Update cherrypy==18.9.0

This commit is contained in:
JonnyWong16 2024-03-24 17:55:12 -07:00
parent 2fc618c01f
commit 51196a7fb1
No known key found for this signature in database
GPG key ID: B1F1F9807184697A
137 changed files with 44442 additions and 11582 deletions

View file

View file

@ -0,0 +1,322 @@
from __future__ import annotations as _annotations
import warnings
from contextlib import contextmanager
from typing import (
TYPE_CHECKING,
Any,
Callable,
cast,
)
from pydantic_core import core_schema
from typing_extensions import (
Literal,
Self,
)
from ..aliases import AliasGenerator
from ..config import ConfigDict, ExtraValues, JsonDict, JsonEncoder, JsonSchemaExtraCallable
from ..errors import PydanticUserError
from ..warnings import PydanticDeprecatedSince20
if not TYPE_CHECKING:
# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915
# and https://youtrack.jetbrains.com/issue/PY-51428
DeprecationWarning = PydanticDeprecatedSince20
if TYPE_CHECKING:
from .._internal._schema_generation_shared import GenerateSchema
DEPRECATION_MESSAGE = 'Support for class-based `config` is deprecated, use ConfigDict instead.'
class ConfigWrapper:
"""Internal wrapper for Config which exposes ConfigDict items as attributes."""
__slots__ = ('config_dict',)
config_dict: ConfigDict
# all annotations are copied directly from ConfigDict, and should be kept up to date, a test will fail if they
# stop matching
title: str | None
str_to_lower: bool
str_to_upper: bool
str_strip_whitespace: bool
str_min_length: int
str_max_length: int | None
extra: ExtraValues | None
frozen: bool
populate_by_name: bool
use_enum_values: bool
validate_assignment: bool
arbitrary_types_allowed: bool
from_attributes: bool
# whether to use the actual key provided in the data (e.g. alias or first alias for "field required" errors) instead of field_names
# to construct error `loc`s, default `True`
loc_by_alias: bool
alias_generator: Callable[[str], str] | AliasGenerator | None
ignored_types: tuple[type, ...]
allow_inf_nan: bool
json_schema_extra: JsonDict | JsonSchemaExtraCallable | None
json_encoders: dict[type[object], JsonEncoder] | None
# new in V2
strict: bool
# whether instances of models and dataclasses (including subclass instances) should re-validate, default 'never'
revalidate_instances: Literal['always', 'never', 'subclass-instances']
ser_json_timedelta: Literal['iso8601', 'float']
ser_json_bytes: Literal['utf8', 'base64']
ser_json_inf_nan: Literal['null', 'constants']
# whether to validate default values during validation, default False
validate_default: bool
validate_return: bool
protected_namespaces: tuple[str, ...]
hide_input_in_errors: bool
defer_build: bool
plugin_settings: dict[str, object] | None
schema_generator: type[GenerateSchema] | None
json_schema_serialization_defaults_required: bool
json_schema_mode_override: Literal['validation', 'serialization', None]
coerce_numbers_to_str: bool
regex_engine: Literal['rust-regex', 'python-re']
validation_error_cause: bool
def __init__(self, config: ConfigDict | dict[str, Any] | type[Any] | None, *, check: bool = True):
if check:
self.config_dict = prepare_config(config)
else:
self.config_dict = cast(ConfigDict, config)
@classmethod
def for_model(cls, bases: tuple[type[Any], ...], namespace: dict[str, Any], kwargs: dict[str, Any]) -> Self:
"""Build a new `ConfigWrapper` instance for a `BaseModel`.
The config wrapper built based on (in descending order of priority):
- options from `kwargs`
- options from the `namespace`
- options from the base classes (`bases`)
Args:
bases: A tuple of base classes.
namespace: The namespace of the class being created.
kwargs: The kwargs passed to the class being created.
Returns:
A `ConfigWrapper` instance for `BaseModel`.
"""
config_new = ConfigDict()
for base in bases:
config = getattr(base, 'model_config', None)
if config:
config_new.update(config.copy())
config_class_from_namespace = namespace.get('Config')
config_dict_from_namespace = namespace.get('model_config')
if config_class_from_namespace and config_dict_from_namespace:
raise PydanticUserError('"Config" and "model_config" cannot be used together', code='config-both')
config_from_namespace = config_dict_from_namespace or prepare_config(config_class_from_namespace)
config_new.update(config_from_namespace)
for k in list(kwargs.keys()):
if k in config_keys:
config_new[k] = kwargs.pop(k)
return cls(config_new)
# we don't show `__getattr__` to type checkers so missing attributes cause errors
if not TYPE_CHECKING: # pragma: no branch
def __getattr__(self, name: str) -> Any:
try:
return self.config_dict[name]
except KeyError:
try:
return config_defaults[name]
except KeyError:
raise AttributeError(f'Config has no attribute {name!r}') from None
def core_config(self, obj: Any) -> core_schema.CoreConfig:
"""Create a pydantic-core config, `obj` is just used to populate `title` if not set in config.
Pass `obj=None` if you do not want to attempt to infer the `title`.
We don't use getattr here since we don't want to populate with defaults.
Args:
obj: An object used to populate `title` if not set in config.
Returns:
A `CoreConfig` object created from config.
"""
def dict_not_none(**kwargs: Any) -> Any:
return {k: v for k, v in kwargs.items() if v is not None}
core_config = core_schema.CoreConfig(
**dict_not_none(
title=self.config_dict.get('title') or (obj and obj.__name__),
extra_fields_behavior=self.config_dict.get('extra'),
allow_inf_nan=self.config_dict.get('allow_inf_nan'),
populate_by_name=self.config_dict.get('populate_by_name'),
str_strip_whitespace=self.config_dict.get('str_strip_whitespace'),
str_to_lower=self.config_dict.get('str_to_lower'),
str_to_upper=self.config_dict.get('str_to_upper'),
strict=self.config_dict.get('strict'),
ser_json_timedelta=self.config_dict.get('ser_json_timedelta'),
ser_json_bytes=self.config_dict.get('ser_json_bytes'),
ser_json_inf_nan=self.config_dict.get('ser_json_inf_nan'),
from_attributes=self.config_dict.get('from_attributes'),
loc_by_alias=self.config_dict.get('loc_by_alias'),
revalidate_instances=self.config_dict.get('revalidate_instances'),
validate_default=self.config_dict.get('validate_default'),
str_max_length=self.config_dict.get('str_max_length'),
str_min_length=self.config_dict.get('str_min_length'),
hide_input_in_errors=self.config_dict.get('hide_input_in_errors'),
coerce_numbers_to_str=self.config_dict.get('coerce_numbers_to_str'),
regex_engine=self.config_dict.get('regex_engine'),
validation_error_cause=self.config_dict.get('validation_error_cause'),
)
)
return core_config
def __repr__(self):
c = ', '.join(f'{k}={v!r}' for k, v in self.config_dict.items())
return f'ConfigWrapper({c})'
class ConfigWrapperStack:
"""A stack of `ConfigWrapper` instances."""
def __init__(self, config_wrapper: ConfigWrapper):
self._config_wrapper_stack: list[ConfigWrapper] = [config_wrapper]
@property
def tail(self) -> ConfigWrapper:
return self._config_wrapper_stack[-1]
@contextmanager
def push(self, config_wrapper: ConfigWrapper | ConfigDict | None):
if config_wrapper is None:
yield
return
if not isinstance(config_wrapper, ConfigWrapper):
config_wrapper = ConfigWrapper(config_wrapper, check=False)
self._config_wrapper_stack.append(config_wrapper)
try:
yield
finally:
self._config_wrapper_stack.pop()
config_defaults = ConfigDict(
title=None,
str_to_lower=False,
str_to_upper=False,
str_strip_whitespace=False,
str_min_length=0,
str_max_length=None,
# let the model / dataclass decide how to handle it
extra=None,
frozen=False,
populate_by_name=False,
use_enum_values=False,
validate_assignment=False,
arbitrary_types_allowed=False,
from_attributes=False,
loc_by_alias=True,
alias_generator=None,
ignored_types=(),
allow_inf_nan=True,
json_schema_extra=None,
strict=False,
revalidate_instances='never',
ser_json_timedelta='iso8601',
ser_json_bytes='utf8',
ser_json_inf_nan='null',
validate_default=False,
validate_return=False,
protected_namespaces=('model_',),
hide_input_in_errors=False,
json_encoders=None,
defer_build=False,
plugin_settings=None,
schema_generator=None,
json_schema_serialization_defaults_required=False,
json_schema_mode_override=None,
coerce_numbers_to_str=False,
regex_engine='rust-regex',
validation_error_cause=False,
)
def prepare_config(config: ConfigDict | dict[str, Any] | type[Any] | None) -> ConfigDict:
"""Create a `ConfigDict` instance from an existing dict, a class (e.g. old class-based config) or None.
Args:
config: The input config.
Returns:
A ConfigDict object created from config.
"""
if config is None:
return ConfigDict()
if not isinstance(config, dict):
warnings.warn(DEPRECATION_MESSAGE, DeprecationWarning)
config = {k: getattr(config, k) for k in dir(config) if not k.startswith('__')}
config_dict = cast(ConfigDict, config)
check_deprecated(config_dict)
return config_dict
config_keys = set(ConfigDict.__annotations__.keys())
V2_REMOVED_KEYS = {
'allow_mutation',
'error_msg_templates',
'fields',
'getter_dict',
'smart_union',
'underscore_attrs_are_private',
'json_loads',
'json_dumps',
'copy_on_model_validation',
'post_init_call',
}
V2_RENAMED_KEYS = {
'allow_population_by_field_name': 'populate_by_name',
'anystr_lower': 'str_to_lower',
'anystr_strip_whitespace': 'str_strip_whitespace',
'anystr_upper': 'str_to_upper',
'keep_untouched': 'ignored_types',
'max_anystr_length': 'str_max_length',
'min_anystr_length': 'str_min_length',
'orm_mode': 'from_attributes',
'schema_extra': 'json_schema_extra',
'validate_all': 'validate_default',
}
def check_deprecated(config_dict: ConfigDict) -> None:
"""Check for deprecated config keys and warn the user.
Args:
config_dict: The input config.
"""
deprecated_removed_keys = V2_REMOVED_KEYS & config_dict.keys()
deprecated_renamed_keys = V2_RENAMED_KEYS.keys() & config_dict.keys()
if deprecated_removed_keys or deprecated_renamed_keys:
renamings = {k: V2_RENAMED_KEYS[k] for k in sorted(deprecated_renamed_keys)}
renamed_bullets = [f'* {k!r} has been renamed to {v!r}' for k, v in renamings.items()]
removed_bullets = [f'* {k!r} has been removed' for k in sorted(deprecated_removed_keys)]
message = '\n'.join(['Valid config keys have changed in V2:'] + renamed_bullets + removed_bullets)
warnings.warn(message, UserWarning)

View file

@ -0,0 +1,92 @@
from __future__ import annotations as _annotations
import typing
from typing import Any
import typing_extensions
if typing.TYPE_CHECKING:
from ._schema_generation_shared import (
CoreSchemaOrField as CoreSchemaOrField,
)
from ._schema_generation_shared import (
GetJsonSchemaFunction,
)
class CoreMetadata(typing_extensions.TypedDict, total=False):
"""A `TypedDict` for holding the metadata dict of the schema.
Attributes:
pydantic_js_functions: List of JSON schema functions.
pydantic_js_prefer_positional_arguments: Whether JSON schema generator will
prefer positional over keyword arguments for an 'arguments' schema.
"""
pydantic_js_functions: list[GetJsonSchemaFunction]
pydantic_js_annotation_functions: list[GetJsonSchemaFunction]
# If `pydantic_js_prefer_positional_arguments` is True, the JSON schema generator will
# prefer positional over keyword arguments for an 'arguments' schema.
pydantic_js_prefer_positional_arguments: bool | None
pydantic_typed_dict_cls: type[Any] | None # TODO: Consider moving this into the pydantic-core TypedDictSchema
class CoreMetadataHandler:
"""Because the metadata field in pydantic_core is of type `Any`, we can't assume much about its contents.
This class is used to interact with the metadata field on a CoreSchema object in a consistent
way throughout pydantic.
"""
__slots__ = ('_schema',)
def __init__(self, schema: CoreSchemaOrField):
self._schema = schema
metadata = schema.get('metadata')
if metadata is None:
schema['metadata'] = CoreMetadata()
elif not isinstance(metadata, dict):
raise TypeError(f'CoreSchema metadata should be a dict; got {metadata!r}.')
@property
def metadata(self) -> CoreMetadata:
"""Retrieves the metadata dict from the schema, initializing it to a dict if it is None
and raises an error if it is not a dict.
"""
metadata = self._schema.get('metadata')
if metadata is None:
self._schema['metadata'] = metadata = CoreMetadata()
if not isinstance(metadata, dict):
raise TypeError(f'CoreSchema metadata should be a dict; got {metadata!r}.')
return metadata
def build_metadata_dict(
*, # force keyword arguments to make it easier to modify this signature in a backwards-compatible way
js_functions: list[GetJsonSchemaFunction] | None = None,
js_annotation_functions: list[GetJsonSchemaFunction] | None = None,
js_prefer_positional_arguments: bool | None = None,
typed_dict_cls: type[Any] | None = None,
initial_metadata: Any | None = None,
) -> Any:
"""Builds a dict to use as the metadata field of a CoreSchema object in a manner that is consistent
with the CoreMetadataHandler class.
"""
if initial_metadata is not None and not isinstance(initial_metadata, dict):
raise TypeError(f'CoreSchema metadata should be a dict; got {initial_metadata!r}.')
metadata = CoreMetadata(
pydantic_js_functions=js_functions or [],
pydantic_js_annotation_functions=js_annotation_functions or [],
pydantic_js_prefer_positional_arguments=js_prefer_positional_arguments,
pydantic_typed_dict_cls=typed_dict_cls,
)
metadata = {k: v for k, v in metadata.items() if v is not None}
if initial_metadata is not None:
metadata = {**initial_metadata, **metadata}
return metadata

