mirror of
https://github.com/Tautulli/Tautulli.git
synced 2025-07-10 15:32:38 -07:00
Update cherrypy==18.9.0
This commit is contained in:
parent
2fc618c01f
commit
51196a7fb1
137 changed files with 44442 additions and 11582 deletions
0
lib/pydantic/deprecated/__init__.py
Normal file
0
lib/pydantic/deprecated/__init__.py
Normal file
253
lib/pydantic/deprecated/class_validators.py
Normal file
253
lib/pydantic/deprecated/class_validators.py
Normal file
|
@ -0,0 +1,253 @@
|
|||
"""Old `@validator` and `@root_validator` function validators from V1."""
|
||||
|
||||
from __future__ import annotations as _annotations
|
||||
|
||||
from functools import partial, partialmethod
|
||||
from types import FunctionType
|
||||
from typing import TYPE_CHECKING, Any, Callable, TypeVar, Union, overload
|
||||
from warnings import warn
|
||||
|
||||
from typing_extensions import Literal, Protocol, TypeAlias
|
||||
|
||||
from .._internal import _decorators, _decorators_v1
|
||||
from ..errors import PydanticUserError
|
||||
from ..warnings import PydanticDeprecatedSince20
|
||||
|
||||
_ALLOW_REUSE_WARNING_MESSAGE = '`allow_reuse` is deprecated and will be ignored; it should no longer be necessary'
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
|
||||
class _OnlyValueValidatorClsMethod(Protocol):
|
||||
def __call__(self, __cls: Any, __value: Any) -> Any:
|
||||
...
|
||||
|
||||
class _V1ValidatorWithValuesClsMethod(Protocol):
|
||||
def __call__(self, __cls: Any, __value: Any, values: dict[str, Any]) -> Any:
|
||||
...
|
||||
|
||||
class _V1ValidatorWithValuesKwOnlyClsMethod(Protocol):
|
||||
def __call__(self, __cls: Any, __value: Any, *, values: dict[str, Any]) -> Any:
|
||||
...
|
||||
|
||||
class _V1ValidatorWithKwargsClsMethod(Protocol):
|
||||
def __call__(self, __cls: Any, **kwargs: Any) -> Any:
|
||||
...
|
||||
|
||||
class _V1ValidatorWithValuesAndKwargsClsMethod(Protocol):
|
||||
def __call__(self, __cls: Any, values: dict[str, Any], **kwargs: Any) -> Any:
|
||||
...
|
||||
|
||||
class _V1RootValidatorClsMethod(Protocol):
|
||||
def __call__(
|
||||
self, __cls: Any, __values: _decorators_v1.RootValidatorValues
|
||||
) -> _decorators_v1.RootValidatorValues:
|
||||
...
|
||||
|
||||
V1Validator = Union[
|
||||
_OnlyValueValidatorClsMethod,
|
||||
_V1ValidatorWithValuesClsMethod,
|
||||
_V1ValidatorWithValuesKwOnlyClsMethod,
|
||||
_V1ValidatorWithKwargsClsMethod,
|
||||
_V1ValidatorWithValuesAndKwargsClsMethod,
|
||||
_decorators_v1.V1ValidatorWithValues,
|
||||
_decorators_v1.V1ValidatorWithValuesKwOnly,
|
||||
_decorators_v1.V1ValidatorWithKwargs,
|
||||
_decorators_v1.V1ValidatorWithValuesAndKwargs,
|
||||
]
|
||||
|
||||
V1RootValidator = Union[
|
||||
_V1RootValidatorClsMethod,
|
||||
_decorators_v1.V1RootValidatorFunction,
|
||||
]
|
||||
|
||||
_PartialClsOrStaticMethod: TypeAlias = Union[classmethod[Any, Any, Any], staticmethod[Any, Any], partialmethod[Any]]
|
||||
|
||||
# Allow both a V1 (assumed pre=False) or V2 (assumed mode='after') validator
|
||||
# We lie to type checkers and say we return the same thing we get
|
||||
# but in reality we return a proxy object that _mostly_ behaves like the wrapped thing
|
||||
_V1ValidatorType = TypeVar('_V1ValidatorType', V1Validator, _PartialClsOrStaticMethod)
|
||||
_V1RootValidatorFunctionType = TypeVar(
|
||||
'_V1RootValidatorFunctionType',
|
||||
_decorators_v1.V1RootValidatorFunction,
|
||||
_V1RootValidatorClsMethod,
|
||||
_PartialClsOrStaticMethod,
|
||||
)
|
||||
else:
|
||||
# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915
|
||||
# and https://youtrack.jetbrains.com/issue/PY-51428
|
||||
DeprecationWarning = PydanticDeprecatedSince20
|
||||
|
||||
|
||||
def validator(
|
||||
__field: str,
|
||||
*fields: str,
|
||||
pre: bool = False,
|
||||
each_item: bool = False,
|
||||
always: bool = False,
|
||||
check_fields: bool | None = None,
|
||||
allow_reuse: bool = False,
|
||||
) -> Callable[[_V1ValidatorType], _V1ValidatorType]:
|
||||
"""Decorate methods on the class indicating that they should be used to validate fields.
|
||||
|
||||
Args:
|
||||
__field (str): The first field the validator should be called on; this is separate
|
||||
from `fields` to ensure an error is raised if you don't pass at least one.
|
||||
*fields (str): Additional field(s) the validator should be called on.
|
||||
pre (bool, optional): Whether this validator should be called before the standard
|
||||
validators (else after). Defaults to False.
|
||||
each_item (bool, optional): For complex objects (sets, lists etc.) whether to validate
|
||||
individual elements rather than the whole object. Defaults to False.
|
||||
always (bool, optional): Whether this method and other validators should be called even if
|
||||
the value is missing. Defaults to False.
|
||||
check_fields (bool | None, optional): Whether to check that the fields actually exist on the model.
|
||||
Defaults to None.
|
||||
allow_reuse (bool, optional): Whether to track and raise an error if another validator refers to
|
||||
the decorated function. Defaults to False.
|
||||
|
||||
Returns:
|
||||
Callable: A decorator that can be used to decorate a
|
||||
function to be used as a validator.
|
||||
"""
|
||||
if allow_reuse is True: # pragma: no cover
|
||||
warn(_ALLOW_REUSE_WARNING_MESSAGE, DeprecationWarning)
|
||||
fields = tuple((__field, *fields))
|
||||
if isinstance(fields[0], FunctionType):
|
||||
raise PydanticUserError(
|
||||
'`@validator` should be used with fields and keyword arguments, not bare. '
|
||||
"E.g. usage should be `@validator('<field_name>', ...)`",
|
||||
code='validator-no-fields',
|
||||
)
|
||||
elif not all(isinstance(field, str) for field in fields):
|
||||
raise PydanticUserError(
|
||||
'`@validator` fields should be passed as separate string args. '
|
||||
"E.g. usage should be `@validator('<field_name_1>', '<field_name_2>', ...)`",
|
||||
code='validator-invalid-fields',
|
||||
)
|
||||
|
||||
warn(
|
||||
'Pydantic V1 style `@validator` validators are deprecated.'
