cannot be mixed with other types (int, float, etc.) if it has an
|
||||
# inherited __new__ unless a new __new__ is defined (or the resulting
|
||||
# class will fail).
|
||||
if type(classdict) is dict:
|
||||
original_dict = classdict
|
||||
classdict = _EnumDict()
|
||||
for k, v in original_dict.items():
|
||||
classdict[k] = v
|
||||
|
||||
member_type, first_enum = metacls._get_mixins_(bases)
|
||||
__new__, save_new, use_args = metacls._find_new_(classdict, member_type,
|
||||
first_enum)
|
||||
# save enum items into separate mapping so they don't get baked into
|
||||
# the new class
|
||||
members = dict((k, classdict[k]) for k in classdict._member_names)
|
||||
for name in classdict._member_names:
|
||||
del classdict[name]
|
||||
|
||||
# py2 support for definition order
|
||||
__order__ = classdict.get('__order__')
|
||||
if __order__ is None:
|
||||
if pyver < 3.0:
|
||||
try:
|
||||
__order__ = [name for (name, value) in sorted(members.items(), key=lambda item: item[1])]
|
||||
except TypeError:
|
||||
__order__ = [name for name in sorted(members.keys())]
|
||||
else:
|
||||
__order__ = classdict._member_names
|
||||
else:
|
||||
del classdict['__order__']
|
||||
if pyver < 3.0:
|
||||
__order__ = __order__.replace(',', ' ').split()
|
||||
aliases = [name for name in members if name not in __order__]
|
||||
__order__ += aliases
|
||||
|
||||
# check for illegal enum names (any others?)
|
||||
invalid_names = set(members) & set(['mro'])
|
||||
if invalid_names:
|
||||
raise ValueError('Invalid enum member name(s): %s' % (
|
||||
', '.join(invalid_names), ))
|
||||
|
||||
# create our new Enum type
|
||||
enum_class = super(EnumMeta, metacls).__new__(metacls, cls, bases, classdict)
|
||||
enum_class._member_names_ = [] # names in random order
|
||||
if OrderedDict is not None:
|
||||
enum_class._member_map_ = OrderedDict()
|
||||
else:
|
||||
enum_class._member_map_ = {} # name->value map
|
||||
enum_class._member_type_ = member_type
|
||||
|
||||
# Reverse value->name map for hashable values.
|
||||
enum_class._value2member_map_ = {}
|
||||
|
||||
# instantiate them, checking for duplicates as we go
|
||||
# we instantiate first instead of checking for duplicates first in case
|
||||
# a custom __new__ is doing something funky with the values -- such as
|
||||
# auto-numbering ;)
|
||||
if __new__ is None:
|
||||
__new__ = enum_class.__new__
|
||||
for member_name in __order__:
|
||||
value = members[member_name]
|
||||
if not isinstance(value, tuple):
|
||||
args = (value, )
|
||||
else:
|
||||
args = value
|
||||
if member_type is tuple: # special case for tuple enums
|
||||
args = (args, ) # wrap it one more time
|
||||
if not use_args or not args:
|
||||
enum_member = __new__(enum_class)
|
||||
if not hasattr(enum_member, '_value_'):
|
||||
enum_member._value_ = value
|
||||
else:
|
||||
enum_member = __new__(enum_class, *args)
|
||||
if not hasattr(enum_member, '_value_'):
|
||||
enum_member._value_ = member_type(*args)
|
||||
value = enum_member._value_
|
||||
enum_member._name_ = member_name
|
||||
enum_member.__objclass__ = enum_class
|
||||
enum_member.__init__(*args)
|
||||
# If another member with the same value was already defined, the
|
||||
# new member becomes an alias to the existing one.
|
||||
for name, canonical_member in enum_class._member_map_.items():
|
||||
if canonical_member.value == enum_member._value_:
|
||||
enum_member = canonical_member
|
||||
break
|
||||
else:
|
||||
# Aliases don't appear in member names (only in __members__).
|
||||
enum_class._member_names_.append(member_name)
|
||||
enum_class._member_map_[member_name] = enum_member
|
||||
try:
|
||||
# This may fail if value is not hashable. We can't add the value
|
||||
# to the map, and by-value lookups for this value will be
|
||||
# linear.
|
||||
enum_class._value2member_map_[value] = enum_member
|
||||
except TypeError:
|
||||
pass
|
||||
|
||||
|
||||
# If a custom type is mixed into the Enum, and it does not know how
|
||||
# to pickle itself, pickle.dumps will succeed but pickle.loads will
|
||||
# fail. Rather than have the error show up later and possibly far
|
||||
# from the source, sabotage the pickle protocol for this class so
|
||||
# that pickle.dumps also fails.
|
||||
#
|
||||
# However, if the new class implements its own __reduce_ex__, do not
|
||||
# sabotage -- it's on them to make sure it works correctly. We use
|
||||
# __reduce_ex__ instead of any of the others as it is preferred by
|
||||
# pickle over __reduce__, and it handles all pickle protocols.
|
||||
unpicklable = False
|
||||
if '__reduce_ex__' not in classdict:
|
||||
if member_type is not object:
|
||||
methods = ('__getnewargs_ex__', '__getnewargs__',
|
||||
'__reduce_ex__', '__reduce__')
|
||||
if not any(m in member_type.__dict__ for m in methods):
|
||||
_make_class_unpicklable(enum_class)
|
||||
unpicklable = True
|
||||
|
||||
|
||||
# double check that repr and friends are not the mixin's or various
|
||||
# things break (such as pickle)
|
||||
for name in ('__repr__', '__str__', '__format__', '__reduce_ex__'):
|
||||
class_method = getattr(enum_class, name)
|
||||
obj_method = getattr(member_type, name, None)
|
||||
enum_method = getattr(first_enum, name, None)
|
||||
if name not in classdict and class_method is not enum_method:
|
||||
if name == '__reduce_ex__' and unpicklable:
|
||||
continue
|
||||
setattr(enum_class, name, enum_method)
|
||||
|
||||
# method resolution and int's are not playing nice
|
||||
# Python's less than 2.6 use __cmp__
|
||||
|
||||
if pyver < 2.6:
|
||||
|
||||
if issubclass(enum_class, int):
|
||||
setattr(enum_class, '__cmp__', getattr(int, '__cmp__'))
|
||||
|
||||
elif pyver < 3.0:
|
||||
|
||||
if issubclass(enum_class, int):
|
||||
for method in (
|
||||
'__le__',
|
||||
'__lt__',
|
||||
'__gt__',
|
||||
'__ge__',
|
||||
'__eq__',
|
||||
'__ne__',
|
||||
'__hash__',
|
||||
):
|
||||
setattr(enum_class, method, getattr(int, method))
|
||||
|
||||
# replace any other __new__ with our own (as long as Enum is not None,
|
||||
# anyway) -- again, this is to support pickle
|
||||
if Enum is not None:
|
||||
# if the user defined their own __new__, save it before it gets
|
||||
# clobbered in case they subclass later
|
||||
if save_new:
|
||||
setattr(enum_class, '__member_new__', enum_class.__dict__['__new__'])
|
||||
setattr(enum_class, '__new__', Enum.__dict__['__new__'])
|
||||
return enum_class
|
||||
|
||||
def __call__(cls, value, names=None, module=None, type=None):
|
||||
"""Either returns an existing member, or creates a new enum class.
|
||||
|
||||
This method is used both when an enum class is given a value to match
|
||||
to an enumeration member (i.e. Color(3)) and for the functional API
|
||||
(i.e. Color = Enum('Color', names='red green blue')).
|
||||
|
||||
When used for the functional API: `module`, if set, will be stored in
|
||||
the new class' __module__ attribute; `type`, if set, will be mixed in
|
||||
as the first base class.
|
||||
|
||||
Note: if `module` is not set this routine will attempt to discover the
|
||||
calling module by walking the frame stack; if this is unsuccessful
|
||||
the resulting class will not be pickleable.
|
||||
|
||||
"""
|
||||
if names is None: # simple value lookup
|
||||
return cls.__new__(cls, value)
|
||||
# otherwise, functional API: we're creating a new Enum type
|
||||
return cls._create_(value, names, module=module, type=type)
|
||||
|
||||
def __contains__(cls, member):
|
||||
return isinstance(member, cls) and member.name in cls._member_map_
|
||||
|
||||
def __delattr__(cls, attr):
|
||||
# nicer error message when someone tries to delete an attribute
|
||||
# (see issue19025).
|
||||
if attr in cls._member_map_:
|
||||
raise AttributeError(
|
||||
"%s: cannot delete Enum member." % cls.__name__)
|
||||
super(EnumMeta, cls).__delattr__(attr)
|
||||
|
||||
def __dir__(self):
|
||||
return (['__class__', '__doc__', '__members__', '__module__'] +
|
||||
self._member_names_)
|
||||
|
||||
@property
|
||||
def __members__(cls):
|
||||
"""Returns a mapping of member name->value.