View file

@ -0,0 +1,570 @@
from __future__ import annotations
import os
from collections import defaultdict
from typing import (
Any,
Callable,
Hashable,
TypeVar,
Union,
)
from pydantic_core import CoreSchema, core_schema
from pydantic_core import validate_core_schema as _validate_core_schema
from typing_extensions import TypeAliasType, TypeGuard, get_args, get_origin
from . import _repr
from ._typing_extra import is_generic_alias
AnyFunctionSchema = Union[
core_schema.AfterValidatorFunctionSchema,
core_schema.BeforeValidatorFunctionSchema,
core_schema.WrapValidatorFunctionSchema,
core_schema.PlainValidatorFunctionSchema,
]
FunctionSchemaWithInnerSchema = Union[
core_schema.AfterValidatorFunctionSchema,
core_schema.BeforeValidatorFunctionSchema,
core_schema.WrapValidatorFunctionSchema,
]
CoreSchemaField = Union[
core_schema.ModelField, core_schema.DataclassField, core_schema.TypedDictField, core_schema.ComputedField
]
CoreSchemaOrField = Union[core_schema.CoreSchema, CoreSchemaField]
_CORE_SCHEMA_FIELD_TYPES = {'typed-dict-field', 'dataclass-field', 'model-field', 'computed-field'}
_FUNCTION_WITH_INNER_SCHEMA_TYPES = {'function-before', 'function-after', 'function-wrap'}
_LIST_LIKE_SCHEMA_WITH_ITEMS_TYPES = {'list', 'set', 'frozenset'}
_DEFINITIONS_CACHE_METADATA_KEY = 'pydantic.definitions_cache'
TAGGED_UNION_TAG_KEY = 'pydantic.internal.tagged_union_tag'
"""
Used in a `Tag` schema to specify the tag used for a discriminated union.
"""
HAS_INVALID_SCHEMAS_METADATA_KEY = 'pydantic.internal.invalid'
"""Used to mark a schema that is invalid because it refers to a definition that was not yet defined when the
schema was first encountered.
"""
def is_core_schema(
schema: CoreSchemaOrField,
) -> TypeGuard[CoreSchema]:
return schema['type'] not in _CORE_SCHEMA_FIELD_TYPES
def is_core_schema_field(
schema: CoreSchemaOrField,
) -> TypeGuard[CoreSchemaField]:
return schema['type'] in _CORE_SCHEMA_FIELD_TYPES
def is_function_with_inner_schema(
schema: CoreSchemaOrField,
) -> TypeGuard[FunctionSchemaWithInnerSchema]:
return schema['type'] in _FUNCTION_WITH_INNER_SCHEMA_TYPES
def is_list_like_schema_with_items_schema(
schema: CoreSchema,
) -> TypeGuard[core_schema.ListSchema | core_schema.SetSchema | core_schema.FrozenSetSchema]:
return schema['type'] in _LIST_LIKE_SCHEMA_WITH_ITEMS_TYPES
def get_type_ref(type_: type[Any], args_override: tuple[type[Any], ...] | None = None) -> str:
"""Produces the ref to be used for this type by pydantic_core's core schemas.
This `args_override` argument was added for the purpose of creating valid recursive references
when creating generic models without needing to create a concrete class.
"""
origin = get_origin(type_) or type_
args = get_args(type_) if is_generic_alias(type_) else (args_override or ())
generic_metadata = getattr(type_, '__pydantic_generic_metadata__', None)
if generic_metadata:
origin = generic_metadata['origin'] or origin
args = generic_metadata['args'] or args
module_name = getattr(origin, '__module__', '<No __module__>')
if isinstance(origin, TypeAliasType):
type_ref = f'{module_name}.{origin.__name__}:{id(origin)}'
else:
try:
qualname = getattr(origin, '__qualname__', f'<No __qualname__: {origin}>')
except Exception:
qualname = getattr(origin, '__qualname__', '<No __qualname__>')
type_ref = f'{module_name}.{qualname}:{id(origin)}'
arg_refs: list[str] = []
for arg in args:
if isinstance(arg, str):
# Handle string literals as a special case; we may be able to remove this special handling if we
# wrap them in a ForwardRef at some point.
arg_ref = f'{arg}:str-{id(arg)}'
else:
arg_ref = f'{_repr.display_as_type(arg)}:{id(arg)}'
arg_refs.append(arg_ref)
if arg_refs:
type_ref = f'{type_ref}[{",".join(arg_refs)}]'
return type_ref
def get_ref(s: core_schema.CoreSchema) -> None | str:
"""Get the ref from the schema if it has one.
This exists just for type checking to work correctly.
"""
return s.get('ref', None)
def collect_definitions(schema: core_schema.CoreSchema) -> dict[str, core_schema.CoreSchema]:
defs: dict[str, CoreSchema] = {}
def _record_valid_refs(s: core_schema.CoreSchema, recurse: Recurse) -> core_schema.CoreSchema:
ref = get_ref(s)
if ref:
defs[ref] = s
return recurse(s, _record_valid_refs)
walk_core_schema(schema, _record_valid_refs)
return defs
def define_expected_missing_refs(
schema: core_schema.CoreSchema, allowed_missing_refs: set[str]
) -> core_schema.CoreSchema | None:
if not allowed_missing_refs:
# in this case, there are no missing refs to potentially substitute, so there's no need to walk the schema
# this is a common case (will be hit for all non-generic models), so it's worth optimizing for
return None
refs = collect_definitions(schema).keys()
expected_missing_refs = allowed_missing_refs.difference(refs)
if expected_missing_refs:
definitions: list[core_schema.CoreSchema] = [
# TODO: Replace this with a (new) CoreSchema that, if present at any level, makes validation fail
# Issue: https://github.com/pydantic/pydantic-core/issues/619
core_schema.none_schema(ref=ref, metadata={HAS_INVALID_SCHEMAS_METADATA_KEY: True})
for ref in expected_missing_refs
]
return core_schema.definitions_schema(schema, definitions)
return None
def collect_invalid_schemas(schema: core_schema.CoreSchema) -> bool:
invalid = False
def _is_schema_valid(s: core_schema.CoreSchema, recurse: Recurse) -> core_schema.CoreSchema:
nonlocal invalid
if 'metadata' in s:
metadata = s['metadata']
if HAS_INVALID_SCHEMAS_METADATA_KEY in metadata:
invalid = metadata[HAS_INVALID_SCHEMAS_METADATA_KEY]
return s
return recurse(s, _is_schema_valid)
walk_core_schema(schema, _is_schema_valid)
return invalid
T = TypeVar('T')
Recurse = Callable[[core_schema.CoreSchema, 'Walk'], core_schema.CoreSchema]
Walk = Callable[[core_schema.CoreSchema, Recurse], core_schema.CoreSchema]
# TODO: Should we move _WalkCoreSchema into pydantic_core proper?
# Issue: https://github.com/pydantic/pydantic-core/issues/615
class _WalkCoreSchema:
def __init__(self):
self._schema_type_to_method = self._build_schema_type_to_method()
def _build_schema_type_to_method(self) -> dict[core_schema.CoreSchemaType, Recurse]:
mapping: dict[core_schema.CoreSchemaType, Recurse] = {}
key: core_schema.CoreSchemaType
for key in get_args(core_schema.CoreSchemaType):
method_name = f"handle_{key.replace('-', '_')}_schema"
mapping[key] = getattr(self, method_name, self._handle_other_schemas)
return mapping
def walk(self, schema: core_schema.CoreSchema, f: Walk) -> core_schema.CoreSchema:
return f(schema, self._walk)
def _walk(self, schema: core_schema.CoreSchema, f: Walk) -> core_schema.CoreSchema:
schema = self._schema_type_to_method[schema['type']](schema.copy(), f)
ser_schema: core_schema.SerSchema | None = schema.get('serialization') # type: ignore
if ser_schema:
schema['serialization'] = self._handle_ser_schemas(ser_schema, f)
return schema
def _handle_other_schemas(self, schema: core_schema.CoreSchema, f: Walk) -> core_schema.CoreSchema:
sub_schema = schema.get('schema', None)
if sub_schema is not None:
schema['schema'] = self.walk(sub_schema, f) # type: ignore
return schema
def _handle_ser_schemas(self, ser_schema: core_schema.SerSchema, f: Walk) -> core_schema.SerSchema:
schema: core_schema.CoreSchema | None = ser_schema.get('schema', None)
if schema is not None:
ser_schema['schema'] = self.walk(schema, f) # type: ignore
return_schema: core_schema.CoreSchema | None = ser_schema.get('return_schema', None)
if return_schema is not None:
ser_schema['return_schema'] = self.walk(return_schema, f) # type: ignore
return ser_schema
def handle_definitions_schema(self, schema: core_schema.DefinitionsSchema, f: Walk) -> core_schema.CoreSchema:
new_definitions: list[core_schema.CoreSchema] = []
for definition in schema['definitions']:
if 'schema_ref' in definition and 'ref' in definition:
# This indicates a purposely indirect reference
# We want to keep such references around for implications related to JSON schema, etc.:
new_definitions.append(definition)
# However, we still need to walk the referenced definition:
self.walk(definition, f)
continue
updated_definition = self.walk(definition, f)
if 'ref' in updated_definition:
# If the updated definition schema doesn't have a 'ref', it shouldn't go in the definitions
# This is most likely to happen due to replacing something with a definition reference, in
# which case it should certainly not go in the definitions list
new_definitions.append(updated_definition)
new_inner_schema = self.walk(schema['schema'], f)
if not new_definitions and len(schema) == 3:
# This means we'd be returning a "trivial" definitions schema that just wrapped the inner schema
return new_inner_schema
new_schema = schema.copy()
new_schema['schema'] = new_inner_schema
new_schema['definitions'] = new_definitions
return new_schema
def handle_list_schema(self, schema: core_schema.ListSchema, f: Walk) -> core_schema.CoreSchema:
items_schema = schema.get('items_schema')
if items_schema is not None:
schema['items_schema'] = self.walk(items_schema, f)
return schema
def handle_set_schema(self, schema: core_schema.SetSchema, f: Walk) -> core_schema.CoreSchema:
items_schema = schema.get('items_schema')
if items_schema is not None:
schema['items_schema'] = self.walk(items_schema, f)
return schema
def handle_frozenset_schema(self, schema: core_schema.FrozenSetSchema, f: Walk) -> core_schema.CoreSchema:
items_schema = schema.get('items_schema')
if items_schema is not None:
schema['items_schema'] = self.walk(items_schema, f)
return schema
def handle_generator_schema(self, schema: core_schema.GeneratorSchema, f: Walk) -> core_schema.CoreSchema:
items_schema = schema.get('items_schema')
if items_schema is not None:
schema['items_schema'] = self.walk(items_schema, f)
return schema
def handle_tuple_schema(self, schema: core_schema.TupleSchema, f: Walk) -> core_schema.CoreSchema:
schema['items_schema'] = [self.walk(v, f) for v in schema['items_schema']]
return schema
def handle_dict_schema(self, schema: core_schema.DictSchema, f: Walk) -> core_schema.CoreSchema:
keys_schema = schema.get('keys_schema')
if keys_schema is not None:
schema['keys_schema'] = self.walk(keys_schema, f)
values_schema = schema.get('values_schema')
if values_schema:
schema['values_schema'] = self.walk(values_schema, f)
return schema
def handle_function_schema(self, schema: AnyFunctionSchema, f: Walk) -> core_schema.CoreSchema:
if not is_function_with_inner_schema(schema):
return schema
schema['schema'] = self.walk(schema['schema'], f)
return schema
def handle_union_schema(self, schema: core_schema.UnionSchema, f: Walk) -> core_schema.CoreSchema:
new_choices: list[CoreSchema | tuple[CoreSchema, str]] = []
for v in schema['choices']:
if isinstance(v, tuple):
new_choices.append((self.walk(v[0], f), v[1]))
else:
new_choices.append(self.walk(v, f))
schema['choices'] = new_choices
return schema
def handle_tagged_union_schema(self, schema: core_schema.TaggedUnionSchema, f: Walk) -> core_schema.CoreSchema:
new_choices: dict[Hashable, core_schema.CoreSchema] = {}
for k, v in schema['choices'].items():
new_choices[k] = v if isinstance(v, (str, int)) else self.walk(v, f)
schema['choices'] = new_choices
return schema
def handle_chain_schema(self, schema: core_schema.ChainSchema, f: Walk) -> core_schema.CoreSchema:
schema['steps'] = [self.walk(v, f) for v in schema['steps']]
return schema
def handle_lax_or_strict_schema(self, schema: core_schema.LaxOrStrictSchema, f: Walk) -> core_schema.CoreSchema:
schema['lax_schema'] = self.walk(schema['lax_schema'], f)
schema['strict_schema'] = self.walk(schema['strict_schema'], f)
return schema
def handle_json_or_python_schema(self, schema: core_schema.JsonOrPythonSchema, f: Walk) -> core_schema.CoreSchema:
schema['json_schema'] = self.walk(schema['json_schema'], f)
schema['python_schema'] = self.walk(schema['python_schema'], f)
return schema
def handle_model_fields_schema(self, schema: core_schema.ModelFieldsSchema, f: Walk) -> core_schema.CoreSchema:
extras_schema = schema.get('extras_schema')
if extras_schema is not None:
schema['extras_schema'] = self.walk(extras_schema, f)
replaced_fields: dict[str, core_schema.ModelField] = {}
replaced_computed_fields: list[core_schema.ComputedField] = []
for computed_field in schema.get('computed_fields', ()):
replaced_field = computed_field.copy()
replaced_field['return_schema'] = self.walk(computed_field['return_schema'], f)
replaced_computed_fields.append(replaced_field)
if replaced_computed_fields:
schema['computed_fields'] = replaced_computed_fields
for k, v in schema['fields'].items():
replaced_field = v.copy()
replaced_field['schema'] = self.walk(v['schema'], f)
replaced_fields[k] = replaced_field
schema['fields'] = replaced_fields
return schema
def handle_typed_dict_schema(self, schema: core_schema.TypedDictSchema, f: Walk) -> core_schema.CoreSchema:
extras_schema = schema.get('extras_schema')
if extras_schema is not None:
schema['extras_schema'] = self.walk(extras_schema, f)
replaced_computed_fields: list[core_schema.ComputedField] = []
for computed_field in schema.get('computed_fields', ()):
replaced_field = computed_field.copy()
replaced_field['return_schema'] = self.walk(computed_field['return_schema'], f)
replaced_computed_fields.append(replaced_field)
if replaced_computed_fields:
schema['computed_fields'] = replaced_computed_fields
replaced_fields: dict[str, core_schema.TypedDictField] = {}
for k, v in schema['fields'].items():
replaced_field = v.copy()
replaced_field['schema'] = self.walk(v['schema'], f)
replaced_fields[k] = replaced_field
schema['fields'] = replaced_fields
return schema
def handle_dataclass_args_schema(self, schema: core_schema.DataclassArgsSchema, f: Walk) -> core_schema.CoreSchema:
replaced_fields: list[core_schema.DataclassField] = []
replaced_computed_fields: list[core_schema.ComputedField] = []
for computed_field in schema.get('computed_fields', ()):
replaced_field = computed_field.copy()
replaced_field['return_schema'] = self.walk(computed_field['return_schema'], f)
replaced_computed_fields.append(replaced_field)
if replaced_computed_fields:
schema['computed_fields'] = replaced_computed_fields
for field in schema['fields']:
replaced_field = field.copy()
replaced_field['schema'] = self.walk(field['schema'], f)
replaced_fields.append(replaced_field)
schema['fields'] = replaced_fields
return schema
def handle_arguments_schema(self, schema: core_schema.ArgumentsSchema, f: Walk) -> core_schema.CoreSchema:
replaced_arguments_schema: list[core_schema.ArgumentsParameter] = []
for param in schema['arguments_schema']:
replaced_param = param.copy()
replaced_param['schema'] = self.walk(param['schema'], f)
replaced_arguments_schema.append(replaced_param)
schema['arguments_schema'] = replaced_arguments_schema
if 'var_args_schema' in schema:
schema['var_args_schema'] = self.walk(schema['var_args_schema'], f)
if 'var_kwargs_schema' in schema:
schema['var_kwargs_schema'] = self.walk(schema['var_kwargs_schema'], f)
return schema
def handle_call_schema(self, schema: core_schema.CallSchema, f: Walk) -> core_schema.CoreSchema:
schema['arguments_schema'] = self.walk(schema['arguments_schema'], f)
if 'return_schema' in schema:
schema['return_schema'] = self.walk(schema['return_schema'], f)
return schema
_dispatch = _WalkCoreSchema().walk
def walk_core_schema(schema: core_schema.CoreSchema, f: Walk) -> core_schema.CoreSchema:
"""Recursively traverse a CoreSchema.
Args:
schema (core_schema.CoreSchema): The CoreSchema to process, it will not be modified.
f (Walk): A function to apply. This function takes two arguments:
1. The current CoreSchema that is being processed
(not the same one you passed into this function, one level down).
2. The "next" `f` to call. This lets you for example use `f=functools.partial(some_method, some_context)`
to pass data down the recursive calls without using globals or other mutable state.
Returns:
core_schema.CoreSchema: A processed CoreSchema.
"""
return f(schema.copy(), _dispatch)
def simplify_schema_references(schema: core_schema.CoreSchema) -> core_schema.CoreSchema: # noqa: C901
definitions: dict[str, core_schema.CoreSchema] = {}
ref_counts: dict[str, int] = defaultdict(int)
involved_in_recursion: dict[str, bool] = {}
current_recursion_ref_count: dict[str, int] = defaultdict(int)
def collect_refs(s: core_schema.CoreSchema, recurse: Recurse) -> core_schema.CoreSchema:
if s['type'] == 'definitions':
for definition in s['definitions']:
ref = get_ref(definition)
assert ref is not None
if ref not in definitions:
definitions[ref] = definition
recurse(definition, collect_refs)
return recurse(s['schema'], collect_refs)
else:
ref = get_ref(s)
if ref is not None:
new = recurse(s, collect_refs)
new_ref = get_ref(new)
if new_ref:
definitions[new_ref] = new
return core_schema.definition_reference_schema(schema_ref=ref)
else:
return recurse(s, collect_refs)
schema = walk_core_schema(schema, collect_refs)
def count_refs(s: core_schema.CoreSchema, recurse: Recurse) -> core_schema.CoreSchema:
if s['type'] != 'definition-ref':
return recurse(s, count_refs)
ref = s['schema_ref']
ref_counts[ref] += 1
if ref_counts[ref] >= 2:
# If this model is involved in a recursion this should be detected
# on its second encounter, we can safely stop the walk here.
if current_recursion_ref_count[ref] != 0:
involved_in_recursion[ref] = True
return s
current_recursion_ref_count[ref] += 1
recurse(definitions[ref], count_refs)
current_recursion_ref_count[ref] -= 1
return s
schema = walk_core_schema(schema, count_refs)
assert all(c == 0 for c in current_recursion_ref_count.values()), 'this is a bug! please report it'
def can_be_inlined(s: core_schema.DefinitionReferenceSchema, ref: str) -> bool:
if ref_counts[ref] > 1:
return False
if involved_in_recursion.get(ref, False):
return False
if 'serialization' in s:
return False
if 'metadata' in s:
metadata = s['metadata']
for k in (
'pydantic_js_functions',
'pydantic_js_annotation_functions',
'pydantic.internal.union_discriminator',
):
if k in metadata:
# we need to keep this as a ref
return False
return True
def inline_refs(s: core_schema.CoreSchema, recurse: Recurse) -> core_schema.CoreSchema:
if s['type'] == 'definition-ref':
ref = s['schema_ref']
# Check if the reference is only used once, not involved in recursion and does not have
# any extra keys (like 'serialization')
if can_be_inlined(s, ref):
# Inline the reference by replacing the reference with the actual schema
new = definitions.pop(ref)
ref_counts[ref] -= 1 # because we just replaced it!
# put all other keys that were on the def-ref schema into the inlined version
# in particular this is needed for `serialization`
if 'serialization' in s:
new['serialization'] = s['serialization']
s = recurse(new, inline_refs)
return s
else:
return recurse(s, inline_refs)
else:
return recurse(s, inline_refs)
schema = walk_core_schema(schema, inline_refs)
def_values = [v for v in definitions.values() if ref_counts[v['ref']] > 0] # type: ignore
if def_values:
schema = core_schema.definitions_schema(schema=schema, definitions=def_values)
return schema
def _strip_metadata(schema: CoreSchema) -> CoreSchema:
def strip_metadata(s: CoreSchema, recurse: Recurse) -> CoreSchema:
s = s.copy()
s.pop('metadata', None)
if s['type'] == 'model-fields':
s = s.copy()
s['fields'] = {k: v.copy() for k, v in s['fields'].items()}
for field_name, field_schema in s['fields'].items():
field_schema.pop('metadata', None)
s['fields'][field_name] = field_schema
computed_fields = s.get('computed_fields', None)
if computed_fields:
s['computed_fields'] = [cf.copy() for cf in computed_fields]
for cf in computed_fields:
cf.pop('metadata', None)
else:
s.pop('computed_fields', None)
elif s['type'] == 'model':
# remove some defaults
if s.get('custom_init', True) is False:
s.pop('custom_init')
if s.get('root_model', True) is False:
s.pop('root_model')
if {'title'}.issuperset(s.get('config', {}).keys()):
s.pop('config', None)
return recurse(s, strip_metadata)
return walk_core_schema(schema, strip_metadata)
def pretty_print_core_schema(
schema: CoreSchema,
include_metadata: bool = False,
) -> None:
"""Pretty print a CoreSchema using rich.
This is intended for debugging purposes.
Args:
schema: The CoreSchema to print.
include_metadata: Whether to include metadata in the output. Defaults to `False`.
"""
from rich import print # type: ignore # install it manually in your dev env
if not include_metadata:
schema = _strip_metadata(schema)
return print(schema)
def validate_core_schema(schema: CoreSchema) -> CoreSchema:
if 'PYDANTIC_SKIP_VALIDATING_CORE_SCHEMAS' in os.environ:
return schema
return _validate_core_schema(schema)