|
||||
' You should migrate to Pydantic V2 style `@field_validator` validators,'
|
||||
' see the migration guide for more details',
|
||||
DeprecationWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
mode: Literal['before', 'after'] = 'before' if pre is True else 'after'
|
||||
|
||||
def dec(f: Any) -> _decorators.PydanticDescriptorProxy[Any]:
|
||||
if _decorators.is_instance_method_from_sig(f):
|
||||
raise PydanticUserError(
|
||||
'`@validator` cannot be applied to instance methods', code='validator-instance-method'
|
||||
)
|
||||
# auto apply the @classmethod decorator
|
||||
f = _decorators.ensure_classmethod_based_on_signature(f)
|
||||
wrap = _decorators_v1.make_generic_v1_field_validator
|
||||
validator_wrapper_info = _decorators.ValidatorDecoratorInfo(
|
||||
fields=fields,
|
||||
mode=mode,
|
||||
each_item=each_item,
|
||||
always=always,
|
||||
check_fields=check_fields,
|
||||
)
|
||||
return _decorators.PydanticDescriptorProxy(f, validator_wrapper_info, shim=wrap)
|
||||
|
||||
return dec # type: ignore[return-value]
|
||||
|
||||
|
||||
@overload
|
||||
def root_validator(
|
||||
*,
|
||||
# if you don't specify `pre` the default is `pre=False`
|
||||
# which means you need to specify `skip_on_failure=True`
|
||||
skip_on_failure: Literal[True],
|
||||
allow_reuse: bool = ...,
|
||||
) -> Callable[
|
||||
[_V1RootValidatorFunctionType],
|
||||
_V1RootValidatorFunctionType,
|
||||
]:
|
||||
...
|
||||
|
||||
|
||||
@overload
|
||||
def root_validator(
|
||||
*,
|
||||
# if you specify `pre=True` then you don't need to specify
|
||||
# `skip_on_failure`, in fact it is not allowed as an argument!
|
||||
pre: Literal[True],
|
||||
allow_reuse: bool = ...,
|
||||
) -> Callable[
|
||||
[_V1RootValidatorFunctionType],
|
||||
_V1RootValidatorFunctionType,
|
||||
]:
|
||||
...
|
||||
|
||||
|
||||
@overload
|
||||
def root_validator(
|
||||
*,
|
||||
# if you explicitly specify `pre=False` then you
|
||||
# MUST specify `skip_on_failure=True`
|
||||
pre: Literal[False],
|
||||
skip_on_failure: Literal[True],
|
||||
allow_reuse: bool = ...,
|
||||
) -> Callable[
|
||||
[_V1RootValidatorFunctionType],
|
||||
_V1RootValidatorFunctionType,
|
||||
]:
|
||||
...
|
||||
|
||||
|
||||
def root_validator(
|
||||
*__args,
|
||||
pre: bool = False,
|
||||
skip_on_failure: bool = False,
|
||||
allow_reuse: bool = False,
|
||||
) -> Any:
|
||||
"""Decorate methods on a model indicating that they should be used to validate (and perhaps
|
||||
modify) data either before or after standard model parsing/validation is performed.
|
||||
|
||||
Args:
|
||||
pre (bool, optional): Whether this validator should be called before the standard
|
||||
validators (else after). Defaults to False.
|
||||
skip_on_failure (bool, optional): Whether to stop validation and return as soon as a
|
||||
failure is encountered. Defaults to False.
|
||||
allow_reuse (bool, optional): Whether to track and raise an error if another validator
|
||||
refers to the decorated function. Defaults to False.
|
||||
|
||||
Returns:
|
||||
Any: A decorator that can be used to decorate a function to be used as a root_validator.
|
||||
"""
|
||||
warn(
|
||||
'Pydantic V1 style `@root_validator` validators are deprecated.'
|
||||
' You should migrate to Pydantic V2 style `@model_validator` validators,'
|
||||
' see the migration guide for more details',
|
||||
DeprecationWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
if __args:
|
||||
# Ensure a nice error is raised if someone attempts to use the bare decorator
|
||||
return root_validator()(*__args) # type: ignore
|
||||
|
||||
if allow_reuse is True: # pragma: no cover
|
||||
warn(_ALLOW_REUSE_WARNING_MESSAGE, DeprecationWarning)
|
||||
mode: Literal['before', 'after'] = 'before' if pre is True else 'after'
|
||||
if pre is False and skip_on_failure is not True:
|
||||
raise PydanticUserError(
|
||||
'If you use `@root_validator` with pre=False (the default) you MUST specify `skip_on_failure=True`.'
|
||||
' Note that `@root_validator` is deprecated and should be replaced with `@model_validator`.',
|
||||
code='root-validator-pre-skip',
|
||||
)
|
||||
|
||||
wrap = partial(_decorators_v1.make_v1_generic_root_validator, pre=pre)
|
||||
|
||||
def dec(f: Callable[..., Any] | classmethod[Any, Any, Any] | staticmethod[Any, Any]) -> Any:
|
||||
if _decorators.is_instance_method_from_sig(f):
|
||||
raise TypeError('`@root_validator` cannot be applied to instance methods')
|
||||
# auto apply the @classmethod decorator
|
||||
res = _decorators.ensure_classmethod_based_on_signature(f)
|
||||
dec_info = _decorators.RootValidatorDecoratorInfo(mode=mode)
|
||||
return _decorators.PydanticDescriptorProxy(res, dec_info, shim=wrap)
|
||||
|
||||
return dec
|
72
lib/pydantic/deprecated/config.py
Normal file
72
lib/pydantic/deprecated/config.py
Normal file
|
@ -0,0 +1,72 @@
|
|||
from __future__ import annotations as _annotations
|
||||
|
||||
import warnings
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
from typing_extensions import Literal, deprecated
|
||||
|
||||
from .._internal import _config
|
||||
from ..warnings import PydanticDeprecatedSince20
|
||||
|
||||
if not TYPE_CHECKING:
|
||||
# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915
|
||||
# and https://youtrack.jetbrains.com/issue/PY-51428
|
||||
DeprecationWarning = PydanticDeprecatedSince20
|
||||
|
||||
__all__ = 'BaseConfig', 'Extra'
|
||||
|
||||
|
||||
class _ConfigMetaclass(type):
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
try:
|
||||
obj = _config.config_defaults[item]
|
||||
warnings.warn(_config.DEPRECATION_MESSAGE, DeprecationWarning)
|
||||
return obj
|
||||
except KeyError as exc:
|
||||
raise AttributeError(f"type object '{self.__name__}' has no attribute {exc}") from exc
|
||||
|
||||
|
||||
@deprecated('BaseConfig is deprecated. Use the `pydantic.ConfigDict` instead.', category=PydanticDeprecatedSince20)
|
||||
class BaseConfig(metaclass=_ConfigMetaclass):
|
||||
"""This class is only retained for backwards compatibility.