|
||||
|
||||
This mapping lists all enum members, including aliases. Note that this
|
||||
is a copy of the internal mapping.
|
||||
|
||||
"""
|
||||
return cls._member_map_.copy()
|
||||
|
||||
def __getattr__(cls, name):
|
||||
"""Return the enum member matching `name`
|
||||
|
||||
We use __getattr__ instead of descriptors or inserting into the enum
|
||||
class' __dict__ in order to support `name` and `value` being both
|
||||
properties for enum members (which live in the class' __dict__) and
|
||||
enum members themselves.
|
||||
|
||||
"""
|
||||
if _is_dunder(name):
|
||||
raise AttributeError(name)
|
||||
try:
|
||||
return cls._member_map_[name]
|
||||
except KeyError:
|
||||
raise AttributeError(name)
|
||||
|
||||
def __getitem__(cls, name):
|
||||
return cls._member_map_[name]
|
||||
|
||||
def __iter__(cls):
|
||||
return (cls._member_map_[name] for name in cls._member_names_)
|
||||
|
||||
def __reversed__(cls):
|
||||
return (cls._member_map_[name] for name in reversed(cls._member_names_))
|
||||
|
||||
def __len__(cls):
|
||||
return len(cls._member_names_)
|
||||
|
||||
def __repr__(cls):
|
||||
return "<enum %r>" % cls.__name__
|
||||
|
||||
def __setattr__(cls, name, value):
|
||||
"""Block attempts to reassign Enum members.
|
||||
|
||||
A simple assignment to the class namespace only changes one of the
|
||||
several possible ways to get an Enum member from the Enum class,
|
||||
resulting in an inconsistent Enumeration.
|
||||
|
||||
"""
|
||||
member_map = cls.__dict__.get('_member_map_', {})
|
||||
if name in member_map:
|
||||
raise AttributeError('Cannot reassign members.')
|
||||
super(EnumMeta, cls).__setattr__(name, value)
|
||||
|
||||
def _create_(cls, class_name, names=None, module=None, type=None):
|
||||
"""Convenience method to create a new Enum class.
|
||||
|
||||
`names` can be:
|
||||
|
||||
* A string containing member names, separated either with spaces or
|
||||
commas. Values are auto-numbered from 1.
|
||||
* An iterable of member names. Values are auto-numbered from 1.
|
||||
* An iterable of (member name, value) pairs.
|
||||
* A mapping of member name -> value.
|
||||
|
||||
"""
|
||||
if pyver < 3.0:
|
||||
# if class_name is unicode, attempt a conversion to ASCII
|
||||
if isinstance(class_name, unicode):
|
||||
try:
|
||||
class_name = class_name.encode('ascii')
|
||||
except UnicodeEncodeError:
|
||||
raise TypeError('%r is not representable in ASCII' % class_name)
|
||||
metacls = cls.__class__
|
||||
if type is None:
|
||||
bases = (cls, )
|
||||
else:
|
||||
bases = (type, cls)
|
||||
classdict = metacls.__prepare__(class_name, bases)
|
||||
__order__ = []
|
||||
|
||||
# special processing needed for names?
|
||||
if isinstance(names, basestring):
|
||||
names = names.replace(',', ' ').split()
|
||||
if isinstance(names, (tuple, list)) and isinstance(names[0], basestring):
|
||||
names = [(e, i+1) for (i, e) in enumerate(names)]
|
||||
|
||||
# Here, names is either an iterable of (name, value) or a mapping.
|
||||
for item in names:
|
||||
if isinstance(item, basestring):
|
||||
member_name, member_value = item, names[item]
|
||||
else:
|
||||
member_name, member_value = item
|
||||
classdict[member_name] = member_value
|
||||
__order__.append(member_name)
|
||||
# only set __order__ in classdict if name/value was not from a mapping
|
||||
if not isinstance(item, basestring):
|
||||
classdict['__order__'] = ' '.join(__order__)
|
||||
enum_class = metacls.__new__(metacls, class_name, bases, classdict)
|
||||
|
||||
# TODO: replace the frame hack if a blessed way to know the calling
|
||||
# module is ever developed
|
||||
if module is None:
|
||||
try:
|
||||
module = _sys._getframe(2).f_globals['__name__']
|
||||
except (AttributeError, ValueError):
|
||||
pass
|
||||
if module is None:
|
||||
_make_class_unpicklable(enum_class)
|
||||
else:
|
||||
enum_class.__module__ = module
|
||||
|
||||
return enum_class
|
||||
|
||||
@staticmethod
|
||||
def _get_mixins_(bases):
|
||||
"""Returns the type for creating enum members, and the first inherited
|
||||
enum class.