View file

@ -0,0 +1,225 @@
"""Private logic for creating pydantic dataclasses."""
from __future__ import annotations as _annotations
import dataclasses
import typing
import warnings
from functools import partial, wraps
from typing import Any, Callable, ClassVar
from pydantic_core import (
ArgsKwargs,
SchemaSerializer,
SchemaValidator,
core_schema,
)
from typing_extensions import TypeGuard
from ..errors import PydanticUndefinedAnnotation
from ..fields import FieldInfo
from ..plugin._schema_validator import create_schema_validator
from ..warnings import PydanticDeprecatedSince20
from . import _config, _decorators, _typing_extra
from ._fields import collect_dataclass_fields
from ._generate_schema import GenerateSchema
from ._generics import get_standard_typevars_map
from ._mock_val_ser import set_dataclass_mocks
from ._schema_generation_shared import CallbackGetCoreSchemaHandler
from ._signature import generate_pydantic_signature
if typing.TYPE_CHECKING:
from ..config import ConfigDict
class StandardDataclass(typing.Protocol):
__dataclass_fields__: ClassVar[dict[str, Any]]
__dataclass_params__: ClassVar[Any] # in reality `dataclasses._DataclassParams`
__post_init__: ClassVar[Callable[..., None]]
def __init__(self, *args: object, **kwargs: object) -> None:
pass
class PydanticDataclass(StandardDataclass, typing.Protocol):
"""A protocol containing attributes only available once a class has been decorated as a Pydantic dataclass.
Attributes:
__pydantic_config__: Pydantic-specific configuration settings for the dataclass.
__pydantic_complete__: Whether dataclass building is completed, or if there are still undefined fields.
__pydantic_core_schema__: The pydantic-core schema used to build the SchemaValidator and SchemaSerializer.
__pydantic_decorators__: Metadata containing the decorators defined on the dataclass.
__pydantic_fields__: Metadata about the fields defined on the dataclass.
__pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the dataclass.
__pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the dataclass.
"""
__pydantic_config__: ClassVar[ConfigDict]
__pydantic_complete__: ClassVar[bool]
__pydantic_core_schema__: ClassVar[core_schema.CoreSchema]
__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos]
__pydantic_fields__: ClassVar[dict[str, FieldInfo]]
__pydantic_serializer__: ClassVar[SchemaSerializer]
__pydantic_validator__: ClassVar[SchemaValidator]
else:
# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915
# and https://youtrack.jetbrains.com/issue/PY-51428
DeprecationWarning = PydanticDeprecatedSince20
def set_dataclass_fields(cls: type[StandardDataclass], types_namespace: dict[str, Any] | None = None) -> None:
"""Collect and set `cls.__pydantic_fields__`.
Args:
cls: The class.
types_namespace: The types namespace, defaults to `None`.
"""
typevars_map = get_standard_typevars_map(cls)
fields = collect_dataclass_fields(cls, types_namespace, typevars_map=typevars_map)
cls.__pydantic_fields__ = fields # type: ignore
def complete_dataclass(
cls: type[Any],
config_wrapper: _config.ConfigWrapper,
*,
raise_errors: bool = True,
types_namespace: dict[str, Any] | None,
) -> bool:
"""Finish building a pydantic dataclass.
This logic is called on a class which has already been wrapped in `dataclasses.dataclass()`.
This is somewhat analogous to `pydantic._internal._model_construction.complete_model_class`.
Args:
cls: The class.
config_wrapper: The config wrapper instance.
raise_errors: Whether to raise errors, defaults to `True`.
types_namespace: The types namespace.
Returns:
`True` if building a pydantic dataclass is successfully completed, `False` otherwise.
Raises:
PydanticUndefinedAnnotation: If `raise_error` is `True` and there is an undefined annotations.
"""
if hasattr(cls, '__post_init_post_parse__'):
warnings.warn(
'Support for `__post_init_post_parse__` has been dropped, the method will not be called', DeprecationWarning
)
if types_namespace is None:
types_namespace = _typing_extra.get_cls_types_namespace(cls)
set_dataclass_fields(cls, types_namespace)
typevars_map = get_standard_typevars_map(cls)
gen_schema = GenerateSchema(
config_wrapper,
types_namespace,
typevars_map,
)
# This needs to be called before we change the __init__
sig = generate_pydantic_signature(
init=cls.__init__,
fields=cls.__pydantic_fields__, # type: ignore
config_wrapper=config_wrapper,
is_dataclass=True,
)
# dataclass.__init__ must be defined here so its `__qualname__` can be changed since functions can't be copied.
def __init__(__dataclass_self__: PydanticDataclass, *args: Any, **kwargs: Any) -> None:
__tracebackhide__ = True
s = __dataclass_self__
s.__pydantic_validator__.validate_python(ArgsKwargs(args, kwargs), self_instance=s)
__init__.__qualname__ = f'{cls.__qualname__}.__init__'
cls.__init__ = __init__ # type: ignore
cls.__pydantic_config__ = config_wrapper.config_dict # type: ignore
cls.__signature__ = sig # type: ignore
get_core_schema = getattr(cls, '__get_pydantic_core_schema__', None)
try:
if get_core_schema:
schema = get_core_schema(
cls,
CallbackGetCoreSchemaHandler(
partial(gen_schema.generate_schema, from_dunder_get_core_schema=False),
gen_schema,
ref_mode='unpack',
),
)
else:
schema = gen_schema.generate_schema(cls, from_dunder_get_core_schema=False)
except PydanticUndefinedAnnotation as e:
if raise_errors:
raise
set_dataclass_mocks(cls, cls.__name__, f'`{e.name}`')
return False
core_config = config_wrapper.core_config(cls)
try:
schema = gen_schema.clean_schema(schema)
except gen_schema.CollectedInvalid:
set_dataclass_mocks(cls, cls.__name__, 'all referenced types')
return False
# We are about to set all the remaining required properties expected for this cast;
# __pydantic_decorators__ and __pydantic_fields__ should already be set
cls = typing.cast('type[PydanticDataclass]', cls)
# debug(schema)
cls.__pydantic_core_schema__ = schema
cls.__pydantic_validator__ = validator = create_schema_validator(
schema, cls, cls.__module__, cls.__qualname__, 'dataclass', core_config, config_wrapper.plugin_settings
)
cls.__pydantic_serializer__ = SchemaSerializer(schema, core_config)
if config_wrapper.validate_assignment:
@wraps(cls.__setattr__)
def validated_setattr(instance: Any, __field: str, __value: str) -> None:
validator.validate_assignment(instance, __field, __value)
cls.__setattr__ = validated_setattr.__get__(None, cls) # type: ignore
return True
def is_builtin_dataclass(_cls: type[Any]) -> TypeGuard[type[StandardDataclass]]:
"""Returns True if a class is a stdlib dataclass and *not* a pydantic dataclass.
We check that
- `_cls` is a dataclass
- `_cls` does not inherit from a processed pydantic dataclass (and thus have a `__pydantic_validator__`)
- `_cls` does not have any annotations that are not dataclass fields
e.g.
```py
import dataclasses
import pydantic.dataclasses
@dataclasses.dataclass
class A:
x: int
@pydantic.dataclasses.dataclass
class B(A):
y: int
```
In this case, when we first check `B`, we make an extra check and look at the annotations ('y'),
which won't be a superset of all the dataclass fields (only the stdlib fields i.e. 'x')
Args:
cls: The class.
Returns:
`True` if the class is a stdlib dataclass, `False` otherwise.
"""
return (
dataclasses.is_dataclass(_cls)
and not hasattr(_cls, '__pydantic_validator__')
and set(_cls.__dataclass_fields__).issuperset(set(getattr(_cls, '__annotations__', {})))
)