|
||||
|
||||
!!! Warning "Deprecated"
|
||||
BaseConfig is deprecated. Use the [`pydantic.ConfigDict`][pydantic.ConfigDict] instead.
|
||||
"""
|
||||
|
||||
def __getattr__(self, item: str) -> Any:
|
||||
try:
|
||||
obj = super().__getattribute__(item)
|
||||
warnings.warn(_config.DEPRECATION_MESSAGE, DeprecationWarning)
|
||||
return obj
|
||||
except AttributeError as exc:
|
||||
try:
|
||||
return getattr(type(self), item)
|
||||
except AttributeError:
|
||||
# re-raising changes the displayed text to reflect that `self` is not a type
|
||||
raise AttributeError(str(exc)) from exc
|
||||
|
||||
def __init_subclass__(cls, **kwargs: Any) -> None:
|
||||
warnings.warn(_config.DEPRECATION_MESSAGE, DeprecationWarning)
|
||||
return super().__init_subclass__(**kwargs)
|
||||
|
||||
|
||||
class _ExtraMeta(type):
|
||||
def __getattribute__(self, __name: str) -> Any:
|
||||
# The @deprecated decorator accesses other attributes, so we only emit a warning for the expected ones
|
||||
if __name in {'allow', 'ignore', 'forbid'}:
|
||||
warnings.warn(
|
||||
"`pydantic.config.Extra` is deprecated, use literal values instead (e.g. `extra='allow'`)",
|
||||
DeprecationWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
return super().__getattribute__(__name)
|
||||
|
||||
|
||||
@deprecated(
|
||||
"Extra is deprecated. Use literal values instead (e.g. `extra='allow'`)", category=PydanticDeprecatedSince20
|
||||
)
|
||||
class Extra(metaclass=_ExtraMeta):
|
||||
allow: Literal['allow'] = 'allow'
|
||||
ignore: Literal['ignore'] = 'ignore'
|
||||
forbid: Literal['forbid'] = 'forbid'
|
224
lib/pydantic/deprecated/copy_internals.py
Normal file
224
lib/pydantic/deprecated/copy_internals.py
Normal file
|
@ -0,0 +1,224 @@
|
|||
from __future__ import annotations as _annotations
|
||||
|
||||
import typing
|
||||
from copy import deepcopy
|
||||
from enum import Enum
|
||||
from typing import Any, Tuple
|
||||
|
||||
import typing_extensions
|
||||
|
||||
from .._internal import (
|
||||
_model_construction,
|
||||
_typing_extra,
|
||||
_utils,
|
||||
)
|
||||
|
||||
if typing.TYPE_CHECKING:
|
||||
from .. import BaseModel
|
||||
from .._internal._utils import AbstractSetIntStr, MappingIntStrAny
|
||||
|
||||
AnyClassMethod = classmethod[Any, Any, Any]
|
||||
TupleGenerator = typing.Generator[Tuple[str, Any], None, None]
|
||||
Model = typing.TypeVar('Model', bound='BaseModel')
|
||||
# should be `set[int] | set[str] | dict[int, IncEx] | dict[str, IncEx] | None`, but mypy can't cope
|
||||
IncEx: typing_extensions.TypeAlias = 'set[int] | set[str] | dict[int, Any] | dict[str, Any] | None'
|
||||
|
||||
_object_setattr = _model_construction.object_setattr
|
||||
|
||||
|
||||
def _iter(
|
||||
self: BaseModel,
|
||||
to_dict: bool = False,
|
||||
by_alias: bool = False,
|
||||
include: AbstractSetIntStr | MappingIntStrAny | None = None,
|
||||
exclude: AbstractSetIntStr | MappingIntStrAny | None = None,
|
||||
exclude_unset: bool = False,
|
||||
exclude_defaults: bool = False,
|
||||
exclude_none: bool = False,
|
||||
) -> TupleGenerator:
|
||||
# Merge field set excludes with explicit exclude parameter with explicit overriding field set options.
|
||||
# The extra "is not None" guards are not logically necessary but optimizes performance for the simple case.
|
||||
if exclude is not None:
|
||||
exclude = _utils.ValueItems.merge(
|
||||
{k: v.exclude for k, v in self.model_fields.items() if v.exclude is not None}, exclude
|
||||
)
|
||||
|
||||
if include is not None:
|
||||
include = _utils.ValueItems.merge({k: True for k in self.model_fields}, include, intersect=True)
|
||||
|
||||
allowed_keys = _calculate_keys(self, include=include, exclude=exclude, exclude_unset=exclude_unset) # type: ignore
|
||||
if allowed_keys is None and not (to_dict or by_alias or exclude_unset or exclude_defaults or exclude_none):
|
||||
# huge boost for plain _iter()
|
||||
yield from self.__dict__.items()
|
||||
if self.__pydantic_extra__:
|
||||
yield from self.__pydantic_extra__.items()
|
||||
return
|
||||
|
||||
value_exclude = _utils.ValueItems(self, exclude) if exclude is not None else None
|
||||
value_include = _utils.ValueItems(self, include) if include is not None else None
|
||||
|
||||
if self.__pydantic_extra__ is None:
|
||||
items = self.__dict__.items()
|
||||
else:
|
||||
items = list(self.__dict__.items()) + list(self.__pydantic_extra__.items())
|
||||
|
||||
for field_key, v in items:
|
||||
if (allowed_keys is not None and field_key not in allowed_keys) or (exclude_none and v is None):
|
||||
continue
|
||||
|
||||
if exclude_defaults:
|
||||
try:
|
||||
field = self.model_fields[field_key]
|
||||
except KeyError:
|
||||
pass
|
||||
else:
|
||||
if not field.is_required() and field.default == v:
|
||||
continue
|
||||
|
||||
if by_alias and field_key in self.model_fields:
|
||||
dict_key = self.model_fields[field_key].alias or field_key
|
||||
else:
|
||||
dict_key = field_key
|
||||
|
||||
if to_dict or value_include or value_exclude:
|
||||
v = _get_value(
|
||||
type(self),
|
||||
v,
|
||||
to_dict=to_dict,
|
||||
by_alias=by_alias,
|
||||
include=value_include and value_include.for_element(field_key),
|
||||
exclude=value_exclude and value_exclude.for_element(field_key),
|
||||
exclude_unset=exclude_unset,
|
||||
exclude_defaults=exclude_defaults,
|
||||
exclude_none=exclude_none,
|
||||
)
|
||||
yield dict_key, v
|
||||
|
||||
|
||||
def _copy_and_set_values(
|
||||
self: Model,
|
||||
values: dict[str, Any],
|
||||
fields_set: set[str],
|
||||
extra: dict[str, Any] | None = None,
|
||||
private: dict[str, Any] | None = None,
|
||||
*,
|
||||
deep: bool, # UP006
|
||||
) -> Model:
|
||||
if deep:
|
||||
# chances of having empty dict here are quite low for using smart_deepcopy
|
||||
values = deepcopy(values)
|
||||
extra = deepcopy(extra)
|
||||
private = deepcopy(private)
|
||||
|
||||
cls = self.__class__
|
||||
m = cls.__new__(cls)
|
||||
_object_setattr(m, '__dict__', values)
|
||||
_object_setattr(m, '__pydantic_extra__', extra)
|
||||
_object_setattr(m, '__pydantic_fields_set__', fields_set)
|
||||
_object_setattr(m, '__pydantic_private__', private)
|
||||
|
||||
return m
|
||||
|
||||
|
||||
@typing.no_type_check
|
||||
def _get_value(
|
||||
cls: type[BaseModel],
|
||||
v: Any,
|
||||
to_dict: bool,
|
||||
by_alias: bool,
|
||||
include: AbstractSetIntStr | MappingIntStrAny | None,
|
||||
exclude: AbstractSetIntStr | MappingIntStrAny | None,
|
||||
exclude_unset: bool,
|
||||
exclude_defaults: bool,
|
||||
exclude_none: bool,
|
||||
) -> Any:
|
||||
from .. import BaseModel
|
||||
|
||||
if isinstance(v, BaseModel):
|
||||
if to_dict:
|
||||
return v.model_dump(
|
||||
by_alias=by_alias,
|
||||
exclude_unset=exclude_unset,
|
||||
exclude_defaults=exclude_defaults,
|
||||
include=include, # type: ignore
|
||||
exclude=exclude, # type: ignore
|
||||
exclude_none=exclude_none,
|
||||
)
|
||||
else:
|
||||
return v.copy(include=include, exclude=exclude)
|
||||
|
||||
value_exclude = _utils.ValueItems(v, exclude) if exclude else None
|
||||
value_include = _utils.ValueItems(v, include) if include else None
|
||||
|
||||
if isinstance(v, dict):
|
||||
return {
|
||||
k_: _get_value(
|
||||
cls,
|
||||
v_,
|
||||
to_dict=to_dict,
|
||||
by_alias=by_alias,
|
||||
exclude_unset=exclude_unset,
|
||||
exclude_defaults=exclude_defaults,
|
||||
include=value_include and value_include.for_element(k_),
|
||||
exclude=value_exclude and value_exclude.for_element(k_),
|
||||
exclude_none=exclude_none,
|
||||
)
|
||||
for k_, v_ in v.items()
|
||||
if (not value_exclude or not value_exclude.is_excluded(k_))
|
||||
and (not value_include or value_include.is_included(k_))
|
||||
}
|
||||
|
||||
elif _utils.sequence_like(v):
|
||||
seq_args = (
|
||||
_get_value(
|
||||
cls,
|
||||
v_,
|
||||
to_dict=to_dict,
|
||||
by_alias=by_alias,
|
||||
exclude_unset=exclude_unset,
|
||||
exclude_defaults=exclude_defaults,
|
||||
include=value_include and value_include.for_element(i),
|
||||
exclude=value_exclude and value_exclude.for_element(i),
|
||||
exclude_none=exclude_none,
|
||||
)
|
||||
for i, v_ in enumerate(v)
|
||||
if (not value_exclude or not value_exclude.is_excluded(i))
|
||||
and (not value_include or value_include.is_included(i))
|
||||
)
|
||||
|
||||
return v.__class__(*seq_args) if _typing_extra.is_namedtuple(v.__class__) else v.__class__(seq_args)
|
||||
|
||||
elif isinstance(v, Enum) and getattr(cls.model_config, 'use_enum_values', False):
|
||||
return v.value
|
||||
|
||||
else:
|
||||
return v
|
||||
|
||||
|
||||
def _calculate_keys(
|
||||
self: BaseModel,
|
||||
include: MappingIntStrAny | None,
|
||||
exclude: MappingIntStrAny | None,
|
||||
exclude_unset: bool,
|
||||
update: typing.Dict[str, Any] | None = None, # noqa UP006
|
||||
) -> typing.AbstractSet[str] | None:
|
||||
if include is None and exclude is None and exclude_unset is False:
|
||||
return None
|
||||
|
||||
keys: typing.AbstractSet[str]
|
||||
if exclude_unset:
|
||||
keys = self.__pydantic_fields_set__.copy()
|
||||
else:
|
||||
keys = set(self.__dict__.keys())
|
||||
keys = keys | (self.__pydantic_extra__ or {}).keys()
|
||||
|
||||
if include is not None:
|
||||
keys &= include.keys()
|
||||
|
||||
if update:
|
||||
keys -= update.keys()
|
||||
|
||||
if exclude:
|
||||
keys -= {k for k, v in exclude.items() if _utils.ValueItems.is_true(v)}
|
||||
|
||||
return keys
|
279
lib/pydantic/deprecated/decorator.py
Normal file
279
lib/pydantic/deprecated/decorator.py
Normal file
|
@ -0,0 +1,279 @@
|
|||
import warnings
|
||||
from functools import wraps
|
||||
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Mapping, Optional, Tuple, Type, TypeVar, Union, overload
|
||||
|
||||
from typing_extensions import deprecated
|
||||
|
||||
from .._internal import _config, _typing_extra
|
||||
from ..alias_generators import to_pascal
|
||||
from ..errors import PydanticUserError
|
||||
from ..functional_validators import field_validator
|
||||
from ..main import BaseModel, create_model
|
||||
from ..warnings import PydanticDeprecatedSince20
|
||||
|
||||
if not TYPE_CHECKING:
|
||||
# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915
|
||||
# and https://youtrack.jetbrains.com/issue/PY-51428
|
||||
DeprecationWarning = PydanticDeprecatedSince20
|
||||
|
||||
__all__ = ('validate_arguments',)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
AnyCallable = Callable[..., Any]
|
||||
|
||||
AnyCallableT = TypeVar('AnyCallableT', bound=AnyCallable)
|
||||
ConfigType = Union[None, Type[Any], Dict[str, Any]]
|
||||
|
||||
|
||||
@overload
|
||||
def validate_arguments(func: None = None, *, config: 'ConfigType' = None) -> Callable[['AnyCallableT'], 'AnyCallableT']:
|
||||
...