|
||||
|
||||
bases: the tuple of bases that was given to __new__
|
||||
|
||||
"""
|
||||
if not bases or Enum is None:
|
||||
return object, Enum
|
||||
|
||||
|
||||
# double check that we are not subclassing a class with existing
|
||||
# enumeration members; while we're at it, see if any other data
|
||||
# type has been mixed in so we can use the correct __new__
|
||||
member_type = first_enum = None
|
||||
for base in bases:
|
||||
if (base is not Enum and
|
||||
issubclass(base, Enum) and
|
||||
base._member_names_):
|
||||
raise TypeError("Cannot extend enumerations")
|
||||
# base is now the last base in bases
|
||||
if not issubclass(base, Enum):
|
||||
raise TypeError("new enumerations must be created as "
|
||||
"`ClassName([mixin_type,] enum_type)`")
|
||||
|
||||
# get correct mix-in type (either mix-in type of Enum subclass, or
|
||||
# first base if last base is Enum)
|
||||
if not issubclass(bases[0], Enum):
|
||||
member_type = bases[0] # first data type
|
||||
first_enum = bases[-1] # enum type
|
||||
else:
|
||||
for base in bases[0].__mro__:
|
||||
# most common: (IntEnum, int, Enum, object)
|
||||
# possible: (<Enum 'AutoIntEnum'>, <Enum 'IntEnum'>,
|
||||
# <class 'int'>, <Enum 'Enum'>,
|
||||
# <class 'object'>)
|
||||
if issubclass(base, Enum):
|
||||
if first_enum is None:
|
||||
first_enum = base
|
||||
else:
|
||||
if member_type is None:
|
||||
member_type = base
|
||||
|
||||
return member_type, first_enum
|
||||
|
||||
if pyver < 3.0:
|
||||
@staticmethod
|
||||
def _find_new_(classdict, member_type, first_enum):
|
||||
"""Returns the __new__ to be used for creating the enum members.
|
||||
|
||||
classdict: the class dictionary given to __new__
|
||||
member_type: the data type whose __new__ will be used by default
|
||||
first_enum: enumeration to check for an overriding __new__
|
||||
|
||||
"""
|
||||
# now find the correct __new__, checking to see of one was defined
|
||||
# by the user; also check earlier enum classes in case a __new__ was
|
||||
# saved as __member_new__
|
||||
__new__ = classdict.get('__new__', None)
|
||||
if __new__:
|
||||
return None, True, True # __new__, save_new, use_args
|
||||
|
||||
N__new__ = getattr(None, '__new__')
|
||||
O__new__ = getattr(object, '__new__')
|
||||
if Enum is None:
|
||||
E__new__ = N__new__
|
||||
else:
|
||||
E__new__ = Enum.__dict__['__new__']
|
||||
# check all possibles for __member_new__ before falling back to
|
||||
# __new__
|
||||
for method in ('__member_new__', '__new__'):
|
||||
for possible in (member_type, first_enum):
|
||||
try:
|
||||
target = possible.__dict__[method]
|
||||
except (AttributeError, KeyError):
|
||||
target = getattr(possible, method, None)
|
||||
if target not in [
|
||||
None,
|
||||
N__new__,
|
||||
O__new__,
|
||||
E__new__,
|
||||
]:
|
||||
if method == '__member_new__':
|
||||
classdict['__new__'] = target
|
||||
return None, False, True
|
||||
if isinstance(target, staticmethod):
|
||||
target = target.__get__(member_type)
|
||||
__new__ = target
|
||||
break
|
||||
if __new__ is not None:
|
||||
break
|
||||
else:
|
||||
__new__ = object.__new__
|
||||
|
||||
# if a non-object.__new__ is used then whatever value/tuple was
|
||||
# assigned to the enum member name will be passed to __new__ and to the
|
||||
# new enum member's __init__
|
||||
if __new__ is object.__new__:
|
||||
use_args = False
|
||||
else:
|
||||
use_args = True
|
||||
|
||||
return __new__, False, use_args
|
||||
else:
|
||||
@staticmethod
|
||||
def _find_new_(classdict, member_type, first_enum):
|
||||
"""Returns the __new__ to be used for creating the enum members.