View file

@ -0,0 +1,791 @@
"""Logic related to validators applied to models etc. via the `@field_validator` and `@model_validator` decorators."""
from __future__ import annotations as _annotations
from collections import deque
from dataclasses import dataclass, field
from functools import cached_property, partial, partialmethod
from inspect import Parameter, Signature, isdatadescriptor, ismethoddescriptor, signature
from itertools import islice
from typing import TYPE_CHECKING, Any, Callable, ClassVar, Generic, Iterable, TypeVar, Union
from pydantic_core import PydanticUndefined, core_schema
from typing_extensions import Literal, TypeAlias, is_typeddict
from ..errors import PydanticUserError
from ._core_utils import get_type_ref
from ._internal_dataclass import slots_true
from ._typing_extra import get_function_type_hints
if TYPE_CHECKING:
from ..fields import ComputedFieldInfo
from ..functional_validators import FieldValidatorModes
@dataclass(**slots_true)
class ValidatorDecoratorInfo:
"""A container for data from `@validator` so that we can access it
while building the pydantic-core schema.
Attributes:
decorator_repr: A class variable representing the decorator string, '@validator'.
fields: A tuple of field names the validator should be called on.
mode: The proposed validator mode.
each_item: For complex objects (sets, lists etc.) whether to validate individual
elements rather than the whole object.
always: Whether this method and other validators should be called even if the value is missing.
check_fields: Whether to check that the fields actually exist on the model.
"""
decorator_repr: ClassVar[str] = '@validator'
fields: tuple[str, ...]
mode: Literal['before', 'after']
each_item: bool
always: bool
check_fields: bool | None
@dataclass(**slots_true)
class FieldValidatorDecoratorInfo:
"""A container for data from `@field_validator` so that we can access it
while building the pydantic-core schema.
Attributes:
decorator_repr: A class variable representing the decorator string, '@field_validator'.
fields: A tuple of field names the validator should be called on.
mode: The proposed validator mode.
check_fields: Whether to check that the fields actually exist on the model.
"""
decorator_repr: ClassVar[str] = '@field_validator'
fields: tuple[str, ...]
mode: FieldValidatorModes
check_fields: bool | None
@dataclass(**slots_true)
class RootValidatorDecoratorInfo:
"""A container for data from `@root_validator` so that we can access it
while building the pydantic-core schema.
Attributes:
decorator_repr: A class variable representing the decorator string, '@root_validator'.
mode: The proposed validator mode.
"""
decorator_repr: ClassVar[str] = '@root_validator'
mode: Literal['before', 'after']
@dataclass(**slots_true)
class FieldSerializerDecoratorInfo:
"""A container for data from `@field_serializer` so that we can access it
while building the pydantic-core schema.
Attributes:
decorator_repr: A class variable representing the decorator string, '@field_serializer'.
fields: A tuple of field names the serializer should be called on.
mode: The proposed serializer mode.
return_type: The type of the serializer's return value.
when_used: The serialization condition. Accepts a string with values `'always'`, `'unless-none'`, `'json'`,
and `'json-unless-none'`.
check_fields: Whether to check that the fields actually exist on the model.
"""
decorator_repr: ClassVar[str] = '@field_serializer'
fields: tuple[str, ...]
mode: Literal['plain', 'wrap']
return_type: Any
when_used: core_schema.WhenUsed
check_fields: bool | None
@dataclass(**slots_true)
class ModelSerializerDecoratorInfo:
"""A container for data from `@model_serializer` so that we can access it
while building the pydantic-core schema.
Attributes:
decorator_repr: A class variable representing the decorator string, '@model_serializer'.
mode: The proposed serializer mode.
return_type: The type of the serializer's return value.
when_used: The serialization condition. Accepts a string with values `'always'`, `'unless-none'`, `'json'`,
and `'json-unless-none'`.
"""
decorator_repr: ClassVar[str] = '@model_serializer'
mode: Literal['plain', 'wrap']
return_type: Any
when_used: core_schema.WhenUsed
@dataclass(**slots_true)
class ModelValidatorDecoratorInfo:
"""A container for data from `@model_validator` so that we can access it
while building the pydantic-core schema.
Attributes:
decorator_repr: A class variable representing the decorator string, '@model_serializer'.
mode: The proposed serializer mode.
"""
decorator_repr: ClassVar[str] = '@model_validator'
mode: Literal['wrap', 'before', 'after']
DecoratorInfo: TypeAlias = """Union[
ValidatorDecoratorInfo,
FieldValidatorDecoratorInfo,
RootValidatorDecoratorInfo,
FieldSerializerDecoratorInfo,
ModelSerializerDecoratorInfo,
ModelValidatorDecoratorInfo,
ComputedFieldInfo,
]"""
ReturnType = TypeVar('ReturnType')
DecoratedType: TypeAlias = (
'Union[classmethod[Any, Any, ReturnType], staticmethod[Any, ReturnType], Callable[..., ReturnType], property]'
)
@dataclass # can't use slots here since we set attributes on `__post_init__`
class PydanticDescriptorProxy(Generic[ReturnType]):
"""Wrap a classmethod, staticmethod, property or unbound function
and act as a descriptor that allows us to detect decorated items
from the class' attributes.
This class' __get__ returns the wrapped item's __get__ result,
which makes it transparent for classmethods and staticmethods.
Attributes:
wrapped: The decorator that has to be wrapped.
decorator_info: The decorator info.
shim: A wrapper function to wrap V1 style function.
"""
wrapped: DecoratedType[ReturnType]
decorator_info: DecoratorInfo
shim: Callable[[Callable[..., Any]], Callable[..., Any]] | None = None
def __post_init__(self):
for attr in 'setter', 'deleter':
if hasattr(self.wrapped, attr):
f = partial(self._call_wrapped_attr, name=attr)
setattr(self, attr, f)
def _call_wrapped_attr(self, func: Callable[[Any], None], *, name: str) -> PydanticDescriptorProxy[ReturnType]:
self.wrapped = getattr(self.wrapped, name)(func)
return self
def __get__(self, obj: object | None, obj_type: type[object] | None = None) -> PydanticDescriptorProxy[ReturnType]:
try:
return self.wrapped.__get__(obj, obj_type)
except AttributeError:
# not a descriptor, e.g. a partial object
return self.wrapped # type: ignore[return-value]
def __set_name__(self, instance: Any, name: str) -> None:
if hasattr(self.wrapped, '__set_name__'):
self.wrapped.__set_name__(instance, name) # pyright: ignore[reportFunctionMemberAccess]
def __getattr__(self, __name: str) -> Any:
"""Forward checks for __isabstractmethod__ and such."""
return getattr(self.wrapped, __name)
DecoratorInfoType = TypeVar('DecoratorInfoType', bound=DecoratorInfo)
@dataclass(**slots_true)
class Decorator(Generic[DecoratorInfoType]):
"""A generic container class to join together the decorator metadata
(metadata from decorator itself, which we have when the
decorator is called but not when we are building the core-schema)
and the bound function (which we have after the class itself is created).
Attributes:
cls_ref: The class ref.
cls_var_name: The decorated function name.
func: The decorated function.
shim: A wrapper function to wrap V1 style function.
info: The decorator info.
"""
cls_ref: str
cls_var_name: str
func: Callable[..., Any]
shim: Callable[[Any], Any] | None
info: DecoratorInfoType
@staticmethod
def build(
cls_: Any,
*,
cls_var_name: str,
shim: Callable[[Any], Any] | None,
info: DecoratorInfoType,
) -> Decorator[DecoratorInfoType]:
"""Build a new decorator.
Args:
cls_: The class.
cls_var_name: The decorated function name.
shim: A wrapper function to wrap V1 style function.
info: The decorator info.
Returns:
The new decorator instance.
"""
func = get_attribute_from_bases(cls_, cls_var_name)
if shim is not None:
func = shim(func)
func = unwrap_wrapped_function(func, unwrap_partial=False)
if not callable(func):
# This branch will get hit for classmethod properties
attribute = get_attribute_from_base_dicts(cls_, cls_var_name) # prevents the binding call to `__get__`
if isinstance(attribute, PydanticDescriptorProxy):
func = unwrap_wrapped_function(attribute.wrapped)
return Decorator(
cls_ref=get_type_ref(cls_),
cls_var_name=cls_var_name,
func=func,
shim=shim,
info=info,
)
def bind_to_cls(self, cls: Any) -> Decorator[DecoratorInfoType]:
"""Bind the decorator to a class.
Args:
cls: the class.
Returns:
The new decorator instance.
"""
return self.build(
cls,
cls_var_name=self.cls_var_name,
shim=self.shim,
info=self.info,
)
def get_bases(tp: type[Any]) -> tuple[type[Any], ...]:
"""Get the base classes of a class or typeddict.
Args:
tp: The type or class to get the bases.
Returns:
The base classes.
"""
if is_typeddict(tp):
return tp.__orig_bases__ # type: ignore
try:
return tp.__bases__
except AttributeError:
return ()
def mro(tp: type[Any]) -> tuple[type[Any], ...]:
"""Calculate the Method Resolution Order of bases using the C3 algorithm.
See https://www.python.org/download/releases/2.3/mro/
"""
# try to use the existing mro, for performance mainly
# but also because it helps verify the implementation below
if not is_typeddict(tp):
try:
return tp.__mro__
except AttributeError:
# GenericAlias and some other cases
pass
bases = get_bases(tp)
return (tp,) + mro_for_bases(bases)
def mro_for_bases(bases: tuple[type[Any], ...]) -> tuple[type[Any], ...]:
def merge_seqs(seqs: list[deque[type[Any]]]) -> Iterable[type[Any]]:
while True:
non_empty = [seq for seq in seqs if seq]
if not non_empty:
# Nothing left to process, we're done.
return
candidate: type[Any] | None = None
for seq in non_empty: # Find merge candidates among seq heads.
candidate = seq[0]
not_head = [s for s in non_empty if candidate in islice(s, 1, None)]
if not_head:
# Reject the candidate.
candidate = None
else:
break
if not candidate:
raise TypeError('Inconsistent hierarchy, no C3 MRO is possible')
yield candidate
for seq in non_empty:
# Remove candidate.
if seq[0] == candidate:
seq.popleft()
seqs = [deque(mro(base)) for base in bases] + [deque(bases)]
return tuple(merge_seqs(seqs))
_sentinel = object()
def get_attribute_from_bases(tp: type[Any] | tuple[type[Any], ...], name: str) -> Any:
"""Get the attribute from the next class in the MRO that has it,
aiming to simulate calling the method on the actual class.
The reason for iterating over the mro instead of just getting
the attribute (which would do that for us) is to support TypedDict,
which lacks a real __mro__, but can have a virtual one constructed
from its bases (as done here).
Args:
tp: The type or class to search for the attribute. If a tuple, this is treated as a set of base classes.
name: The name of the attribute to retrieve.
Returns:
Any: The attribute value, if found.
Raises:
AttributeError: If the attribute is not found in any class in the MRO.
"""
if isinstance(tp, tuple):
for base in mro_for_bases(tp):
attribute = base.__dict__.get(name, _sentinel)
if attribute is not _sentinel:
attribute_get = getattr(attribute, '__get__', None)
if attribute_get is not None:
return attribute_get(None, tp)
return attribute
raise AttributeError(f'{name} not found in {tp}')
else:
try:
return getattr(tp, name)
except AttributeError:
return get_attribute_from_bases(mro(tp), name)
def get_attribute_from_base_dicts(tp: type[Any], name: str) -> Any:
"""Get an attribute out of the `__dict__` following the MRO.
This prevents the call to `__get__` on the descriptor, and allows
us to get the original function for classmethod properties.
Args:
tp: The type or class to search for the attribute.
name: The name of the attribute to retrieve.
Returns:
Any: The attribute value, if found.
Raises:
KeyError: If the attribute is not found in any class's `__dict__` in the MRO.
"""
for base in reversed(mro(tp)):
if name in base.__dict__:
return base.__dict__[name]
return tp.__dict__[name] # raise the error
@dataclass(**slots_true)
class DecoratorInfos:
"""Mapping of name in the class namespace to decorator info.
note that the name in the class namespace is the function or attribute name
not the field name!
"""
validators: dict[str, Decorator[ValidatorDecoratorInfo]] = field(default_factory=dict)
field_validators: dict[str, Decorator[FieldValidatorDecoratorInfo]] = field(default_factory=dict)
root_validators: dict[str, Decorator[RootValidatorDecoratorInfo]] = field(default_factory=dict)
field_serializers: dict[str, Decorator[FieldSerializerDecoratorInfo]] = field(default_factory=dict)
model_serializers: dict[str, Decorator[ModelSerializerDecoratorInfo]] = field(default_factory=dict)
model_validators: dict[str, Decorator[ModelValidatorDecoratorInfo]] = field(default_factory=dict)
computed_fields: dict[str, Decorator[ComputedFieldInfo]] = field(default_factory=dict)
@staticmethod
def build(model_dc: type[Any]) -> DecoratorInfos: # noqa: C901 (ignore complexity)
"""We want to collect all DecFunc instances that exist as
attributes in the namespace of the class (a BaseModel or dataclass)
that called us
But we want to collect these in the order of the bases
So instead of getting them all from the leaf class (the class that called us),
we traverse the bases from root (the oldest ancestor class) to leaf
and collect all of the instances as we go, taking care to replace
any duplicate ones with the last one we see to mimic how function overriding
works with inheritance.
If we do replace any functions we put the replacement into the position
the replaced function was in; that is, we maintain the order.
"""
# reminder: dicts are ordered and replacement does not alter the order
res = DecoratorInfos()
for base in reversed(mro(model_dc)[1:]):
existing: DecoratorInfos | None = base.__dict__.get('__pydantic_decorators__')
if existing is None:
existing = DecoratorInfos.build(base)
res.validators.update({k: v.bind_to_cls(model_dc) for k, v in existing.validators.items()})
res.field_validators.update({k: v.bind_to_cls(model_dc) for k, v in existing.field_validators.items()})
res.root_validators.update({k: v.bind_to_cls(model_dc) for k, v in existing.root_validators.items()})
res.field_serializers.update({k: v.bind_to_cls(model_dc) for k, v in existing.field_serializers.items()})
res.model_serializers.update({k: v.bind_to_cls(model_dc) for k, v in existing.model_serializers.items()})
res.model_validators.update({k: v.bind_to_cls(model_dc) for k, v in existing.model_validators.items()})
res.computed_fields.update({k: v.bind_to_cls(model_dc) for k, v in existing.computed_fields.items()})
to_replace: list[tuple[str, Any]] = []
for var_name, var_value in vars(model_dc).items():
if isinstance(var_value, PydanticDescriptorProxy):
info = var_value.decorator_info
if isinstance(info, ValidatorDecoratorInfo):
res.validators[var_name] = Decorator.build(
model_dc, cls_var_name=var_name, shim=var_value.shim, info=info
)
elif isinstance(info, FieldValidatorDecoratorInfo):
res.field_validators[var_name] = Decorator.build(
model_dc, cls_var_name=var_name, shim=var_value.shim, info=info
)
elif isinstance(info, RootValidatorDecoratorInfo):
res.root_validators[var_name] = Decorator.build(
model_dc, cls_var_name=var_name, shim=var_value.shim, info=info
)
elif isinstance(info, FieldSerializerDecoratorInfo):
# check whether a serializer function is already registered for fields
for field_serializer_decorator in res.field_serializers.values():
# check that each field has at most one serializer function.
# serializer functions for the same field in subclasses are allowed,
# and are treated as overrides
if field_serializer_decorator.cls_var_name == var_name:
continue
for f in info.fields:
if f in field_serializer_decorator.info.fields:
raise PydanticUserError(
'Multiple field serializer functions were defined '
f'for field {f!r}, this is not allowed.',
code='multiple-field-serializers',
)
res.field_serializers[var_name] = Decorator.build(
model_dc, cls_var_name=var_name, shim=var_value.shim, info=info
)
elif isinstance(info, ModelValidatorDecoratorInfo):
res.model_validators[var_name] = Decorator.build(
model_dc, cls_var_name=var_name, shim=var_value.shim, info=info
)
elif isinstance(info, ModelSerializerDecoratorInfo):
res.model_serializers[var_name] = Decorator.build(
model_dc, cls_var_name=var_name, shim=var_value.shim, info=info
)
else:
from ..fields import ComputedFieldInfo
isinstance(var_value, ComputedFieldInfo)
res.computed_fields[var_name] = Decorator.build(
model_dc, cls_var_name=var_name, shim=None, info=info
)
to_replace.append((var_name, var_value.wrapped))
if to_replace:
# If we can save `__pydantic_decorators__` on the class we'll be able to check for it above
# so then we don't need to re-process the type, which means we can discard our descriptor wrappers
# and replace them with the thing they are wrapping (see the other setattr call below)
# which allows validator class methods to also function as regular class methods
setattr(model_dc, '__pydantic_decorators__', res)
for name, value in to_replace:
setattr(model_dc, name, value)
return res
def inspect_validator(validator: Callable[..., Any], mode: FieldValidatorModes) -> bool:
"""Look at a field or model validator function and determine whether it takes an info argument.
An error is raised if the function has an invalid signature.
Args:
validator: The validator function to inspect.
mode: The proposed validator mode.
Returns:
Whether the validator takes an info argument.
"""
try:
sig = signature(validator)
except ValueError:
# builtins and some C extensions don't have signatures
# assume that they don't take an info argument and only take a single argument
# e.g. `str.strip` or `datetime.datetime`
return False
n_positional = count_positional_params(sig)
if mode == 'wrap':
if n_positional == 3:
return True
elif n_positional == 2:
return False
else:
assert mode in {'before', 'after', 'plain'}, f"invalid mode: {mode!r}, expected 'before', 'after' or 'plain"
if n_positional == 2:
return True
elif n_positional == 1:
return False
raise PydanticUserError(
f'Unrecognized field_validator function signature for {validator} with `mode={mode}`:{sig}',
code='validator-signature',
)
def inspect_field_serializer(
serializer: Callable[..., Any], mode: Literal['plain', 'wrap'], computed_field: bool = False
) -> tuple[bool, bool]:
"""Look at a field serializer function and determine if it is a field serializer,
and whether it takes an info argument.
An error is raised if the function has an invalid signature.
Args:
serializer: The serializer function to inspect.
mode: The serializer mode, either 'plain' or 'wrap'.
computed_field: When serializer is applied on computed_field. It doesn't require
info signature.
Returns:
Tuple of (is_field_serializer, info_arg).
"""
sig = signature(serializer)
first = next(iter(sig.parameters.values()), None)
is_field_serializer = first is not None and first.name == 'self'
n_positional = count_positional_params(sig)
if is_field_serializer:
# -1 to correct for self parameter
info_arg = _serializer_info_arg(mode, n_positional - 1)
else:
info_arg = _serializer_info_arg(mode, n_positional)
if info_arg is None:
raise PydanticUserError(
f'Unrecognized field_serializer function signature for {serializer} with `mode={mode}`:{sig}',
code='field-serializer-signature',
)
if info_arg and computed_field:
raise PydanticUserError(
'field_serializer on computed_field does not use info signature', code='field-serializer-signature'
)
else:
return is_field_serializer, info_arg
def inspect_annotated_serializer(serializer: Callable[..., Any], mode: Literal['plain', 'wrap']) -> bool:
"""Look at a serializer function used via `Annotated` and determine whether it takes an info argument.
An error is raised if the function has an invalid signature.
Args:
serializer: The serializer function to check.
mode: The serializer mode, either 'plain' or 'wrap'.
Returns:
info_arg
"""
sig = signature(serializer)
info_arg = _serializer_info_arg(mode, count_positional_params(sig))
if info_arg is None:
raise PydanticUserError(
f'Unrecognized field_serializer function signature for {serializer} with `mode={mode}`:{sig}',
code='field-serializer-signature',
)
else:
return info_arg
def inspect_model_serializer(serializer: Callable[..., Any], mode: Literal['plain', 'wrap']) -> bool:
"""Look at a model serializer function and determine whether it takes an info argument.
An error is raised if the function has an invalid signature.
Args:
serializer: The serializer function to check.
mode: The serializer mode, either 'plain' or 'wrap'.
Returns:
`info_arg` - whether the function expects an info argument.
"""
if isinstance(serializer, (staticmethod, classmethod)) or not is_instance_method_from_sig(serializer):
raise PydanticUserError(
'`@model_serializer` must be applied to instance methods', code='model-serializer-instance-method'
)
sig = signature(serializer)
info_arg = _serializer_info_arg(mode, count_positional_params(sig))
if info_arg is None:
raise PydanticUserError(
f'Unrecognized model_serializer function signature for {serializer} with `mode={mode}`:{sig}',
code='model-serializer-signature',
)
else:
return info_arg
def _serializer_info_arg(mode: Literal['plain', 'wrap'], n_positional: int) -> bool | None:
if mode == 'plain':
if n_positional == 1:
# (__input_value: Any) -> Any
return False
elif n_positional == 2:
# (__model: Any, __input_value: Any) -> Any
return True
else:
assert mode == 'wrap', f"invalid mode: {mode!r}, expected 'plain' or 'wrap'"
if n_positional == 2:
# (__input_value: Any, __serializer: SerializerFunctionWrapHandler) -> Any
return False
elif n_positional == 3:
# (__input_value: Any, __serializer: SerializerFunctionWrapHandler, __info: SerializationInfo) -> Any
return True
return None
AnyDecoratorCallable: TypeAlias = (
'Union[classmethod[Any, Any, Any], staticmethod[Any, Any], partialmethod[Any], Callable[..., Any]]'
)
def is_instance_method_from_sig(function: AnyDecoratorCallable) -> bool:
"""Whether the function is an instance method.
It will consider a function as instance method if the first parameter of
function is `self`.
Args:
function: The function to check.
Returns:
`True` if the function is an instance method, `False` otherwise.
"""
sig = signature(unwrap_wrapped_function(function))
first = next(iter(sig.parameters.values()), None)
if first and first.name == 'self':
return True
return False
def ensure_classmethod_based_on_signature(function: AnyDecoratorCallable) -> Any:
"""Apply the `@classmethod` decorator on the function.
Args:
function: The function to apply the decorator on.
Return:
The `@classmethod` decorator applied function.
"""
if not isinstance(
unwrap_wrapped_function(function, unwrap_class_static_method=False), classmethod
) and _is_classmethod_from_sig(function):
return classmethod(function) # type: ignore[arg-type]
return function
def _is_classmethod_from_sig(function: AnyDecoratorCallable) -> bool:
sig = signature(unwrap_wrapped_function(function))
first = next(iter(sig.parameters.values()), None)
if first and first.name == 'cls':
return True
return False
def unwrap_wrapped_function(
func: Any,
*,
unwrap_partial: bool = True,
unwrap_class_static_method: bool = True,
) -> Any:
"""Recursively unwraps a wrapped function until the underlying function is reached.
This handles property, functools.partial, functools.partialmethod, staticmethod and classmethod.
Args:
func: The function to unwrap.
unwrap_partial: If True (default), unwrap partial and partialmethod decorators, otherwise don't.
decorators.
unwrap_class_static_method: If True (default), also unwrap classmethod and staticmethod
decorators. If False, only unwrap partial and partialmethod decorators.
Returns:
The underlying function of the wrapped function.
"""
all: set[Any] = {property, cached_property}
if unwrap_partial:
all.update({partial, partialmethod})
if unwrap_class_static_method:
all.update({staticmethod, classmethod})
while isinstance(func, tuple(all)):
if unwrap_class_static_method and isinstance(func, (classmethod, staticmethod)):
func = func.__func__
elif isinstance(func, (partial, partialmethod)):
func = func.func
elif isinstance(func, property):
func = func.fget # arbitrary choice, convenient for computed fields
else:
# Make coverage happy as it can only get here in the last possible case
assert isinstance(func, cached_property)
func = func.func # type: ignore
return func
def get_function_return_type(
func: Any, explicit_return_type: Any, types_namespace: dict[str, Any] | None = None
) -> Any:
"""Get the function return type.
It gets the return type from the type annotation if `explicit_return_type` is `None`.
Otherwise, it returns `explicit_return_type`.
Args:
func: The function to get its return type.
explicit_return_type: The explicit return type.
types_namespace: The types namespace, defaults to `None`.
Returns:
The function return type.
"""
if explicit_return_type is PydanticUndefined:
# try to get it from the type annotation
hints = get_function_type_hints(
unwrap_wrapped_function(func), include_keys={'return'}, types_namespace=types_namespace
)
return hints.get('return', PydanticUndefined)
else:
return explicit_return_type
def count_positional_params(sig: Signature) -> int:
return sum(1 for param in sig.parameters.values() if can_be_positional(param))
def can_be_positional(param: Parameter) -> bool:
return param.kind in (Parameter.POSITIONAL_ONLY, Parameter.POSITIONAL_OR_KEYWORD)
def ensure_property(f: Any) -> Any:
"""Ensure that a function is a `property` or `cached_property`, or is a valid descriptor.
Args:
f: The function to check.
Returns:
The function, or a `property` or `cached_property` instance wrapping the function.
"""
if ismethoddescriptor(f) or isdatadescriptor(f):
return f
else:
return property(f)

View file

@ -0,0 +1,181 @@
"""Logic for V1 validators, e.g. `@validator` and `@root_validator`."""
from __future__ import annotations as _annotations
from inspect import Parameter, signature
from typing import Any, Dict, Tuple, Union, cast
from pydantic_core import core_schema
from typing_extensions import Protocol
from ..errors import PydanticUserError
from ._decorators import can_be_positional
class V1OnlyValueValidator(Protocol):
"""A simple validator, supported for V1 validators and V2 validators."""
def __call__(self, __value: Any) -> Any:
...
class V1ValidatorWithValues(Protocol):
"""A validator with `values` argument, supported for V1 validators and V2 validators."""
def __call__(self, __value: Any, values: dict[str, Any]) -> Any:
...
class V1ValidatorWithValuesKwOnly(Protocol):
"""A validator with keyword only `values` argument, supported for V1 validators and V2 validators."""
def __call__(self, __value: Any, *, values: dict[str, Any]) -> Any:
...
class V1ValidatorWithKwargs(Protocol):
"""A validator with `kwargs` argument, supported for V1 validators and V2 validators."""
def __call__(self, __value: Any, **kwargs: Any) -> Any:
...
class V1ValidatorWithValuesAndKwargs(Protocol):
"""A validator with `values` and `kwargs` arguments, supported for V1 validators and V2 validators."""
def __call__(self, __value: Any, values: dict[str, Any], **kwargs: Any) -> Any:
...
V1Validator = Union[
V1ValidatorWithValues, V1ValidatorWithValuesKwOnly, V1ValidatorWithKwargs, V1ValidatorWithValuesAndKwargs
]
def can_be_keyword(param: Parameter) -> bool:
return param.kind in (Parameter.POSITIONAL_OR_KEYWORD, Parameter.KEYWORD_ONLY)
def make_generic_v1_field_validator(validator: V1Validator) -> core_schema.WithInfoValidatorFunction:
"""Wrap a V1 style field validator for V2 compatibility.
Args:
validator: The V1 style field validator.
Returns:
A wrapped V2 style field validator.
Raises:
PydanticUserError: If the signature is not supported or the parameters are
not available in Pydantic V2.
"""
sig = signature(validator)
needs_values_kw = False
for param_num, (param_name, parameter) in enumerate(sig.parameters.items()):
if can_be_keyword(parameter) and param_name in ('field', 'config'):
raise PydanticUserError(
'The `field` and `config` parameters are not available in Pydantic V2, '
'please use the `info` parameter instead.',
code='validator-field-config-info',
)
if parameter.kind is Parameter.VAR_KEYWORD:
needs_values_kw = True
elif can_be_keyword(parameter) and param_name == 'values':
needs_values_kw = True
elif can_be_positional(parameter) and param_num == 0:
# value
continue
elif parameter.default is Parameter.empty: # ignore params with defaults e.g. bound by functools.partial
raise PydanticUserError(
f'Unsupported signature for V1 style validator {validator}: {sig} is not supported.',
code='validator-v1-signature',
)
if needs_values_kw:
# (v, **kwargs), (v, values, **kwargs), (v, *, values, **kwargs) or (v, *, values)
val1 = cast(V1ValidatorWithValues, validator)
def wrapper1(value: Any, info: core_schema.ValidationInfo) -> Any:
return val1(value, values=info.data)
return wrapper1
else:
val2 = cast(V1OnlyValueValidator, validator)
def wrapper2(value: Any, _: core_schema.ValidationInfo) -> Any:
return val2(value)
return wrapper2
RootValidatorValues = Dict[str, Any]
# technically tuple[model_dict, model_extra, fields_set] | tuple[dataclass_dict, init_vars]
RootValidatorFieldsTuple = Tuple[Any, ...]
class V1RootValidatorFunction(Protocol):
"""A simple root validator, supported for V1 validators and V2 validators."""
def __call__(self, __values: RootValidatorValues) -> RootValidatorValues:
...
class V2CoreBeforeRootValidator(Protocol):
"""V2 validator with mode='before'."""
def __call__(self, __values: RootValidatorValues, __info: core_schema.ValidationInfo) -> RootValidatorValues:
...
class V2CoreAfterRootValidator(Protocol):
"""V2 validator with mode='after'."""
def __call__(
self, __fields_tuple: RootValidatorFieldsTuple, __info: core_schema.ValidationInfo
) -> RootValidatorFieldsTuple:
...
def make_v1_generic_root_validator(
validator: V1RootValidatorFunction, pre: bool
) -> V2CoreBeforeRootValidator | V2CoreAfterRootValidator:
"""Wrap a V1 style root validator for V2 compatibility.
Args:
validator: The V1 style field validator.
pre: Whether the validator is a pre validator.
Returns:
A wrapped V2 style validator.
"""
if pre is True:
# mode='before' for pydantic-core
def _wrapper1(values: RootValidatorValues, _: core_schema.ValidationInfo) -> RootValidatorValues:
return validator(values)
return _wrapper1
# mode='after' for pydantic-core
def _wrapper2(fields_tuple: RootValidatorFieldsTuple, _: core_schema.ValidationInfo) -> RootValidatorFieldsTuple:
if len(fields_tuple) == 2:
# dataclass, this is easy
values, init_vars = fields_tuple
values = validator(values)
return values, init_vars
else:
# ugly hack: to match v1 behaviour, we merge values and model_extra, then split them up based on fields
# afterwards
model_dict, model_extra, fields_set = fields_tuple
if model_extra:
fields = set(model_dict.keys())
model_dict.update(model_extra)
model_dict_new = validator(model_dict)
for k in list(model_dict_new.keys()):
if k not in fields:
model_extra[k] = model_dict_new.pop(k)
else:
model_dict_new = validator(model_dict)
return model_dict_new, model_extra, fields_set
return _wrapper2