|
||||
|
||||
|
||||
@overload
|
||||
def validate_arguments(func: 'AnyCallableT') -> 'AnyCallableT':
|
||||
...
|
||||
|
||||
|
||||
@deprecated(
|
||||
'The `validate_arguments` method is deprecated; use `validate_call` instead.',
|
||||
category=None,
|
||||
)
|
||||
def validate_arguments(func: Optional['AnyCallableT'] = None, *, config: 'ConfigType' = None) -> Any:
|
||||
"""Decorator to validate the arguments passed to a function."""
|
||||
warnings.warn(
|
||||
'The `validate_arguments` method is deprecated; use `validate_call` instead.',
|
||||
PydanticDeprecatedSince20,
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
def validate(_func: 'AnyCallable') -> 'AnyCallable':
|
||||
vd = ValidatedFunction(_func, config)
|
||||
|
||||
@wraps(_func)
|
||||
def wrapper_function(*args: Any, **kwargs: Any) -> Any:
|
||||
return vd.call(*args, **kwargs)
|
||||
|
||||
wrapper_function.vd = vd # type: ignore
|
||||
wrapper_function.validate = vd.init_model_instance # type: ignore
|
||||
wrapper_function.raw_function = vd.raw_function # type: ignore
|
||||
wrapper_function.model = vd.model # type: ignore
|
||||
return wrapper_function
|
||||
|
||||
if func:
|
||||
return validate(func)
|
||||
else:
|
||||
return validate
|
||||
|
||||
|
||||
ALT_V_ARGS = 'v__args'
|
||||
ALT_V_KWARGS = 'v__kwargs'
|
||||
V_POSITIONAL_ONLY_NAME = 'v__positional_only'
|
||||
V_DUPLICATE_KWARGS = 'v__duplicate_kwargs'
|
||||
|
||||
|
||||
class ValidatedFunction:
|
||||
def __init__(self, function: 'AnyCallable', config: 'ConfigType'):
|
||||
from inspect import Parameter, signature
|
||||
|
||||
parameters: Mapping[str, Parameter] = signature(function).parameters
|
||||
|
||||
if parameters.keys() & {ALT_V_ARGS, ALT_V_KWARGS, V_POSITIONAL_ONLY_NAME, V_DUPLICATE_KWARGS}:
|
||||
raise PydanticUserError(
|
||||
f'"{ALT_V_ARGS}", "{ALT_V_KWARGS}", "{V_POSITIONAL_ONLY_NAME}" and "{V_DUPLICATE_KWARGS}" '
|
||||
f'are not permitted as argument names when using the "{validate_arguments.__name__}" decorator',
|
||||
code=None,
|
||||
)
|
||||
|
||||
self.raw_function = function
|
||||
self.arg_mapping: Dict[int, str] = {}
|
||||
self.positional_only_args: set[str] = set()
|
||||
self.v_args_name = 'args'
|
||||
self.v_kwargs_name = 'kwargs'
|
||||
|
||||
type_hints = _typing_extra.get_type_hints(function, include_extras=True)
|
||||
takes_args = False
|
||||
takes_kwargs = False
|
||||
fields: Dict[str, Tuple[Any, Any]] = {}
|
||||
for i, (name, p) in enumerate(parameters.items()):
|
||||
if p.annotation is p.empty:
|
||||
annotation = Any
|
||||
else:
|
||||
annotation = type_hints[name]
|
||||
|
||||
default = ... if p.default is p.empty else p.default
|
||||
if p.kind == Parameter.POSITIONAL_ONLY:
|
||||
self.arg_mapping[i] = name
|
||||
fields[name] = annotation, default
|
||||
fields[V_POSITIONAL_ONLY_NAME] = List[str], None
|
||||
self.positional_only_args.add(name)
|
||||
elif p.kind == Parameter.POSITIONAL_OR_KEYWORD:
|
||||
self.arg_mapping[i] = name
|
||||
fields[name] = annotation, default
|
||||
fields[V_DUPLICATE_KWARGS] = List[str], None
|
||||
elif p.kind == Parameter.KEYWORD_ONLY:
|
||||
fields[name] = annotation, default
|
||||
elif p.kind == Parameter.VAR_POSITIONAL:
|
||||
self.v_args_name = name
|
||||
fields[name] = Tuple[annotation, ...], None
|
||||
takes_args = True
|
||||
else:
|
||||
assert p.kind == Parameter.VAR_KEYWORD, p.kind
|
||||
self.v_kwargs_name = name
|
||||
fields[name] = Dict[str, annotation], None
|
||||
takes_kwargs = True
|
||||
|
||||
# these checks avoid a clash between "args" and a field with that name
|
||||
if not takes_args and self.v_args_name in fields:
|
||||
self.v_args_name = ALT_V_ARGS
|
||||
|
||||
# same with "kwargs"
|
||||
if not takes_kwargs and self.v_kwargs_name in fields:
|
||||
self.v_kwargs_name = ALT_V_KWARGS
|
||||
|
||||
if not takes_args:
|
||||
# we add the field so validation below can raise the correct exception
|
||||
fields[self.v_args_name] = List[Any], None
|
||||
|
||||
if not takes_kwargs:
|
||||
# same with kwargs
|
||||
fields[self.v_kwargs_name] = Dict[Any, Any], None
|
||||
|
||||
self.create_model(fields, takes_args, takes_kwargs, config)
|
||||
|
||||
def init_model_instance(self, *args: Any, **kwargs: Any) -> BaseModel:
|
||||
values = self.build_values(args, kwargs)
|
||||
return self.model(**values)
|
||||
|
||||
def call(self, *args: Any, **kwargs: Any) -> Any:
|
||||
m = self.init_model_instance(*args, **kwargs)
|
||||
return self.execute(m)
|
||||
|
||||
def build_values(self, args: Tuple[Any, ...], kwargs: Dict[str, Any]) -> Dict[str, Any]:
|
||||
values: Dict[str, Any] = {}
|
||||
if args:
|
||||
arg_iter = enumerate(args)
|
||||
while True:
|
||||
try:
|
||||
i, a = next(arg_iter)
|
||||
except StopIteration:
|
||||
break
|
||||
arg_name = self.arg_mapping.get(i)
|
||||
if arg_name is not None:
|
||||
values[arg_name] = a
|
||||
else:
|
||||
values[self.v_args_name] = [a] + [a for _, a in arg_iter]
|
||||
break
|
||||
|
||||
var_kwargs: Dict[str, Any] = {}
|
||||
wrong_positional_args = []
|
||||
duplicate_kwargs = []
|
||||
fields_alias = [
|
||||
field.alias
|
||||
for name, field in self.model.model_fields.items()
|
||||
if name not in (self.v_args_name, self.v_kwargs_name)
|
||||
]
|
||||