|
||||
|
||||
classdict: the class dictionary given to __new__
|
||||
member_type: the data type whose __new__ will be used by default
|
||||
first_enum: enumeration to check for an overriding __new__
|
||||
|
||||
"""
|
||||
# now find the correct __new__, checking to see of one was defined
|
||||
# by the user; also check earlier enum classes in case a __new__ was
|
||||
# saved as __member_new__
|
||||
__new__ = classdict.get('__new__', None)
|
||||
|
||||
# should __new__ be saved as __member_new__ later?
|
||||
save_new = __new__ is not None
|
||||
|
||||
if __new__ is None:
|
||||
# check all possibles for __member_new__ before falling back to
|
||||
# __new__
|
||||
for method in ('__member_new__', '__new__'):
|
||||
for possible in (member_type, first_enum):
|
||||
target = getattr(possible, method, None)
|
||||
if target not in (
|
||||
None,
|
||||
None.__new__,
|
||||
object.__new__,
|
||||
Enum.__new__,
|
||||
):
|
||||
__new__ = target
|
||||
break
|
||||
if __new__ is not None:
|
||||
break
|
||||
else:
|
||||
__new__ = object.__new__
|
||||
|
||||
# if a non-object.__new__ is used then whatever value/tuple was
|
||||
# assigned to the enum member name will be passed to __new__ and to the
|
||||
# new enum member's __init__
|
||||
if __new__ is object.__new__:
|
||||
use_args = False
|
||||
else:
|
||||
use_args = True
|
||||
|
||||
return __new__, save_new, use_args
|
||||
|
||||
|
||||
########################################################
|
||||
# In order to support Python 2 and 3 with a single
|
||||
# codebase we have to create the Enum methods separately
|
||||
# and then use the `type(name, bases, dict)` method to
|
||||
# create the class.
|
||||
########################################################
|
||||
temp_enum_dict = {}
|
||||
temp_enum_dict['__doc__'] = "Generic enumeration.\n\n Derive from this class to define new enumerations.\n\n"
|
||||
|
||||
def __new__(cls, value):
|
||||
# all enum instances are actually created during class construction
|
||||
# without calling this method; this method is called by the metaclass'
|
||||
# __call__ (i.e. Color(3) ), and by pickle
|
||||
if type(value) is cls:
|
||||
# For lookups like Color(Color.red)
|
||||
value = value.value
|
||||
#return value
|
||||
# by-value search for a matching enum member
|
||||
# see if it's in the reverse mapping (for hashable values)
|
||||
try:
|
||||
if value in cls._value2member_map_:
|
||||
return cls._value2member_map_[value]
|
||||
except TypeError:
|
||||
# not there, now do long search -- O(n) behavior
|
||||
for member in cls._member_map_.values():
|
||||
if member.value == value:
|
||||
return member
|
||||
raise ValueError("%s is not a valid %s" % (value, cls.__name__))
|
||||
temp_enum_dict['__new__'] = __new__
|
||||
del __new__
|
||||
|
||||
def __repr__(self):
|
||||
return "<%s.%s: %r>" % (
|
||||
self.__class__.__name__, self._name_, self._value_)
|
||||
temp_enum_dict['__repr__'] = __repr__
|
||||
del __repr__
|
||||
|
||||
def __str__(self):
|
||||
return "%s.%s" % (self.__class__.__name__, self._name_)
|
||||
temp_enum_dict['__str__'] = __str__
|
||||
del __str__
|
||||
|
||||
def __dir__(self):
|
||||
added_behavior = [
|
||||
m
|
||||
for cls in self.__class__.mro()
|
||||
for m in cls.__dict__
|
||||
if m[0] != '_'
|
||||
]
|
||||
return (['__class__', '__doc__', '__module__', ] + added_behavior)
|
||||
temp_enum_dict['__dir__'] = __dir__
|
||||
del __dir__
|
||||
|
||||
def __format__(self, format_spec):
|
||||
# mixed-in Enums should use the mixed-in type's __format__, otherwise
|
||||
# we can get strange results with the Enum name showing up instead of
|
||||
# the value
|
||||
|
||||
# pure Enum branch
|
||||
if self._member_type_ is object:
|
||||
cls = str
|
||||
val = str(self)
|
||||
# mix-in branch
|
||||
else:
|
||||
cls = self._member_type_
|
||||
val = self.value
|
||||