View file

@ -0,0 +1,506 @@
from __future__ import annotations as _annotations
from typing import TYPE_CHECKING, Any, Hashable, Sequence
from pydantic_core import CoreSchema, core_schema
from ..errors import PydanticUserError
from . import _core_utils
from ._core_utils import (
CoreSchemaField,
collect_definitions,
simplify_schema_references,
)
if TYPE_CHECKING:
from ..types import Discriminator
CORE_SCHEMA_METADATA_DISCRIMINATOR_PLACEHOLDER_KEY = 'pydantic.internal.union_discriminator'
class MissingDefinitionForUnionRef(Exception):
"""Raised when applying a discriminated union discriminator to a schema
requires a definition that is not yet defined
"""
def __init__(self, ref: str) -> None:
self.ref = ref
super().__init__(f'Missing definition for ref {self.ref!r}')
def set_discriminator_in_metadata(schema: CoreSchema, discriminator: Any) -> None:
schema.setdefault('metadata', {})
metadata = schema.get('metadata')
assert metadata is not None
metadata[CORE_SCHEMA_METADATA_DISCRIMINATOR_PLACEHOLDER_KEY] = discriminator
def apply_discriminators(schema: core_schema.CoreSchema) -> core_schema.CoreSchema:
definitions: dict[str, CoreSchema] | None = None
def inner(s: core_schema.CoreSchema, recurse: _core_utils.Recurse) -> core_schema.CoreSchema:
nonlocal definitions
s = recurse(s, inner)
if s['type'] == 'tagged-union':
return s
metadata = s.get('metadata', {})
discriminator = metadata.pop(CORE_SCHEMA_METADATA_DISCRIMINATOR_PLACEHOLDER_KEY, None)
if discriminator is not None:
if definitions is None:
definitions = collect_definitions(schema)
s = apply_discriminator(s, discriminator, definitions)
return s
return simplify_schema_references(_core_utils.walk_core_schema(schema, inner))
def apply_discriminator(
schema: core_schema.CoreSchema,
discriminator: str | Discriminator,
definitions: dict[str, core_schema.CoreSchema] | None = None,
) -> core_schema.CoreSchema:
"""Applies the discriminator and returns a new core schema.
Args:
schema: The input schema.
discriminator: The name of the field which will serve as the discriminator.
definitions: A mapping of schema ref to schema.
Returns:
The new core schema.
Raises:
TypeError:
- If `discriminator` is used with invalid union variant.
- If `discriminator` is used with `Union` type with one variant.
- If `discriminator` value mapped to multiple choices.
MissingDefinitionForUnionRef:
If the definition for ref is missing.
PydanticUserError:
- If a model in union doesn't have a discriminator field.
- If discriminator field has a non-string alias.
- If discriminator fields have different aliases.
- If discriminator field not of type `Literal`.
"""
from ..types import Discriminator
if isinstance(discriminator, Discriminator):
if isinstance(discriminator.discriminator, str):
discriminator = discriminator.discriminator
else:
return discriminator._convert_schema(schema)
return _ApplyInferredDiscriminator(discriminator, definitions or {}).apply(schema)
class _ApplyInferredDiscriminator:
"""This class is used to convert an input schema containing a union schema into one where that union is
replaced with a tagged-union, with all the associated debugging and performance benefits.
This is done by:
* Validating that the input schema is compatible with the provided discriminator
* Introspecting the schema to determine which discriminator values should map to which union choices
* Handling various edge cases such as 'definitions', 'default', 'nullable' schemas, and more
I have chosen to implement the conversion algorithm in this class, rather than a function,
to make it easier to maintain state while recursively walking the provided CoreSchema.
"""
def __init__(self, discriminator: str, definitions: dict[str, core_schema.CoreSchema]):
# `discriminator` should be the name of the field which will serve as the discriminator.
# It must be the python name of the field, and *not* the field's alias. Note that as of now,
# all members of a discriminated union _must_ use a field with the same name as the discriminator.
# This may change if/when we expose a way to manually specify the TaggedUnionSchema's choices.
self.discriminator = discriminator
# `definitions` should contain a mapping of schema ref to schema for all schemas which might
# be referenced by some choice
self.definitions = definitions
# `_discriminator_alias` will hold the value, if present, of the alias for the discriminator
#
# Note: following the v1 implementation, we currently disallow the use of different aliases
# for different choices. This is not a limitation of pydantic_core, but if we try to handle
# this, the inference logic gets complicated very quickly, and could result in confusing
# debugging challenges for users making subtle mistakes.
#
# Rather than trying to do the most powerful inference possible, I think we should eventually
# expose a way to more-manually control the way the TaggedUnionSchema is constructed through
# the use of a new type which would be placed as an Annotation on the Union type. This would
# provide the full flexibility/power of pydantic_core's TaggedUnionSchema where necessary for
# more complex cases, without over-complicating the inference logic for the common cases.
self._discriminator_alias: str | None = None
# `_should_be_nullable` indicates whether the converted union has `None` as an allowed value.
# If `None` is an acceptable value of the (possibly-wrapped) union, we ignore it while
# constructing the TaggedUnionSchema, but set the `_should_be_nullable` attribute to True.
# Once we have constructed the TaggedUnionSchema, if `_should_be_nullable` is True, we ensure
# that the final schema gets wrapped as a NullableSchema. This has the same semantics on the
# python side, but resolves the issue that `None` cannot correspond to any discriminator values.
self._should_be_nullable = False
# `_is_nullable` is used to track if the final produced schema will definitely be nullable;
# we set it to True if the input schema is wrapped in a nullable schema that we know will be preserved
# as an indication that, even if None is discovered as one of the union choices, we will not need to wrap
# the final value in another nullable schema.
#
# This is more complicated than just checking for the final outermost schema having type 'nullable' thanks
# to the possible presence of other wrapper schemas such as DefinitionsSchema, WithDefaultSchema, etc.
self._is_nullable = False
# `_choices_to_handle` serves as a stack of choices to add to the tagged union. Initially, choices
# from the union in the wrapped schema will be appended to this list, and the recursive choice-handling
# algorithm may add more choices to this stack as (nested) unions are encountered.
self._choices_to_handle: list[core_schema.CoreSchema] = []
# `_tagged_union_choices` is built during the call to `apply`, and will hold the choices to be included
# in the output TaggedUnionSchema that will replace the union from the input schema
self._tagged_union_choices: dict[Hashable, core_schema.CoreSchema] = {}
# `_used` is changed to True after applying the discriminator to prevent accidental re-use
self._used = False
def apply(self, schema: core_schema.CoreSchema) -> core_schema.CoreSchema:
"""Return a new CoreSchema based on `schema` that uses a tagged-union with the discriminator provided
to this class.
Args:
schema: The input schema.
Returns:
The new core schema.
Raises:
TypeError:
- If `discriminator` is used with invalid union variant.
- If `discriminator` is used with `Union` type with one variant.
- If `discriminator` value mapped to multiple choices.
ValueError:
If the definition for ref is missing.
PydanticUserError:
- If a model in union doesn't have a discriminator field.
- If discriminator field has a non-string alias.
- If discriminator fields have different aliases.
- If discriminator field not of type `Literal`.
"""
self.definitions.update(collect_definitions(schema))
assert not self._used
schema = self._apply_to_root(schema)
if self._should_be_nullable and not self._is_nullable:
schema = core_schema.nullable_schema(schema)
self._used = True
new_defs = collect_definitions(schema)
missing_defs = self.definitions.keys() - new_defs.keys()
if missing_defs:
schema = core_schema.definitions_schema(schema, [self.definitions[ref] for ref in missing_defs])
return schema
def _apply_to_root(self, schema: core_schema.CoreSchema) -> core_schema.CoreSchema:
"""This method handles the outer-most stage of recursion over the input schema:
unwrapping nullable or definitions schemas, and calling the `_handle_choice`
method iteratively on the choices extracted (recursively) from the possibly-wrapped union.
"""
if schema['type'] == 'nullable':
self._is_nullable = True
wrapped = self._apply_to_root(schema['schema'])
nullable_wrapper = schema.copy()
nullable_wrapper['schema'] = wrapped
return nullable_wrapper
if schema['type'] == 'definitions':
wrapped = self._apply_to_root(schema['schema'])
definitions_wrapper = schema.copy()
definitions_wrapper['schema'] = wrapped
return definitions_wrapper
if schema['type'] != 'union':
# If the schema is not a union, it probably means it just had a single member and
# was flattened by pydantic_core.
# However, it still may make sense to apply the discriminator to this schema,
# as a way to get discriminated-union-style error messages, so we allow this here.
schema = core_schema.union_schema([schema])
# Reverse the choices list before extending the stack so that they get handled in the order they occur
choices_schemas = [v[0] if isinstance(v, tuple) else v for v in schema['choices'][::-1]]
self._choices_to_handle.extend(choices_schemas)
while self._choices_to_handle:
choice = self._choices_to_handle.pop()
self._handle_choice(choice)
if self._discriminator_alias is not None and self._discriminator_alias != self.discriminator:
# * We need to annotate `discriminator` as a union here to handle both branches of this conditional
# * We need to annotate `discriminator` as list[list[str | int]] and not list[list[str]] due to the
# invariance of list, and because list[list[str | int]] is the type of the discriminator argument
# to tagged_union_schema below
# * See the docstring of pydantic_core.core_schema.tagged_union_schema for more details about how to
# interpret the value of the discriminator argument to tagged_union_schema. (The list[list[str]] here
# is the appropriate way to provide a list of fallback attributes to check for a discriminator value.)
discriminator: str | list[list[str | int]] = [[self.discriminator], [self._discriminator_alias]]
else:
discriminator = self.discriminator
return core_schema.tagged_union_schema(
choices=self._tagged_union_choices,
discriminator=discriminator,
custom_error_type=schema.get('custom_error_type'),
custom_error_message=schema.get('custom_error_message'),
custom_error_context=schema.get('custom_error_context'),
strict=False,
from_attributes=True,
ref=schema.get('ref'),
metadata=schema.get('metadata'),
serialization=schema.get('serialization'),
)
def _handle_choice(self, choice: core_schema.CoreSchema) -> None:
"""This method handles the "middle" stage of recursion over the input schema.
Specifically, it is responsible for handling each choice of the outermost union
(and any "coalesced" choices obtained from inner unions).
Here, "handling" entails:
* Coalescing nested unions and compatible tagged-unions
* Tracking the presence of 'none' and 'nullable' schemas occurring as choices
* Validating that each allowed discriminator value maps to a unique choice
* Updating the _tagged_union_choices mapping that will ultimately be used to build the TaggedUnionSchema.
"""
if choice['type'] == 'definition-ref':
if choice['schema_ref'] not in self.definitions:
raise MissingDefinitionForUnionRef(choice['schema_ref'])
if choice['type'] == 'none':
self._should_be_nullable = True
elif choice['type'] == 'definitions':
self._handle_choice(choice['schema'])
elif choice['type'] == 'nullable':
self._should_be_nullable = True
self._handle_choice(choice['schema']) # unwrap the nullable schema
elif choice['type'] == 'union':
# Reverse the choices list before extending the stack so that they get handled in the order they occur
choices_schemas = [v[0] if isinstance(v, tuple) else v for v in choice['choices'][::-1]]
self._choices_to_handle.extend(choices_schemas)
elif choice['type'] not in {
'model',
'typed-dict',
'tagged-union',
'lax-or-strict',
'dataclass',
'dataclass-args',
'definition-ref',
} and not _core_utils.is_function_with_inner_schema(choice):
# We should eventually handle 'definition-ref' as well
raise TypeError(
f'{choice["type"]!r} is not a valid discriminated union variant;'
' should be a `BaseModel` or `dataclass`'
)
else:
if choice['type'] == 'tagged-union' and self._is_discriminator_shared(choice):
# In this case, this inner tagged-union is compatible with the outer tagged-union,
# and its choices can be coalesced into the outer TaggedUnionSchema.
subchoices = [x for x in choice['choices'].values() if not isinstance(x, (str, int))]
# Reverse the choices list before extending the stack so that they get handled in the order they occur
self._choices_to_handle.extend(subchoices[::-1])
return
inferred_discriminator_values = self._infer_discriminator_values_for_choice(choice, source_name=None)
self._set_unique_choice_for_values(choice, inferred_discriminator_values)
def _is_discriminator_shared(self, choice: core_schema.TaggedUnionSchema) -> bool:
"""This method returns a boolean indicating whether the discriminator for the `choice`
is the same as that being used for the outermost tagged union. This is used to
determine whether this TaggedUnionSchema choice should be "coalesced" into the top level,
or whether it should be treated as a separate (nested) choice.
"""
inner_discriminator = choice['discriminator']
return inner_discriminator == self.discriminator or (
isinstance(inner_discriminator, list)
and (self.discriminator in inner_discriminator or [self.discriminator] in inner_discriminator)
)
def _infer_discriminator_values_for_choice( # noqa C901
self, choice: core_schema.CoreSchema, source_name: str | None
) -> list[str | int]:
"""This function recurses over `choice`, extracting all discriminator values that should map to this choice.
`model_name` is accepted for the purpose of producing useful error messages.
"""
if choice['type'] == 'definitions':
return self._infer_discriminator_values_for_choice(choice['schema'], source_name=source_name)
elif choice['type'] == 'function-plain':
raise TypeError(
f'{choice["type"]!r} is not a valid discriminated union variant;'
' should be a `BaseModel` or `dataclass`'
)
elif _core_utils.is_function_with_inner_schema(choice):
return self._infer_discriminator_values_for_choice(choice['schema'], source_name=source_name)
elif choice['type'] == 'lax-or-strict':
return sorted(
set(
self._infer_discriminator_values_for_choice(choice['lax_schema'], source_name=None)
+ self._infer_discriminator_values_for_choice(choice['strict_schema'], source_name=None)
)
)
elif choice['type'] == 'tagged-union':
values: list[str | int] = []
# Ignore str/int "choices" since these are just references to other choices
subchoices = [x for x in choice['choices'].values() if not isinstance(x, (str, int))]
for subchoice in subchoices:
subchoice_values = self._infer_discriminator_values_for_choice(subchoice, source_name=None)
values.extend(subchoice_values)
return values
elif choice['type'] == 'union':
values = []
for subchoice in choice['choices']:
subchoice_schema = subchoice[0] if isinstance(subchoice, tuple) else subchoice
subchoice_values = self._infer_discriminator_values_for_choice(subchoice_schema, source_name=None)
values.extend(subchoice_values)
return values
elif choice['type'] == 'nullable':
self._should_be_nullable = True
return self._infer_discriminator_values_for_choice(choice['schema'], source_name=None)
elif choice['type'] == 'model':
return self._infer_discriminator_values_for_choice(choice['schema'], source_name=choice['cls'].__name__)
elif choice['type'] == 'dataclass':
return self._infer_discriminator_values_for_choice(choice['schema'], source_name=choice['cls'].__name__)
elif choice['type'] == 'model-fields':
return self._infer_discriminator_values_for_model_choice(choice, source_name=source_name)
elif choice['type'] == 'dataclass-args':
return self._infer_discriminator_values_for_dataclass_choice(choice, source_name=source_name)
elif choice['type'] == 'typed-dict':
return self._infer_discriminator_values_for_typed_dict_choice(choice, source_name=source_name)
elif choice['type'] == 'definition-ref':
schema_ref = choice['schema_ref']
if schema_ref not in self.definitions:
raise MissingDefinitionForUnionRef(schema_ref)
return self._infer_discriminator_values_for_choice(self.definitions[schema_ref], source_name=source_name)
else:
raise TypeError(
f'{choice["type"]!r} is not a valid discriminated union variant;'
' should be a `BaseModel` or `dataclass`'
)
def _infer_discriminator_values_for_typed_dict_choice(
self, choice: core_schema.TypedDictSchema, source_name: str | None = None
) -> list[str | int]:
"""This method just extracts the _infer_discriminator_values_for_choice logic specific to TypedDictSchema
for the sake of readability.
"""
source = 'TypedDict' if source_name is None else f'TypedDict {source_name!r}'
field = choice['fields'].get(self.discriminator)
if field is None:
raise PydanticUserError(
f'{source} needs a discriminator field for key {self.discriminator!r}', code='discriminator-no-field'
)
return self._infer_discriminator_values_for_field(field, source)
def _infer_discriminator_values_for_model_choice(
self, choice: core_schema.ModelFieldsSchema, source_name: str | None = None
) -> list[str | int]:
source = 'ModelFields' if source_name is None else f'Model {source_name!r}'
field = choice['fields'].get(self.discriminator)
if field is None:
raise PydanticUserError(
f'{source} needs a discriminator field for key {self.discriminator!r}', code='discriminator-no-field'
)
return self._infer_discriminator_values_for_field(field, source)
def _infer_discriminator_values_for_dataclass_choice(
self, choice: core_schema.DataclassArgsSchema, source_name: str | None = None
) -> list[str | int]:
source = 'DataclassArgs' if source_name is None else f'Dataclass {source_name!r}'
for field in choice['fields']:
if field['name'] == self.discriminator:
break
else:
raise PydanticUserError(
f'{source} needs a discriminator field for key {self.discriminator!r}', code='discriminator-no-field'
)
return self._infer_discriminator_values_for_field(field, source)
def _infer_discriminator_values_for_field(self, field: CoreSchemaField, source: str) -> list[str | int]:
if field['type'] == 'computed-field':
# This should never occur as a discriminator, as it is only relevant to serialization
return []
alias = field.get('validation_alias', self.discriminator)
if not isinstance(alias, str):
raise PydanticUserError(
f'Alias {alias!r} is not supported in a discriminated union', code='discriminator-alias-type'
)
if self._discriminator_alias is None:
self._discriminator_alias = alias
elif self._discriminator_alias != alias:
raise PydanticUserError(
f'Aliases for discriminator {self.discriminator!r} must be the same '
f'(got {alias}, {self._discriminator_alias})',
code='discriminator-alias',
)
return self._infer_discriminator_values_for_inner_schema(field['schema'], source)
def _infer_discriminator_values_for_inner_schema(
self, schema: core_schema.CoreSchema, source: str
) -> list[str | int]:
"""When inferring discriminator values for a field, we typically extract the expected values from a literal
schema. This function does that, but also handles nested unions and defaults.
"""
if schema['type'] == 'literal':
return schema['expected']
elif schema['type'] == 'union':
# Generally when multiple values are allowed they should be placed in a single `Literal`, but
# we add this case to handle the situation where a field is annotated as a `Union` of `Literal`s.
# For example, this lets us handle `Union[Literal['key'], Union[Literal['Key'], Literal['KEY']]]`
values: list[Any] = []
for choice in schema['choices']:
choice_schema = choice[0] if isinstance(choice, tuple) else choice
choice_values = self._infer_discriminator_values_for_inner_schema(choice_schema, source)
values.extend(choice_values)
return values
elif schema['type'] == 'default':
# This will happen if the field has a default value; we ignore it while extracting the discriminator values
return self._infer_discriminator_values_for_inner_schema(schema['schema'], source)
elif schema['type'] == 'function-after':
# After validators don't affect the discriminator values
return self._infer_discriminator_values_for_inner_schema(schema['schema'], source)
elif schema['type'] in {'function-before', 'function-wrap', 'function-plain'}:
validator_type = repr(schema['type'].split('-')[1])
raise PydanticUserError(
f'Cannot use a mode={validator_type} validator in the'
f' discriminator field {self.discriminator!r} of {source}',
code='discriminator-validator',
)
else:
raise PydanticUserError(
f'{source} needs field {self.discriminator!r} to be of type `Literal`',
code='discriminator-needs-literal',
)
def _set_unique_choice_for_values(self, choice: core_schema.CoreSchema, values: Sequence[str | int]) -> None:
"""This method updates `self.tagged_union_choices` so that all provided (discriminator) `values` map to the
provided `choice`, validating that none of these values already map to another (different) choice.
"""
for discriminator_value in values:
if discriminator_value in self._tagged_union_choices:
# It is okay if `value` is already in tagged_union_choices as long as it maps to the same value.
# Because tagged_union_choices may map values to other values, we need to walk the choices dict
# until we get to a "real" choice, and confirm that is equal to the one assigned.
existing_choice = self._tagged_union_choices[discriminator_value]
if existing_choice != choice:
raise TypeError(
f'Value {discriminator_value!r} for discriminator '
f'{self.discriminator!r} mapped to multiple choices'
)
else:
self._tagged_union_choices[discriminator_value] = choice