non_var_fields = set(self.model.model_fields) - {self.v_args_name, self.v_kwargs_name}
|
||||
for k, v in kwargs.items():
|
||||
if k in non_var_fields or k in fields_alias:
|
||||
if k in self.positional_only_args:
|
||||
wrong_positional_args.append(k)
|
||||
if k in values:
|
||||
duplicate_kwargs.append(k)
|
||||
values[k] = v
|
||||
else:
|
||||
var_kwargs[k] = v
|
||||
|
||||
if var_kwargs:
|
||||
values[self.v_kwargs_name] = var_kwargs
|
||||
if wrong_positional_args:
|
||||
values[V_POSITIONAL_ONLY_NAME] = wrong_positional_args
|
||||
if duplicate_kwargs:
|
||||
values[V_DUPLICATE_KWARGS] = duplicate_kwargs
|
||||
return values
|
||||
|
||||
def execute(self, m: BaseModel) -> Any:
|
||||
d = {k: v for k, v in m.__dict__.items() if k in m.__pydantic_fields_set__ or m.model_fields[k].default_factory}
|
||||
var_kwargs = d.pop(self.v_kwargs_name, {})
|
||||
|
||||
if self.v_args_name in d:
|
||||
args_: List[Any] = []
|
||||
in_kwargs = False
|
||||
kwargs = {}
|
||||
for name, value in d.items():
|
||||
if in_kwargs:
|
||||
kwargs[name] = value
|
||||
elif name == self.v_args_name:
|
||||
args_ += value
|
||||
in_kwargs = True
|
||||
else:
|
||||
args_.append(value)
|
||||
return self.raw_function(*args_, **kwargs, **var_kwargs)
|
||||
elif self.positional_only_args:
|
||||
args_ = []
|
||||
kwargs = {}
|
||||
for name, value in d.items():
|
||||
if name in self.positional_only_args:
|
||||
args_.append(value)
|
||||
else:
|
||||
kwargs[name] = value
|
||||
return self.raw_function(*args_, **kwargs, **var_kwargs)
|
||||
else:
|
||||
return self.raw_function(**d, **var_kwargs)
|
||||
|
||||
def create_model(self, fields: Dict[str, Any], takes_args: bool, takes_kwargs: bool, config: 'ConfigType') -> None:
|
||||
pos_args = len(self.arg_mapping)
|
||||
|
||||
config_wrapper = _config.ConfigWrapper(config)
|
||||
|
||||
if config_wrapper.alias_generator:
|
||||
raise PydanticUserError(
|
||||
'Setting the "alias_generator" property on custom Config for '
|
||||
'@validate_arguments is not yet supported, please remove.',
|
||||
code=None,
|
||||
)
|
||||
if config_wrapper.extra is None:
|
||||
config_wrapper.config_dict['extra'] = 'forbid'
|
||||
|
||||
class DecoratorBaseModel(BaseModel):
|
||||
@field_validator(self.v_args_name, check_fields=False)
|
||||
@classmethod
|
||||
def check_args(cls, v: Optional[List[Any]]) -> Optional[List[Any]]:
|
||||
if takes_args or v is None:
|
||||
return v
|
||||
|
||||
raise TypeError(f'{pos_args} positional arguments expected but {pos_args + len(v)} given')
|
||||
|
||||
@field_validator(self.v_kwargs_name, check_fields=False)
|
||||
@classmethod
|
||||
def check_kwargs(cls, v: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]:
|
||||
if takes_kwargs or v is None:
|
||||
return v
|
||||
|
||||
plural = '' if len(v) == 1 else 's'
|
||||
keys = ', '.join(map(repr, v.keys()))
|
||||
raise TypeError(f'unexpected keyword argument{plural}: {keys}')
|
||||
|
||||
@field_validator(V_POSITIONAL_ONLY_NAME, check_fields=False)
|
||||
@classmethod
|
||||
def check_positional_only(cls, v: Optional[List[str]]) -> None:
|
||||
if v is None:
|
||||
return
|
||||
|
||||
plural = '' if len(v) == 1 else 's'
|
||||
keys = ', '.join(map(repr, v))
|
||||
raise TypeError(f'positional-only argument{plural} passed as keyword argument{plural}: {keys}')
|
||||
|
||||
@field_validator(V_DUPLICATE_KWARGS, check_fields=False)
|
||||
@classmethod
|
||||
def check_duplicate_kwargs(cls, v: Optional[List[str]]) -> None:
|
||||
if v is None:
|
||||
return
|
||||
|
||||
plural = '' if len(v) == 1 else 's'
|
||||
keys = ', '.join(map(repr, v))
|
||||
raise TypeError(f'multiple values for argument{plural}: {keys}')
|
||||
|
||||
model_config = config_wrapper.config_dict
|
||||
|
||||
self.model = create_model(to_pascal(self.raw_function.__name__), __base__=DecoratorBaseModel, **fields)
|
140
lib/pydantic/deprecated/json.py
Normal file
140
lib/pydantic/deprecated/json.py
Normal file
|
@ -0,0 +1,140 @@
|
|||
import datetime
|
||||
import warnings
|
||||
from collections import deque
|
||||
from decimal import Decimal
|
||||
from enum import Enum
|
||||
from ipaddress import IPv4Address, IPv4Interface, IPv4Network, IPv6Address, IPv6Interface, IPv6Network
|
||||
from pathlib import Path
|
||||
from re import Pattern
|
||||
from types import GeneratorType
|
||||
from typing import TYPE_CHECKING, Any, Callable, Dict, Type, Union
|
||||
from uuid import UUID
|
||||
|
||||
from typing_extensions import deprecated
|
||||
|
||||
from ..color import Color
|
||||
from ..networks import NameEmail
|
||||
from ..types import SecretBytes, SecretStr
|
||||
from ..warnings import PydanticDeprecatedSince20
|
||||
|
||||
if not TYPE_CHECKING:
|
||||
# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915
|
||||
# and https://youtrack.jetbrains.com/issue/PY-51428
|
||||
DeprecationWarning = PydanticDeprecatedSince20
|
||||
|
||||
__all__ = 'pydantic_encoder', 'custom_pydantic_encoder', 'timedelta_isoformat'
|
||||
|
||||
|
||||
def isoformat(o: Union[datetime.date, datetime.time]) -> str:
|
||||
return o.isoformat()
|
||||
|
||||
|
||||
def decimal_encoder(dec_value: Decimal) -> Union[int, float]:
|
||||
"""Encodes a Decimal as int of there's no exponent, otherwise float.