return cls.__format__(val, format_spec)
|
||||
temp_enum_dict['__format__'] = __format__
|
||||
del __format__
|
||||
|
||||
|
||||
####################################
|
||||
# Python's less than 2.6 use __cmp__
|
||||
|
||||
if pyver < 2.6:
|
||||
|
||||
def __cmp__(self, other):
|
||||
if type(other) is self.__class__:
|
||||
if self is other:
|
||||
return 0
|
||||
return -1
|
||||
return NotImplemented
|
||||
raise TypeError("unorderable types: %s() and %s()" % (self.__class__.__name__, other.__class__.__name__))
|
||||
temp_enum_dict['__cmp__'] = __cmp__
|
||||
del __cmp__
|
||||
|
||||
else:
|
||||
|
||||
def __le__(self, other):
|
||||
raise TypeError("unorderable types: %s() <= %s()" % (self.__class__.__name__, other.__class__.__name__))
|
||||
temp_enum_dict['__le__'] = __le__
|
||||
del __le__
|
||||
|
||||
def __lt__(self, other):
|
||||
raise TypeError("unorderable types: %s() < %s()" % (self.__class__.__name__, other.__class__.__name__))
|
||||
temp_enum_dict['__lt__'] = __lt__
|
||||
del __lt__
|
||||
|
||||
def __ge__(self, other):
|
||||
raise TypeError("unorderable types: %s() >= %s()" % (self.__class__.__name__, other.__class__.__name__))
|
||||
temp_enum_dict['__ge__'] = __ge__
|
||||
del __ge__
|
||||
|
||||
def __gt__(self, other):
|
||||
raise TypeError("unorderable types: %s() > %s()" % (self.__class__.__name__, other.__class__.__name__))
|
||||
temp_enum_dict['__gt__'] = __gt__
|
||||
del __gt__
|
||||
|
||||
|
||||
def __eq__(self, other):
|
||||
if type(other) is self.__class__:
|
||||
return self is other
|
||||
return NotImplemented
|
||||
temp_enum_dict['__eq__'] = __eq__
|
||||
del __eq__
|
||||
|
||||
def __ne__(self, other):
|
||||
if type(other) is self.__class__:
|
||||
return self is not other
|
||||
return NotImplemented
|
||||
temp_enum_dict['__ne__'] = __ne__
|
||||
del __ne__
|
||||
|
||||
def __hash__(self):
|
||||
return hash(self._name_)
|
||||
temp_enum_dict['__hash__'] = __hash__
|
||||
del __hash__
|
||||
|
||||
def __reduce_ex__(self, proto):
|
||||
return self.__class__, (self._value_, )
|
||||
temp_enum_dict['__reduce_ex__'] = __reduce_ex__
|
||||
del __reduce_ex__
|
||||
|
||||
# _RouteClassAttributeToGetattr is used to provide access to the `name`
|
||||
# and `value` properties of enum members while keeping some measure of
|
||||
# protection from modification, while still allowing for an enumeration
|
||||
# to have members named `name` and `value`. This works because enumeration
|
||||
# members are not set directly on the enum class -- __getattr__ is
|
||||
# used to look them up.
|
||||
|
||||
@_RouteClassAttributeToGetattr
|
||||
def name(self):
|
||||
return self._name_
|
||||
temp_enum_dict['name'] = name
|
||||
del name
|
||||
|
||||
@_RouteClassAttributeToGetattr
|
||||
def value(self):
|
||||
return self._value_
|
||||
temp_enum_dict['value'] = value
|
||||
del value
|
||||
|
||||
Enum = EnumMeta('Enum', (object, ), temp_enum_dict)
|
||||
del temp_enum_dict
|
||||
|
||||
# Enum has now been created
|
||||
###########################
|
||||
|
||||
class IntEnum(int, Enum):
|
||||
"""Enum where members are also (and must be) ints"""
|
||||
|
||||
|
||||
def unique(enumeration):
|
||||
"""Class decorator that ensures only unique members exist in an enumeration."""
|
||||
duplicates = []
|
||||
for name, member in enumeration.__members__.items():
|
||||
if name != member.name:
|
||||
duplicates.append((name, member.name))
|
||||
if duplicates:
|
||||
duplicate_names = ', '.join(
|
||||
["%s -> %s" % (alias, name) for (alias, name) in duplicates]
|
||||
)
|
||||
raise ValueError('duplicate names found in %r: %s' %
|
||||
(enumeration, duplicate_names)
|
||||
)
|
||||
return enumeration
|
1690
lib/enum/test_enum.py
Normal file
1690
lib/enum/test_enum.py
Normal file
File diff suppressed because it is too large
Load diff
Loading…
Add table
Add a link
Reference in a new issue