View file

@ -0,0 +1,319 @@
"""Private logic related to fields (the `Field()` function and `FieldInfo` class), and arguments to `Annotated`."""
from __future__ import annotations as _annotations
import dataclasses
import sys
import warnings
from copy import copy
from functools import lru_cache
from typing import TYPE_CHECKING, Any
from pydantic_core import PydanticUndefined
from pydantic.errors import PydanticUserError
from . import _typing_extra
from ._config import ConfigWrapper
from ._repr import Representation
from ._typing_extra import get_cls_type_hints_lenient, get_type_hints, is_classvar, is_finalvar
if TYPE_CHECKING:
from annotated_types import BaseMetadata
from ..fields import FieldInfo
from ..main import BaseModel
from ._dataclasses import StandardDataclass
from ._decorators import DecoratorInfos
def get_type_hints_infer_globalns(
obj: Any,
localns: dict[str, Any] | None = None,
include_extras: bool = False,
) -> dict[str, Any]:
"""Gets type hints for an object by inferring the global namespace.
It uses the `typing.get_type_hints`, The only thing that we do here is fetching
global namespace from `obj.__module__` if it is not `None`.
Args:
obj: The object to get its type hints.
localns: The local namespaces.
include_extras: Whether to recursively include annotation metadata.
Returns:
The object type hints.
"""
module_name = getattr(obj, '__module__', None)
globalns: dict[str, Any] | None = None
if module_name:
try:
globalns = sys.modules[module_name].__dict__
except KeyError:
# happens occasionally, see https://github.com/pydantic/pydantic/issues/2363
pass
return get_type_hints(obj, globalns=globalns, localns=localns, include_extras=include_extras)
class PydanticMetadata(Representation):
"""Base class for annotation markers like `Strict`."""
__slots__ = ()
def pydantic_general_metadata(**metadata: Any) -> BaseMetadata:
"""Create a new `_PydanticGeneralMetadata` class with the given metadata.
Args:
**metadata: The metadata to add.
Returns:
The new `_PydanticGeneralMetadata` class.
"""
return _general_metadata_cls()(metadata) # type: ignore
@lru_cache(maxsize=None)
def _general_metadata_cls() -> type[BaseMetadata]:
"""Do it this way to avoid importing `annotated_types` at import time."""
from annotated_types import BaseMetadata
class _PydanticGeneralMetadata(PydanticMetadata, BaseMetadata):
"""Pydantic general metadata like `max_digits`."""
def __init__(self, metadata: Any):
self.__dict__ = metadata
return _PydanticGeneralMetadata # type: ignore
def collect_model_fields( # noqa: C901
cls: type[BaseModel],
bases: tuple[type[Any], ...],
config_wrapper: ConfigWrapper,
types_namespace: dict[str, Any] | None,
*,
typevars_map: dict[Any, Any] | None = None,
) -> tuple[dict[str, FieldInfo], set[str]]:
"""Collect the fields of a nascent pydantic model.
Also collect the names of any ClassVars present in the type hints.
The returned value is a tuple of two items: the fields dict, and the set of ClassVar names.
Args:
cls: BaseModel or dataclass.
bases: Parents of the class, generally `cls.__bases__`.
config_wrapper: The config wrapper instance.
types_namespace: Optional extra namespace to look for types in.
typevars_map: A dictionary mapping type variables to their concrete types.
Returns:
A tuple contains fields and class variables.
Raises:
NameError:
- If there is a conflict between a field name and protected namespaces.
- If there is a field other than `root` in `RootModel`.
- If a field shadows an attribute in the parent model.
"""
from ..fields import FieldInfo
type_hints = get_cls_type_hints_lenient(cls, types_namespace)
# https://docs.python.org/3/howto/annotations.html#accessing-the-annotations-dict-of-an-object-in-python-3-9-and-older
# annotations is only used for finding fields in parent classes
annotations = cls.__dict__.get('__annotations__', {})
fields: dict[str, FieldInfo] = {}
class_vars: set[str] = set()
for ann_name, ann_type in type_hints.items():
if ann_name == 'model_config':
# We never want to treat `model_config` as a field
# Note: we may need to change this logic if/when we introduce a `BareModel` class with no
# protected namespaces (where `model_config` might be allowed as a field name)
continue
for protected_namespace in config_wrapper.protected_namespaces:
if ann_name.startswith(protected_namespace):
for b in bases:
if hasattr(b, ann_name):
from ..main import BaseModel
if not (issubclass(b, BaseModel) and ann_name in b.model_fields):
raise NameError(
f'Field "{ann_name}" conflicts with member {getattr(b, ann_name)}'
f' of protected namespace "{protected_namespace}".'
)
else:
valid_namespaces = tuple(
x for x in config_wrapper.protected_namespaces if not ann_name.startswith(x)
)
warnings.warn(
f'Field "{ann_name}" has conflict with protected namespace "{protected_namespace}".'
'\n\nYou may be able to resolve this warning by setting'
f" `model_config['protected_namespaces'] = {valid_namespaces}`.",
UserWarning,
)
if is_classvar(ann_type):
class_vars.add(ann_name)
continue
if _is_finalvar_with_default_val(ann_type, getattr(cls, ann_name, PydanticUndefined)):
class_vars.add(ann_name)
continue
if not is_valid_field_name(ann_name):
continue
if cls.__pydantic_root_model__ and ann_name != 'root':
raise NameError(
f"Unexpected field with name {ann_name!r}; only 'root' is allowed as a field of a `RootModel`"
)
# when building a generic model with `MyModel[int]`, the generic_origin check makes sure we don't get
# "... shadows an attribute" errors
generic_origin = getattr(cls, '__pydantic_generic_metadata__', {}).get('origin')
for base in bases:
dataclass_fields = {
field.name for field in (dataclasses.fields(base) if dataclasses.is_dataclass(base) else ())
}
if hasattr(base, ann_name):
if base is generic_origin:
# Don't error when "shadowing" of attributes in parametrized generics
continue
if ann_name in dataclass_fields:
# Don't error when inheriting stdlib dataclasses whose fields are "shadowed" by defaults being set
# on the class instance.
continue
warnings.warn(
f'Field name "{ann_name}" shadows an attribute in parent "{base.__qualname__}"; ',
UserWarning,
)
try:
default = getattr(cls, ann_name, PydanticUndefined)
if default is PydanticUndefined:
raise AttributeError
except AttributeError:
if ann_name in annotations:
field_info = FieldInfo.from_annotation(ann_type)
else:
# if field has no default value and is not in __annotations__ this means that it is
# defined in a base class and we can take it from there
model_fields_lookup: dict[str, FieldInfo] = {}
for x in cls.__bases__[::-1]:
model_fields_lookup.update(getattr(x, 'model_fields', {}))
if ann_name in model_fields_lookup:
# The field was present on one of the (possibly multiple) base classes
# copy the field to make sure typevar substitutions don't cause issues with the base classes
field_info = copy(model_fields_lookup[ann_name])
else:
# The field was not found on any base classes; this seems to be caused by fields not getting
# generated thanks to models not being fully defined while initializing recursive models.
# Nothing stops us from just creating a new FieldInfo for this type hint, so we do this.
field_info = FieldInfo.from_annotation(ann_type)
else:
field_info = FieldInfo.from_annotated_attribute(ann_type, default)
# attributes which are fields are removed from the class namespace:
# 1. To match the behaviour of annotation-only fields
# 2. To avoid false positives in the NameError check above
try:
delattr(cls, ann_name)
except AttributeError:
pass # indicates the attribute was on a parent class
# Use cls.__dict__['__pydantic_decorators__'] instead of cls.__pydantic_decorators__
# to make sure the decorators have already been built for this exact class
decorators: DecoratorInfos = cls.__dict__['__pydantic_decorators__']
if ann_name in decorators.computed_fields:
raise ValueError("you can't override a field with a computed field")
fields[ann_name] = field_info
if typevars_map:
for field in fields.values():
field.apply_typevars_map(typevars_map, types_namespace)
return fields, class_vars
def _is_finalvar_with_default_val(type_: type[Any], val: Any) -> bool:
from ..fields import FieldInfo
if not is_finalvar(type_):
return False
elif val is PydanticUndefined:
return False
elif isinstance(val, FieldInfo) and (val.default is PydanticUndefined and val.default_factory is None):
return False
else:
return True
def collect_dataclass_fields(
cls: type[StandardDataclass], types_namespace: dict[str, Any] | None, *, typevars_map: dict[Any, Any] | None = None
) -> dict[str, FieldInfo]:
"""Collect the fields of a dataclass.
Args:
cls: dataclass.
types_namespace: Optional extra namespace to look for types in.
typevars_map: A dictionary mapping type variables to their concrete types.
Returns:
The dataclass fields.
"""
from ..fields import FieldInfo
fields: dict[str, FieldInfo] = {}
dataclass_fields: dict[str, dataclasses.Field] = cls.__dataclass_fields__
cls_localns = dict(vars(cls)) # this matches get_cls_type_hints_lenient, but all tests pass with `= None` instead
source_module = sys.modules.get(cls.__module__)
if source_module is not None:
types_namespace = {**source_module.__dict__, **(types_namespace or {})}
for ann_name, dataclass_field in dataclass_fields.items():
ann_type = _typing_extra.eval_type_lenient(dataclass_field.type, types_namespace, cls_localns)
if is_classvar(ann_type):
continue
if (
not dataclass_field.init
and dataclass_field.default == dataclasses.MISSING
and dataclass_field.default_factory == dataclasses.MISSING
):
# TODO: We should probably do something with this so that validate_assignment behaves properly
# Issue: https://github.com/pydantic/pydantic/issues/5470
continue
if isinstance(dataclass_field.default, FieldInfo):
if dataclass_field.default.init_var:
if dataclass_field.default.init is False:
raise PydanticUserError(
f'Dataclass field {ann_name} has init=False and init_var=True, but these are mutually exclusive.',
code='clashing-init-and-init-var',
)
# TODO: same note as above re validate_assignment
continue
field_info = FieldInfo.from_annotated_attribute(ann_type, dataclass_field.default)
else:
field_info = FieldInfo.from_annotated_attribute(ann_type, dataclass_field)
fields[ann_name] = field_info
if field_info.default is not PydanticUndefined and isinstance(getattr(cls, ann_name, field_info), FieldInfo):
# We need this to fix the default when the "default" from __dataclass_fields__ is a pydantic.FieldInfo
setattr(cls, ann_name, field_info.default)
if typevars_map:
for field in fields.values():
field.apply_typevars_map(typevars_map, types_namespace)
return fields
def is_valid_field_name(name: str) -> bool:
return not name.startswith('_')
def is_valid_privateattr_name(name: str) -> bool:
return name.startswith('_') and not name.startswith('__')

View file

@ -0,0 +1,23 @@
from __future__ import annotations as _annotations
from dataclasses import dataclass
from typing import Union
@dataclass
class PydanticRecursiveRef:
type_ref: str
__name__ = 'PydanticRecursiveRef'
__hash__ = object.__hash__
def __call__(self) -> None:
"""Defining __call__ is necessary for the `typing` module to let you use an instance of
this class as the result of resolving a standard ForwardRef.
"""
def __or__(self, other):
return Union[self, other] # type: ignore
def __ror__(self, other):
return Union[other, self] # type: ignore