|
||||
|
||||
This is useful when we use ConstrainedDecimal to represent Numeric(x,0)
|
||||
where a integer (but not int typed) is used. Encoding this as a float
|
||||
results in failed round-tripping between encode and parse.
|
||||
Our Id type is a prime example of this.
|
||||
|
||||
>>> decimal_encoder(Decimal("1.0"))
|
||||
1.0
|
||||
|
||||
>>> decimal_encoder(Decimal("1"))
|
||||
1
|
||||
"""
|
||||
exponent = dec_value.as_tuple().exponent
|
||||
if isinstance(exponent, int) and exponent >= 0:
|
||||
return int(dec_value)
|
||||
else:
|
||||
return float(dec_value)
|
||||
|
||||
|
||||
ENCODERS_BY_TYPE: Dict[Type[Any], Callable[[Any], Any]] = {
|
||||
bytes: lambda o: o.decode(),
|
||||
Color: str,
|
||||
datetime.date: isoformat,
|
||||
datetime.datetime: isoformat,
|
||||
datetime.time: isoformat,
|
||||
datetime.timedelta: lambda td: td.total_seconds(),
|
||||
Decimal: decimal_encoder,
|
||||
Enum: lambda o: o.value,
|
||||
frozenset: list,
|
||||
deque: list,
|
||||
GeneratorType: list,
|
||||
IPv4Address: str,
|
||||
IPv4Interface: str,
|
||||
IPv4Network: str,
|
||||
IPv6Address: str,
|
||||
IPv6Interface: str,
|
||||
IPv6Network: str,
|
||||
NameEmail: str,
|
||||
Path: str,
|
||||
Pattern: lambda o: o.pattern,
|
||||
SecretBytes: str,
|
||||
SecretStr: str,
|
||||
set: list,
|
||||
UUID: str,
|
||||
}
|
||||
|
||||
|
||||
@deprecated(
|
||||
'`pydantic_encoder` is deprecated, use `pydantic_core.to_jsonable_python` instead.',
|
||||
category=None,
|
||||
)
|
||||
def pydantic_encoder(obj: Any) -> Any:
|
||||
warnings.warn(
|
||||
'`pydantic_encoder` is deprecated, use `pydantic_core.to_jsonable_python` instead.',
|
||||
category=PydanticDeprecatedSince20,
|
||||
stacklevel=2,
|
||||
)
|
||||
from dataclasses import asdict, is_dataclass
|
||||
|
||||
from ..main import BaseModel
|
||||
|
||||
if isinstance(obj, BaseModel):
|
||||
return obj.model_dump()
|
||||
elif is_dataclass(obj):
|
||||
return asdict(obj)
|
||||
|
||||
# Check the class type and its superclasses for a matching encoder
|
||||
for base in obj.__class__.__mro__[:-1]:
|
||||
try:
|
||||
encoder = ENCODERS_BY_TYPE[base]
|
||||
except KeyError:
|
||||
continue
|
||||
return encoder(obj)
|
||||
else: # We have exited the for loop without finding a suitable encoder
|
||||
raise TypeError(f"Object of type '{obj.__class__.__name__}' is not JSON serializable")
|
||||
|
||||
|
||||
# TODO: Add a suggested migration path once there is a way to use custom encoders
|
||||
@deprecated(
|
||||
'`custom_pydantic_encoder` is deprecated, use `BaseModel.model_dump` instead.',
|
||||
category=None,
|
||||
)
|
||||
def custom_pydantic_encoder(type_encoders: Dict[Any, Callable[[Type[Any]], Any]], obj: Any) -> Any:
|
||||
warnings.warn(
|
||||
'`custom_pydantic_encoder` is deprecated, use `BaseModel.model_dump` instead.',
|
||||
category=PydanticDeprecatedSince20,
|
||||
stacklevel=2,
|
||||
)
|
||||
# Check the class type and its superclasses for a matching encoder
|
||||
for base in obj.__class__.__mro__[:-1]:
|
||||
try:
|
||||
encoder = type_encoders[base]
|
||||
except KeyError:
|
||||
continue
|
||||
|
||||
return encoder(obj)
|
||||
else: # We have exited the for loop without finding a suitable encoder
|
||||
return pydantic_encoder(obj)
|
||||
|
||||
|
||||
@deprecated('`timedelta_isoformat` is deprecated.', category=None)
|
||||
def timedelta_isoformat(td: datetime.timedelta) -> str:
|
||||
"""ISO 8601 encoding for Python timedelta object."""