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,517 @@
from __future__ import annotations
import sys
import types
import typing
from collections import ChainMap
from contextlib import contextmanager
from contextvars import ContextVar
from types import prepare_class
from typing import TYPE_CHECKING, Any, Iterator, List, Mapping, MutableMapping, Tuple, TypeVar
from weakref import WeakValueDictionary
import typing_extensions
from ._core_utils import get_type_ref
from ._forward_ref import PydanticRecursiveRef
from ._typing_extra import TypeVarType, typing_base
from ._utils import all_identical, is_model_class
if sys.version_info >= (3, 10):
from typing import _UnionGenericAlias # type: ignore[attr-defined]
if TYPE_CHECKING:
from ..main import BaseModel
GenericTypesCacheKey = Tuple[Any, Any, Tuple[Any, ...]]
# Note: We want to remove LimitedDict, but to do this, we'd need to improve the handling of generics caching.
# Right now, to handle recursive generics, we some types must remain cached for brief periods without references.
# By chaining the WeakValuesDict with a LimitedDict, we have a way to retain caching for all types with references,
# while also retaining a limited number of types even without references. This is generally enough to build
# specific recursive generic models without losing required items out of the cache.
KT = TypeVar('KT')
VT = TypeVar('VT')
_LIMITED_DICT_SIZE = 100
if TYPE_CHECKING:
class LimitedDict(dict, MutableMapping[KT, VT]):
def __init__(self, size_limit: int = _LIMITED_DICT_SIZE):
...
else:
class LimitedDict(dict):
"""Limit the size/length of a dict used for caching to avoid unlimited increase in memory usage.
Since the dict is ordered, and we always remove elements from the beginning, this is effectively a FIFO cache.
"""
def __init__(self, size_limit: int = _LIMITED_DICT_SIZE):
self.size_limit = size_limit
super().__init__()
def __setitem__(self, __key: Any, __value: Any) -> None:
super().__setitem__(__key, __value)
if len(self) > self.size_limit:
excess = len(self) - self.size_limit + self.size_limit // 10
to_remove = list(self.keys())[:excess]
for key in to_remove:
del self[key]
# weak dictionaries allow the dynamically created parametrized versions of generic models to get collected
# once they are no longer referenced by the caller.
if sys.version_info >= (3, 9): # Typing for weak dictionaries available at 3.9
GenericTypesCache = WeakValueDictionary[GenericTypesCacheKey, 'type[BaseModel]']
else:
GenericTypesCache = WeakValueDictionary
if TYPE_CHECKING:
class DeepChainMap(ChainMap[KT, VT]): # type: ignore
...
else:
class DeepChainMap(ChainMap):
"""Variant of ChainMap that allows direct updates to inner scopes.
Taken from https://docs.python.org/3/library/collections.html#collections.ChainMap,
with some light modifications for this use case.
"""
def clear(self) -> None:
for mapping in self.maps:
mapping.clear()
def __setitem__(self, key: KT, value: VT) -> None:
for mapping in self.maps:
mapping[key] = value
def __delitem__(self, key: KT) -> None:
hit = False
for mapping in self.maps:
if key in mapping:
del mapping[key]
hit = True
if not hit:
raise KeyError(key)
# Despite the fact that LimitedDict _seems_ no longer necessary, I'm very nervous to actually remove it
# and discover later on that we need to re-add all this infrastructure...
# _GENERIC_TYPES_CACHE = DeepChainMap(GenericTypesCache(), LimitedDict())
_GENERIC_TYPES_CACHE = GenericTypesCache()
class PydanticGenericMetadata(typing_extensions.TypedDict):
origin: type[BaseModel] | None # analogous to typing._GenericAlias.__origin__
args: tuple[Any, ...] # analogous to typing._GenericAlias.__args__
parameters: tuple[type[Any], ...] # analogous to typing.Generic.__parameters__
def create_generic_submodel(
model_name: str, origin: type[BaseModel], args: tuple[Any, ...], params: tuple[Any, ...]
) -> type[BaseModel]:
"""Dynamically create a submodel of a provided (generic) BaseModel.
This is used when producing concrete parametrizations of generic models. This function
only *creates* the new subclass; the schema/validators/serialization must be updated to
reflect a concrete parametrization elsewhere.
Args:
model_name: The name of the newly created model.
origin: The base class for the new model to inherit from.
args: A tuple of generic metadata arguments.
params: A tuple of generic metadata parameters.
Returns:
The created submodel.
"""
namespace: dict[str, Any] = {'__module__': origin.__module__}
bases = (origin,)
meta, ns, kwds = prepare_class(model_name, bases)
namespace.update(ns)
created_model = meta(
model_name,
bases,
namespace,
__pydantic_generic_metadata__={
'origin': origin,
'args': args,
'parameters': params,
},
__pydantic_reset_parent_namespace__=False,
**kwds,
)
model_module, called_globally = _get_caller_frame_info(depth=3)
if called_globally: # create global reference and therefore allow pickling
object_by_reference = None
reference_name = model_name
reference_module_globals = sys.modules[created_model.__module__].__dict__
while object_by_reference is not created_model:
object_by_reference = reference_module_globals.setdefault(reference_name, created_model)
reference_name += '_'
return created_model
def _get_caller_frame_info(depth: int = 2) -> tuple[str | None, bool]:
"""Used inside a function to check whether it was called globally.
Args:
depth: The depth to get the frame.
Returns:
A tuple contains `module_name` and `called_globally`.
Raises:
RuntimeError: If the function is not called inside a function.
"""
try:
previous_caller_frame = sys._getframe(depth)
except ValueError as e:
raise RuntimeError('This function must be used inside another function') from e
except AttributeError: # sys module does not have _getframe function, so there's nothing we can do about it
return None, False
frame_globals = previous_caller_frame.f_globals
return frame_globals.get('__name__'), previous_caller_frame.f_locals is frame_globals
DictValues: type[Any] = {}.values().__class__
def iter_contained_typevars(v: Any) -> Iterator[TypeVarType]:
"""Recursively iterate through all subtypes and type args of `v` and yield any typevars that are found.
This is inspired as an alternative to directly accessing the `__parameters__` attribute of a GenericAlias,
since __parameters__ of (nested) generic BaseModel subclasses won't show up in that list.
"""
if isinstance(v, TypeVar):
yield v
elif is_model_class(v):
yield from v.__pydantic_generic_metadata__['parameters']
elif isinstance(v, (DictValues, list)):
for var in v:
yield from iter_contained_typevars(var)
else:
args = get_args(v)
for arg in args:
yield from iter_contained_typevars(arg)
def get_args(v: Any) -> Any:
pydantic_generic_metadata: PydanticGenericMetadata | None = getattr(v, '__pydantic_generic_metadata__', None)
if pydantic_generic_metadata:
return pydantic_generic_metadata.get('args')
return typing_extensions.get_args(v)
def get_origin(v: Any) -> Any:
pydantic_generic_metadata: PydanticGenericMetadata | None = getattr(v, '__pydantic_generic_metadata__', None)
if pydantic_generic_metadata:
return pydantic_generic_metadata.get('origin')
return typing_extensions.get_origin(v)
def get_standard_typevars_map(cls: type[Any]) -> dict[TypeVarType, Any] | None:
"""Package a generic type's typevars and parametrization (if present) into a dictionary compatible with the
`replace_types` function. Specifically, this works with standard typing generics and typing._GenericAlias.
"""
origin = get_origin(cls)
if origin is None:
return None
if not hasattr(origin, '__parameters__'):
return None
# In this case, we know that cls is a _GenericAlias, and origin is the generic type
# So it is safe to access cls.__args__ and origin.__parameters__
args: tuple[Any, ...] = cls.__args__ # type: ignore
parameters: tuple[TypeVarType, ...] = origin.__parameters__
return dict(zip(parameters, args))
def get_model_typevars_map(cls: type[BaseModel]) -> dict[TypeVarType, Any] | None:
"""Package a generic BaseModel's typevars and concrete parametrization (if present) into a dictionary compatible
with the `replace_types` function.
Since BaseModel.__class_getitem__ does not produce a typing._GenericAlias, and the BaseModel generic info is
stored in the __pydantic_generic_metadata__ attribute, we need special handling here.
"""
# TODO: This could be unified with `get_standard_typevars_map` if we stored the generic metadata
# in the __origin__, __args__, and __parameters__ attributes of the model.
generic_metadata = cls.__pydantic_generic_metadata__
origin = generic_metadata['origin']
args = generic_metadata['args']
return dict(zip(iter_contained_typevars(origin), args))
def replace_types(type_: Any, type_map: Mapping[Any, Any] | None) -> Any:
"""Return type with all occurrences of `type_map` keys recursively replaced with their values.
Args:
type_: The class or generic alias.
type_map: Mapping from `TypeVar` instance to concrete types.
Returns:
A new type representing the basic structure of `type_` with all
`typevar_map` keys recursively replaced.
Example:
```py
from typing import List, Tuple, Union
from pydantic._internal._generics import replace_types
replace_types(Tuple[str, Union[List[str], float]], {str: int})
#> Tuple[int, Union[List[int], float]]
```
"""
if not type_map:
return type_
type_args = get_args(type_)
origin_type = get_origin(type_)
if origin_type is typing_extensions.Annotated:
annotated_type, *annotations = type_args
annotated = replace_types(annotated_type, type_map)
for annotation in annotations:
annotated = typing_extensions.Annotated[annotated, annotation]
return annotated
# Having type args is a good indicator that this is a typing module
# class instantiation or a generic alias of some sort.
if type_args:
resolved_type_args = tuple(replace_types(arg, type_map) for arg in type_args)
if all_identical(type_args, resolved_type_args):
# If all arguments are the same, there is no need to modify the
# type or create a new object at all
return type_
if (
origin_type is not None
and isinstance(type_, typing_base)
and not isinstance(origin_type, typing_base)
and getattr(type_, '_name', None) is not None
):
# In python < 3.9 generic aliases don't exist so any of these like `list`,
# `type` or `collections.abc.Callable` need to be translated.
# See: https://www.python.org/dev/peps/pep-0585
origin_type = getattr(typing, type_._name)
assert origin_type is not None
# PEP-604 syntax (Ex.: list | str) is represented with a types.UnionType object that does not have __getitem__.
# We also cannot use isinstance() since we have to compare types.
if sys.version_info >= (3, 10) and origin_type is types.UnionType:
return _UnionGenericAlias(origin_type, resolved_type_args)
# NotRequired[T] and Required[T] don't support tuple type resolved_type_args, hence the condition below
return origin_type[resolved_type_args[0] if len(resolved_type_args) == 1 else resolved_type_args]
# We handle pydantic generic models separately as they don't have the same
# semantics as "typing" classes or generic aliases
if not origin_type and is_model_class(type_):
parameters = type_.__pydantic_generic_metadata__['parameters']
if not parameters:
return type_
resolved_type_args = tuple(replace_types(t, type_map) for t in parameters)
if all_identical(parameters, resolved_type_args):
return type_
return type_[resolved_type_args]
# Handle special case for typehints that can have lists as arguments.
# `typing.Callable[[int, str], int]` is an example for this.
if isinstance(type_, (List, list)):
resolved_list = list(replace_types(element, type_map) for element in type_)
if all_identical(type_, resolved_list):
return type_
return resolved_list
# If all else fails, we try to resolve the type directly and otherwise just
# return the input with no modifications.
return type_map.get(type_, type_)
def has_instance_in_type(type_: Any, isinstance_target: Any) -> bool:
"""Checks if the type, or any of its arbitrary nested args, satisfy
`isinstance(<type>, isinstance_target)`.
"""
if isinstance(type_, isinstance_target):
return True
type_args = get_args(type_)
origin_type = get_origin(type_)
if origin_type is typing_extensions.Annotated:
annotated_type, *annotations = type_args
return has_instance_in_type(annotated_type, isinstance_target)
# Having type args is a good indicator that this is a typing module
# class instantiation or a generic alias of some sort.
if any(has_instance_in_type(a, isinstance_target) for a in type_args):
return True
# Handle special case for typehints that can have lists as arguments.
# `typing.Callable[[int, str], int]` is an example for this.
if isinstance(type_, (List, list)) and not isinstance(type_, typing_extensions.ParamSpec):
if any(has_instance_in_type(element, isinstance_target) for element in type_):
return True
return False
def check_parameters_count(cls: type[BaseModel], parameters: tuple[Any, ...]) -> None:
"""Check the generic model parameters count is equal.
Args:
cls: The generic model.
parameters: A tuple of passed parameters to the generic model.
Raises:
TypeError: If the passed parameters count is not equal to generic model parameters count.
"""
actual = len(parameters)
expected = len(cls.__pydantic_generic_metadata__['parameters'])
if actual != expected:
description = 'many' if actual > expected else 'few'
raise TypeError(f'Too {description} parameters for {cls}; actual {actual}, expected {expected}')
_generic_recursion_cache: ContextVar[set[str] | None] = ContextVar('_generic_recursion_cache', default=None)
@contextmanager
def generic_recursion_self_type(
origin: type[BaseModel], args: tuple[Any, ...]
) -> Iterator[PydanticRecursiveRef | None]:
"""This contextmanager should be placed around the recursive calls used to build a generic type,
and accept as arguments the generic origin type and the type arguments being passed to it.
If the same origin and arguments are observed twice, it implies that a self-reference placeholder
can be used while building the core schema, and will produce a schema_ref that will be valid in the
final parent schema.
"""
previously_seen_type_refs = _generic_recursion_cache.get()
if previously_seen_type_refs is None:
previously_seen_type_refs = set()
token = _generic_recursion_cache.set(previously_seen_type_refs)
else:
token = None
try:
type_ref = get_type_ref(origin, args_override=args)
if type_ref in previously_seen_type_refs:
self_type = PydanticRecursiveRef(type_ref=type_ref)
yield self_type
else:
previously_seen_type_refs.add(type_ref)
yield None
finally:
if token:
_generic_recursion_cache.reset(token)
def recursively_defined_type_refs() -> set[str]:
visited = _generic_recursion_cache.get()
if not visited:
return set() # not in a generic recursion, so there are no types
return visited.copy() # don't allow modifications
def get_cached_generic_type_early(parent: type[BaseModel], typevar_values: Any) -> type[BaseModel] | None:
"""The use of a two-stage cache lookup approach was necessary to have the highest performance possible for
repeated calls to `__class_getitem__` on generic types (which may happen in tighter loops during runtime),
while still ensuring that certain alternative parametrizations ultimately resolve to the same type.
As a concrete example, this approach was necessary to make Model[List[T]][int] equal to Model[List[int]].
The approach could be modified to not use two different cache keys at different points, but the
_early_cache_key is optimized to be as quick to compute as possible (for repeated-access speed), and the
_late_cache_key is optimized to be as "correct" as possible, so that two types that will ultimately be the
same after resolving the type arguments will always produce cache hits.
If we wanted to move to only using a single cache key per type, we would either need to always use the
slower/more computationally intensive logic associated with _late_cache_key, or would need to accept
that Model[List[T]][int] is a different type than Model[List[T]][int]. Because we rely on subclass relationships
during validation, I think it is worthwhile to ensure that types that are functionally equivalent are actually
equal.
"""
return _GENERIC_TYPES_CACHE.get(_early_cache_key(parent, typevar_values))
def get_cached_generic_type_late(
parent: type[BaseModel], typevar_values: Any, origin: type[BaseModel], args: tuple[Any, ...]
) -> type[BaseModel] | None:
"""See the docstring of `get_cached_generic_type_early` for more information about the two-stage cache lookup."""
cached = _GENERIC_TYPES_CACHE.get(_late_cache_key(origin, args, typevar_values))
if cached is not None:
set_cached_generic_type(parent, typevar_values, cached, origin, args)
return cached
def set_cached_generic_type(
parent: type[BaseModel],
typevar_values: tuple[Any, ...],
type_: type[BaseModel],
origin: type[BaseModel] | None = None,
args: tuple[Any, ...] | None = None,
) -> None:
"""See the docstring of `get_cached_generic_type_early` for more information about why items are cached with
two different keys.
"""
_GENERIC_TYPES_CACHE[_early_cache_key(parent, typevar_values)] = type_
if len(typevar_values) == 1:
_GENERIC_TYPES_CACHE[_early_cache_key(parent, typevar_values[0])] = type_
if origin and args:
_GENERIC_TYPES_CACHE[_late_cache_key(origin, args, typevar_values)] = type_
def _union_orderings_key(typevar_values: Any) -> Any:
"""This is intended to help differentiate between Union types with the same arguments in different order.
Thanks to caching internal to the `typing` module, it is not possible to distinguish between
List[Union[int, float]] and List[Union[float, int]] (and similarly for other "parent" origins besides List)
because `typing` considers Union[int, float] to be equal to Union[float, int].
However, you _can_ distinguish between (top-level) Union[int, float] vs. Union[float, int].
Because we parse items as the first Union type that is successful, we get slightly more consistent behavior
if we make an effort to distinguish the ordering of items in a union. It would be best if we could _always_
get the exact-correct order of items in the union, but that would require a change to the `typing` module itself.
(See https://github.com/python/cpython/issues/86483 for reference.)
"""
if isinstance(typevar_values, tuple):
args_data = []
for value in typevar_values:
args_data.append(_union_orderings_key(value))
return tuple(args_data)
elif typing_extensions.get_origin(typevar_values) is typing.Union:
return get_args(typevar_values)
else:
return ()
def _early_cache_key(cls: type[BaseModel], typevar_values: Any) -> GenericTypesCacheKey:
"""This is intended for minimal computational overhead during lookups of cached types.
Note that this is overly simplistic, and it's possible that two different cls/typevar_values
inputs would ultimately result in the same type being created in BaseModel.__class_getitem__.
To handle this, we have a fallback _late_cache_key that is checked later if the _early_cache_key
lookup fails, and should result in a cache hit _precisely_ when the inputs to __class_getitem__
would result in the same type.
"""
return cls, typevar_values, _union_orderings_key(typevar_values)
def _late_cache_key(origin: type[BaseModel], args: tuple[Any, ...], typevar_values: Any) -> GenericTypesCacheKey:
"""This is intended for use later in the process of creating a new type, when we have more information
about the exact args that will be passed. If it turns out that a different set of inputs to
__class_getitem__ resulted in the same inputs to the generic type creation process, we can still
return the cached type, and update the cache with the _early_cache_key as well.
"""
# The _union_orderings_key is placed at the start here to ensure there cannot be a collision with an
# _early_cache_key, as that function will always produce a BaseModel subclass as the first item in the key,
# whereas this function will always produce a tuple as the first item in the key.
return _union_orderings_key(typevar_values), origin, args

View file

@ -0,0 +1,26 @@
"""Git utilities, adopted from mypy's git utilities (https://github.com/python/mypy/blob/master/mypy/git.py)."""
from __future__ import annotations
import os
import subprocess
def is_git_repo(dir: str) -> bool:
"""Is the given directory version-controlled with git?"""
return os.path.exists(os.path.join(dir, '.git'))
def have_git() -> bool:
"""Can we run the git executable?"""
try:
subprocess.check_output(['git', '--help'])
return True
except subprocess.CalledProcessError:
return False
except OSError:
return False
def git_revision(dir: str) -> str:
"""Get the SHA-1 of the HEAD of a git repository."""
return subprocess.check_output(['git', 'rev-parse', '--short', 'HEAD'], cwd=dir).decode('utf-8').strip()

View file

@ -0,0 +1,10 @@
import sys
from typing import Any, Dict
dataclass_kwargs: Dict[str, Any]
# `slots` is available on Python >= 3.10
if sys.version_info >= (3, 10):
slots_true = {'slots': True}
else:
slots_true = {}