|
||||
warnings.warn('`timedelta_isoformat` is deprecated.', category=PydanticDeprecatedSince20, stacklevel=2)
|
||||
minutes, seconds = divmod(td.seconds, 60)
|
||||
hours, minutes = divmod(minutes, 60)
|
||||
return f'{"-" if td.days < 0 else ""}P{abs(td.days)}DT{hours:d}H{minutes:d}M{seconds:d}.{td.microseconds:06d}S'
|
80
lib/pydantic/deprecated/parse.py
Normal file
80
lib/pydantic/deprecated/parse.py
Normal file
|
@ -0,0 +1,80 @@
|
|||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
import pickle
|
||||
import warnings
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any, Callable
|
||||
|
||||
from typing_extensions import deprecated
|
||||
|
||||
from ..warnings import PydanticDeprecatedSince20
|
||||
|
||||
if not TYPE_CHECKING:
|
||||
# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915
|
||||
# and https://youtrack.jetbrains.com/issue/PY-51428
|
||||
DeprecationWarning = PydanticDeprecatedSince20
|
||||
|
||||
|
||||
class Protocol(str, Enum):
|
||||
json = 'json'
|
||||
pickle = 'pickle'
|
||||
|
||||
|
||||
@deprecated('`load_str_bytes` is deprecated.', category=None)
|
||||
def load_str_bytes(
|
||||
b: str | bytes,
|
||||
*,
|
||||
content_type: str | None = None,
|
||||
encoding: str = 'utf8',
|
||||
proto: Protocol | None = None,
|
||||
allow_pickle: bool = False,
|
||||
json_loads: Callable[[str], Any] = json.loads,
|
||||
) -> Any:
|
||||
warnings.warn('`load_str_bytes` is deprecated.', category=PydanticDeprecatedSince20, stacklevel=2)
|
||||
if proto is None and content_type:
|
||||
if content_type.endswith(('json', 'javascript')):
|
||||
pass
|
||||
elif allow_pickle and content_type.endswith('pickle'):
|
||||
proto = Protocol.pickle
|
||||
else:
|
||||
raise TypeError(f'Unknown content-type: {content_type}')
|
||||
|
||||
proto = proto or Protocol.json
|
||||
|
||||
if proto == Protocol.json:
|
||||
if isinstance(b, bytes):
|
||||
b = b.decode(encoding)
|
||||
return json_loads(b) # type: ignore
|
||||
elif proto == Protocol.pickle:
|
||||
if not allow_pickle:
|
||||
raise RuntimeError('Trying to decode with pickle with allow_pickle=False')
|
||||
bb = b if isinstance(b, bytes) else b.encode() # type: ignore
|
||||
return pickle.loads(bb)
|
||||
else:
|
||||
raise TypeError(f'Unknown protocol: {proto}')
|
||||
|
||||
|
||||
@deprecated('`load_file` is deprecated.', category=None)
|
||||
def load_file(
|
||||
path: str | Path,
|
||||
*,
|
||||
content_type: str | None = None,
|
||||
encoding: str = 'utf8',
|
||||
proto: Protocol | None = None,
|
||||
allow_pickle: bool = False,
|
||||
json_loads: Callable[[str], Any] = json.loads,
|
||||
) -> Any:
|
||||
warnings.warn('`load_file` is deprecated.', category=PydanticDeprecatedSince20, stacklevel=2)
|
||||
path = Path(path)
|
||||
b = path.read_bytes()
|
||||
if content_type is None:
|
||||
if path.suffix in ('.js', '.json'):
|
||||
proto = Protocol.json
|
||||
elif path.suffix == '.pkl':
|
||||
proto = Protocol.pickle
|
||||
|
||||
return load_str_bytes(
|
||||
b, proto=proto, content_type=content_type, encoding=encoding, allow_pickle=allow_pickle, json_loads=json_loads
|
||||
)
|
103
lib/pydantic/deprecated/tools.py
Normal file
103
lib/pydantic/deprecated/tools.py
Normal file
|
@ -0,0 +1,103 @@
|
|||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
import warnings
|
||||
from typing import TYPE_CHECKING, Any, Callable, Type, TypeVar, Union
|
||||
|
||||
from typing_extensions import deprecated
|
||||
|
||||
from ..json_schema import DEFAULT_REF_TEMPLATE, GenerateJsonSchema
|
||||
from ..type_adapter import TypeAdapter
|
||||
from ..warnings import PydanticDeprecatedSince20
|
||||
|
||||
if not TYPE_CHECKING:
|
||||
# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915
|
||||
# and https://youtrack.jetbrains.com/issue/PY-51428
|
||||
DeprecationWarning = PydanticDeprecatedSince20
|
||||
|
||||
__all__ = 'parse_obj_as', 'schema_of', 'schema_json_of'
|
||||
|
||||
NameFactory = Union[str, Callable[[Type[Any]], str]]
|
||||
|
||||
|
||||
T = TypeVar('T')
|
||||
|
||||
|
||||
@deprecated(
|
||||
'`parse_obj_as` is deprecated. Use `pydantic.TypeAdapter.validate_python` instead.',
|
||||
category=None,
|
||||
)
|
||||
def parse_obj_as(type_: type[T], obj: Any, type_name: NameFactory | None = None) -> T:
|
||||
warnings.warn(
|
||||
'`parse_obj_as` is deprecated. Use `pydantic.TypeAdapter.validate_python` instead.',
|
||||
category=PydanticDeprecatedSince20,
|
||||
stacklevel=2,
|
||||
)
|
||||
if type_name is not None: # pragma: no cover
|
||||
warnings.warn(
|
||||
'The type_name parameter is deprecated. parse_obj_as no longer creates temporary models',
|
||||
DeprecationWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
return TypeAdapter(type_).validate_python(obj)
|
||||
|
||||
|
||||
@deprecated(
|
||||
'`schema_of` is deprecated. Use `pydantic.TypeAdapter.json_schema` instead.',
|
||||
category=None,
|
||||
)
|
||||
def schema_of(
|
||||
type_: Any,
|
||||
*,
|
||||
title: NameFactory | None = None,
|
||||
by_alias: bool = True,
|
||||
ref_template: str = DEFAULT_REF_TEMPLATE,
|
||||
schema_generator: type[GenerateJsonSchema] = GenerateJsonSchema,
|
||||
) -> dict[str, Any]:
|
||||
"""Generate a JSON schema (as dict) for the passed model or dynamically generated one."""
|
||||
warnings.warn(
|
||||
'`schema_of` is deprecated. Use `pydantic.TypeAdapter.json_schema` instead.',
|
||||
category=PydanticDeprecatedSince20,
|
||||
stacklevel=2,
|
||||
)
|
||||
res = TypeAdapter(type_).json_schema(
|
||||
by_alias=by_alias,
|
||||
schema_generator=schema_generator,
|
||||
ref_template=ref_template,
|
||||
)
|
||||
if title is not None:
|
||||
if isinstance(title, str):
|
||||
res['title'] = title
|
||||
else:
|
||||
warnings.warn(
|
||||
'Passing a callable for the `title` parameter is deprecated and no longer supported',
|
||||
DeprecationWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
res['title'] = title(type_)
|
||||
return res
|
||||
|
||||
|
||||
@deprecated(
|
||||
'`schema_json_of` is deprecated. Use `pydantic.TypeAdapter.json_schema` instead.',
|
||||
category=None,
|
||||
)
|
||||
def schema_json_of(
|
||||
type_: Any,
|
||||
*,
|
||||
title: NameFactory | None = None,
|
||||
by_alias: bool = True,
|
||||
ref_template: str = DEFAULT_REF_TEMPLATE,
|
||||
schema_generator: type[GenerateJsonSchema] = GenerateJsonSchema,
|
||||
**dumps_kwargs: Any,
|
||||
) -> str:
|
||||
"""Generate a JSON schema (as JSON) for the passed model or dynamically generated one."""
|
||||
warnings.warn(
|
||||
'`schema_json_of` is deprecated. Use `pydantic.TypeAdapter.json_schema` instead.',
|
||||
category=PydanticDeprecatedSince20,
|
||||
stacklevel=2,
|
||||
)
|
||||
return json.dumps(
|
||||
schema_of(type_, title=title, by_alias=by_alias, ref_template=ref_template, schema_generator=schema_generator),
|
||||
**dumps_kwargs,
|
||||
)
|
Loading…
Add table
Add a link
Reference in a new issue