View file

@ -0,0 +1,410 @@
from __future__ import annotations
from collections import defaultdict
from copy import copy
from functools import partial
from typing import TYPE_CHECKING, Any, Callable, Iterable
from pydantic_core import CoreSchema, PydanticCustomError, to_jsonable_python
from pydantic_core import core_schema as cs
from ._fields import PydanticMetadata
if TYPE_CHECKING:
from ..annotated_handlers import GetJsonSchemaHandler
STRICT = {'strict'}
SEQUENCE_CONSTRAINTS = {'min_length', 'max_length'}
INEQUALITY = {'le', 'ge', 'lt', 'gt'}
NUMERIC_CONSTRAINTS = {'multiple_of', 'allow_inf_nan', *INEQUALITY}
STR_CONSTRAINTS = {*SEQUENCE_CONSTRAINTS, *STRICT, 'strip_whitespace', 'to_lower', 'to_upper', 'pattern'}
BYTES_CONSTRAINTS = {*SEQUENCE_CONSTRAINTS, *STRICT}
LIST_CONSTRAINTS = {*SEQUENCE_CONSTRAINTS, *STRICT}
TUPLE_CONSTRAINTS = {*SEQUENCE_CONSTRAINTS, *STRICT}
SET_CONSTRAINTS = {*SEQUENCE_CONSTRAINTS, *STRICT}
DICT_CONSTRAINTS = {*SEQUENCE_CONSTRAINTS, *STRICT}
GENERATOR_CONSTRAINTS = {*SEQUENCE_CONSTRAINTS, *STRICT}
FLOAT_CONSTRAINTS = {*NUMERIC_CONSTRAINTS, *STRICT}
INT_CONSTRAINTS = {*NUMERIC_CONSTRAINTS, *STRICT}
BOOL_CONSTRAINTS = STRICT
UUID_CONSTRAINTS = STRICT
DATE_TIME_CONSTRAINTS = {*NUMERIC_CONSTRAINTS, *STRICT}
TIMEDELTA_CONSTRAINTS = {*NUMERIC_CONSTRAINTS, *STRICT}
TIME_CONSTRAINTS = {*NUMERIC_CONSTRAINTS, *STRICT}
LAX_OR_STRICT_CONSTRAINTS = STRICT
UNION_CONSTRAINTS = {'union_mode'}
URL_CONSTRAINTS = {
'max_length',
'allowed_schemes',
'host_required',
'default_host',
'default_port',
'default_path',
}
TEXT_SCHEMA_TYPES = ('str', 'bytes', 'url', 'multi-host-url')
SEQUENCE_SCHEMA_TYPES = ('list', 'tuple', 'set', 'frozenset', 'generator', *TEXT_SCHEMA_TYPES)
NUMERIC_SCHEMA_TYPES = ('float', 'int', 'date', 'time', 'timedelta', 'datetime')
CONSTRAINTS_TO_ALLOWED_SCHEMAS: dict[str, set[str]] = defaultdict(set)
for constraint in STR_CONSTRAINTS:
CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(TEXT_SCHEMA_TYPES)
for constraint in BYTES_CONSTRAINTS:
CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('bytes',))
for constraint in LIST_CONSTRAINTS:
CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('list',))
for constraint in TUPLE_CONSTRAINTS:
CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('tuple',))
for constraint in SET_CONSTRAINTS:
CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('set', 'frozenset'))
for constraint in DICT_CONSTRAINTS:
CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('dict',))
for constraint in GENERATOR_CONSTRAINTS:
CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('generator',))
for constraint in FLOAT_CONSTRAINTS:
CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('float',))
for constraint in INT_CONSTRAINTS:
CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('int',))
for constraint in DATE_TIME_CONSTRAINTS:
CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('date', 'time', 'datetime'))
for constraint in TIMEDELTA_CONSTRAINTS:
CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('timedelta',))
for constraint in TIME_CONSTRAINTS:
CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('time',))
for schema_type in (*TEXT_SCHEMA_TYPES, *SEQUENCE_SCHEMA_TYPES, *NUMERIC_SCHEMA_TYPES, 'typed-dict', 'model'):
CONSTRAINTS_TO_ALLOWED_SCHEMAS['strict'].add(schema_type)
for constraint in UNION_CONSTRAINTS:
CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('union',))
for constraint in URL_CONSTRAINTS:
CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('url', 'multi-host-url'))
for constraint in BOOL_CONSTRAINTS:
CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('bool',))
for constraint in UUID_CONSTRAINTS:
CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('uuid',))
for constraint in LAX_OR_STRICT_CONSTRAINTS:
CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint].update(('lax-or-strict',))
def add_js_update_schema(s: cs.CoreSchema, f: Callable[[], dict[str, Any]]) -> None:
def update_js_schema(s: cs.CoreSchema, handler: GetJsonSchemaHandler) -> dict[str, Any]:
js_schema = handler(s)
js_schema.update(f())
return js_schema
if 'metadata' in s:
metadata = s['metadata']
if 'pydantic_js_functions' in s:
metadata['pydantic_js_functions'].append(update_js_schema)
else:
metadata['pydantic_js_functions'] = [update_js_schema]
else:
s['metadata'] = {'pydantic_js_functions': [update_js_schema]}
def as_jsonable_value(v: Any) -> Any:
if type(v) not in (int, str, float, bytes, bool, type(None)):
return to_jsonable_python(v)
return v
def expand_grouped_metadata(annotations: Iterable[Any]) -> Iterable[Any]:
"""Expand the annotations.
Args:
annotations: An iterable of annotations.
Returns:
An iterable of expanded annotations.
Example:
```py
from annotated_types import Ge, Len
from pydantic._internal._known_annotated_metadata import expand_grouped_metadata
print(list(expand_grouped_metadata([Ge(4), Len(5)])))
#> [Ge(ge=4), MinLen(min_length=5)]
```
"""
import annotated_types as at
from pydantic.fields import FieldInfo # circular import
for annotation in annotations:
if isinstance(annotation, at.GroupedMetadata):
yield from annotation
elif isinstance(annotation, FieldInfo):
yield from annotation.metadata
# this is a bit problematic in that it results in duplicate metadata
# all of our "consumers" can handle it, but it is not ideal
# we probably should split up FieldInfo into:
# - annotated types metadata
# - individual metadata known only to Pydantic
annotation = copy(annotation)
annotation.metadata = []
yield annotation
else:
yield annotation
def apply_known_metadata(annotation: Any, schema: CoreSchema) -> CoreSchema | None: # noqa: C901
"""Apply `annotation` to `schema` if it is an annotation we know about (Gt, Le, etc.).
Otherwise return `None`.
This does not handle all known annotations. If / when it does, it can always
return a CoreSchema and return the unmodified schema if the annotation should be ignored.
Assumes that GroupedMetadata has already been expanded via `expand_grouped_metadata`.
Args:
annotation: The annotation.
schema: The schema.
Returns:
An updated schema with annotation if it is an annotation we know about, `None` otherwise.
Raises:
PydanticCustomError: If `Predicate` fails.
"""
import annotated_types as at
from . import _validators
schema = schema.copy()
schema_update, other_metadata = collect_known_metadata([annotation])
schema_type = schema['type']
for constraint, value in schema_update.items():
if constraint not in CONSTRAINTS_TO_ALLOWED_SCHEMAS:
raise ValueError(f'Unknown constraint {constraint}')
allowed_schemas = CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint]
if schema_type in allowed_schemas:
if constraint == 'union_mode' and schema_type == 'union':
schema['mode'] = value # type: ignore # schema is UnionSchema
else:
schema[constraint] = value
continue
if constraint == 'allow_inf_nan' and value is False:
return cs.no_info_after_validator_function(
_validators.forbid_inf_nan_check,
schema,
)
elif constraint == 'pattern':
# insert a str schema to make sure the regex engine matches
return cs.chain_schema(
[
schema,
cs.str_schema(pattern=value),
]
)
elif constraint == 'gt':
s = cs.no_info_after_validator_function(
partial(_validators.greater_than_validator, gt=value),
schema,
)
add_js_update_schema(s, lambda: {'gt': as_jsonable_value(value)})
return s
elif constraint == 'ge':
return cs.no_info_after_validator_function(
partial(_validators.greater_than_or_equal_validator, ge=value),
schema,
)
elif constraint == 'lt':
return cs.no_info_after_validator_function(
partial(_validators.less_than_validator, lt=value),
schema,
)
elif constraint == 'le':
return cs.no_info_after_validator_function(
partial(_validators.less_than_or_equal_validator, le=value),
schema,
)
elif constraint == 'multiple_of':
return cs.no_info_after_validator_function(
partial(_validators.multiple_of_validator, multiple_of=value),
schema,
)
elif constraint == 'min_length':
s = cs.no_info_after_validator_function(
partial(_validators.min_length_validator, min_length=value),
schema,
)
add_js_update_schema(s, lambda: {'minLength': (as_jsonable_value(value))})
return s
elif constraint == 'max_length':
s = cs.no_info_after_validator_function(
partial(_validators.max_length_validator, max_length=value),
schema,
)
add_js_update_schema(s, lambda: {'maxLength': (as_jsonable_value(value))})
return s
elif constraint == 'strip_whitespace':
return cs.chain_schema(
[
schema,
cs.str_schema(strip_whitespace=True),
]
)
elif constraint == 'to_lower':
return cs.chain_schema(
[
schema,
cs.str_schema(to_lower=True),
]
)
elif constraint == 'to_upper':
return cs.chain_schema(
[
schema,
cs.str_schema(to_upper=True),
]
)
elif constraint == 'min_length':
return cs.no_info_after_validator_function(
partial(_validators.min_length_validator, min_length=annotation.min_length),
schema,
)
elif constraint == 'max_length':
return cs.no_info_after_validator_function(
partial(_validators.max_length_validator, max_length=annotation.max_length),
schema,
)
else:
raise RuntimeError(f'Unable to apply constraint {constraint} to schema {schema_type}')
for annotation in other_metadata:
if isinstance(annotation, at.Gt):
return cs.no_info_after_validator_function(
partial(_validators.greater_than_validator, gt=annotation.gt),
schema,
)
elif isinstance(annotation, at.Ge):
return cs.no_info_after_validator_function(
partial(_validators.greater_than_or_equal_validator, ge=annotation.ge),
schema,
)
elif isinstance(annotation, at.Lt):
return cs.no_info_after_validator_function(
partial(_validators.less_than_validator, lt=annotation.lt),
schema,
)
elif isinstance(annotation, at.Le):
return cs.no_info_after_validator_function(
partial(_validators.less_than_or_equal_validator, le=annotation.le),
schema,
)
elif isinstance(annotation, at.MultipleOf):
return cs.no_info_after_validator_function(
partial(_validators.multiple_of_validator, multiple_of=annotation.multiple_of),
schema,
)
elif isinstance(annotation, at.MinLen):
return cs.no_info_after_validator_function(
partial(_validators.min_length_validator, min_length=annotation.min_length),
schema,
)
elif isinstance(annotation, at.MaxLen):
return cs.no_info_after_validator_function(
partial(_validators.max_length_validator, max_length=annotation.max_length),
schema,
)
elif isinstance(annotation, at.Predicate):
predicate_name = f'{annotation.func.__qualname__} ' if hasattr(annotation.func, '__qualname__') else ''
def val_func(v: Any) -> Any:
# annotation.func may also raise an exception, let it pass through
if not annotation.func(v):
raise PydanticCustomError(
'predicate_failed',
f'Predicate {predicate_name}failed', # type: ignore
)
return v
return cs.no_info_after_validator_function(val_func, schema)
# ignore any other unknown metadata
return None
return schema
def collect_known_metadata(annotations: Iterable[Any]) -> tuple[dict[str, Any], list[Any]]:
"""Split `annotations` into known metadata and unknown annotations.
Args:
annotations: An iterable of annotations.
Returns:
A tuple contains a dict of known metadata and a list of unknown annotations.
Example:
```py
from annotated_types import Gt, Len
from pydantic._internal._known_annotated_metadata import collect_known_metadata
print(collect_known_metadata([Gt(1), Len(42), ...]))
#> ({'gt': 1, 'min_length': 42}, [Ellipsis])
```
"""
import annotated_types as at
annotations = expand_grouped_metadata(annotations)
res: dict[str, Any] = {}
remaining: list[Any] = []
for annotation in annotations:
# isinstance(annotation, PydanticMetadata) also covers ._fields:_PydanticGeneralMetadata
if isinstance(annotation, PydanticMetadata):
res.update(annotation.__dict__)
# we don't use dataclasses.asdict because that recursively calls asdict on the field values
elif isinstance(annotation, at.MinLen):
res.update({'min_length': annotation.min_length})
elif isinstance(annotation, at.MaxLen):
res.update({'max_length': annotation.max_length})
elif isinstance(annotation, at.Gt):
res.update({'gt': annotation.gt})
elif isinstance(annotation, at.Ge):
res.update({'ge': annotation.ge})
elif isinstance(annotation, at.Lt):
res.update({'lt': annotation.lt})
elif isinstance(annotation, at.Le):
res.update({'le': annotation.le})
elif isinstance(annotation, at.MultipleOf):
res.update({'multiple_of': annotation.multiple_of})
elif isinstance(annotation, type) and issubclass(annotation, PydanticMetadata):
# also support PydanticMetadata classes being used without initialisation,
# e.g. `Annotated[int, Strict]` as well as `Annotated[int, Strict()]`
res.update({k: v for k, v in vars(annotation).items() if not k.startswith('_')})
else:
remaining.append(annotation)
# Nones can sneak in but pydantic-core will reject them
# it'd be nice to clean things up so we don't put in None (we probably don't _need_ to, it was just easier)
# but this is simple enough to kick that can down the road
res = {k: v for k, v in res.items() if v is not None}
return res, remaining
def check_metadata(metadata: dict[str, Any], allowed: Iterable[str], source_type: Any) -> None:
"""A small utility function to validate that the given metadata can be applied to the target.
More than saving lines of code, this gives us a consistent error message for all of our internal implementations.
Args:
metadata: A dict of metadata.
allowed: An iterable of allowed metadata.
source_type: The source type.
Raises:
TypeError: If there is metadatas that can't be applied on source type.
"""
unknown = metadata.keys() - set(allowed)
if unknown:
raise TypeError(
f'The following constraints cannot be applied to {source_type!r}: {", ".join([f"{k!r}" for k in unknown])}'
)

View file

@ -0,0 +1,140 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Callable, Generic, TypeVar
from pydantic_core import SchemaSerializer, SchemaValidator
from typing_extensions import Literal
from ..errors import PydanticErrorCodes, PydanticUserError
if TYPE_CHECKING:
from ..dataclasses import PydanticDataclass
from ..main import BaseModel
ValSer = TypeVar('ValSer', SchemaValidator, SchemaSerializer)
class MockValSer(Generic[ValSer]):
"""Mocker for `pydantic_core.SchemaValidator` or `pydantic_core.SchemaSerializer` which optionally attempts to
rebuild the thing it's mocking when one of its methods is accessed and raises an error if that fails.
"""
__slots__ = '_error_message', '_code', '_val_or_ser', '_attempt_rebuild'
def __init__(
self,
error_message: str,
*,
code: PydanticErrorCodes,
val_or_ser: Literal['validator', 'serializer'],
attempt_rebuild: Callable[[], ValSer | None] | None = None,
) -> None:
self._error_message = error_message
self._val_or_ser = SchemaValidator if val_or_ser == 'validator' else SchemaSerializer
self._code: PydanticErrorCodes = code
self._attempt_rebuild = attempt_rebuild
def __getattr__(self, item: str) -> None:
__tracebackhide__ = True
if self._attempt_rebuild:
val_ser = self._attempt_rebuild()
if val_ser is not None:
return getattr(val_ser, item)
# raise an AttributeError if `item` doesn't exist
getattr(self._val_or_ser, item)
raise PydanticUserError(self._error_message, code=self._code)
def rebuild(self) -> ValSer | None:
if self._attempt_rebuild:
val_ser = self._attempt_rebuild()
if val_ser is not None:
return val_ser
else:
raise PydanticUserError(self._error_message, code=self._code)
return None
def set_model_mocks(cls: type[BaseModel], cls_name: str, undefined_name: str = 'all referenced types') -> None:
"""Set `__pydantic_validator__` and `__pydantic_serializer__` to `MockValSer`s on a model.
Args:
cls: The model class to set the mocks on
cls_name: Name of the model class, used in error messages
undefined_name: Name of the undefined thing, used in error messages
"""
undefined_type_error_message = (
f'`{cls_name}` is not fully defined; you should define {undefined_name},'
f' then call `{cls_name}.model_rebuild()`.'
)
def attempt_rebuild_validator() -> SchemaValidator | None:
if cls.model_rebuild(raise_errors=False, _parent_namespace_depth=5) is not False:
return cls.__pydantic_validator__
else:
return None
cls.__pydantic_validator__ = MockValSer( # type: ignore[assignment]
undefined_type_error_message,
code='class-not-fully-defined',
val_or_ser='validator',
attempt_rebuild=attempt_rebuild_validator,
)
def attempt_rebuild_serializer() -> SchemaSerializer | None:
if cls.model_rebuild(raise_errors=False, _parent_namespace_depth=5) is not False:
return cls.__pydantic_serializer__
else:
return None
cls.__pydantic_serializer__ = MockValSer( # type: ignore[assignment]
undefined_type_error_message,
code='class-not-fully-defined',
val_or_ser='serializer',
attempt_rebuild=attempt_rebuild_serializer,
)
def set_dataclass_mocks(
cls: type[PydanticDataclass], cls_name: str, undefined_name: str = 'all referenced types'
) -> None:
"""Set `__pydantic_validator__` and `__pydantic_serializer__` to `MockValSer`s on a dataclass.
Args:
cls: The model class to set the mocks on
cls_name: Name of the model class, used in error messages
undefined_name: Name of the undefined thing, used in error messages
"""
from ..dataclasses import rebuild_dataclass
undefined_type_error_message = (
f'`{cls_name}` is not fully defined; you should define {undefined_name},'
f' then call `pydantic.dataclasses.rebuild_dataclass({cls_name})`.'
)
def attempt_rebuild_validator() -> SchemaValidator | None:
if rebuild_dataclass(cls, raise_errors=False, _parent_namespace_depth=5) is not False:
return cls.__pydantic_validator__
else:
return None
cls.__pydantic_validator__ = MockValSer( # type: ignore[assignment]
undefined_type_error_message,
code='class-not-fully-defined',
val_or_ser='validator',
attempt_rebuild=attempt_rebuild_validator,
)
def attempt_rebuild_serializer() -> SchemaSerializer | None:
if rebuild_dataclass(cls, raise_errors=False, _parent_namespace_depth=5) is not False:
return cls.__pydantic_serializer__
else:
return None
cls.__pydantic_serializer__ = MockValSer( # type: ignore[assignment]
undefined_type_error_message,
code='class-not-fully-defined',
val_or_ser='validator',
attempt_rebuild=attempt_rebuild_serializer,
)

View file

@ -0,0 +1,637 @@
"""Private logic for creating models."""
from __future__ import annotations as _annotations
import operator
import typing
import warnings
import weakref
from abc import ABCMeta
from functools import partial
from types import FunctionType
from typing import Any, Callable, Generic
import typing_extensions
from pydantic_core import PydanticUndefined, SchemaSerializer
from typing_extensions import dataclass_transform, deprecated
from ..errors import PydanticUndefinedAnnotation, PydanticUserError
from ..plugin._schema_validator import create_schema_validator
from ..warnings import GenericBeforeBaseModelWarning, PydanticDeprecatedSince20
from ._config import ConfigWrapper
from ._decorators import DecoratorInfos, PydanticDescriptorProxy, get_attribute_from_bases
from ._fields import collect_model_fields, is_valid_field_name, is_valid_privateattr_name
from ._generate_schema import GenerateSchema
from ._generics import PydanticGenericMetadata, get_model_typevars_map
from ._mock_val_ser import MockValSer, set_model_mocks
from ._schema_generation_shared import CallbackGetCoreSchemaHandler
from ._signature import generate_pydantic_signature
from ._typing_extra import get_cls_types_namespace, is_annotated, is_classvar, parent_frame_namespace
from ._utils import ClassAttribute, SafeGetItemProxy
from ._validate_call import ValidateCallWrapper
if typing.TYPE_CHECKING:
from ..fields import Field as PydanticModelField
from ..fields import FieldInfo, ModelPrivateAttr
from ..main import BaseModel
else:
# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915
# and https://youtrack.jetbrains.com/issue/PY-51428
DeprecationWarning = PydanticDeprecatedSince20
PydanticModelField = object()
object_setattr = object.__setattr__
class _ModelNamespaceDict(dict):
"""A dictionary subclass that intercepts attribute setting on model classes and
warns about overriding of decorators.
"""
def __setitem__(self, k: str, v: object) -> None:
existing: Any = self.get(k, None)
if existing and v is not existing and isinstance(existing, PydanticDescriptorProxy):
warnings.warn(f'`{k}` overrides an existing Pydantic `{existing.decorator_info.decorator_repr}` decorator')
return super().__setitem__(k, v)
@dataclass_transform(kw_only_default=True, field_specifiers=(PydanticModelField,))
class ModelMetaclass(ABCMeta):
def __new__(
mcs,
cls_name: str,
bases: tuple[type[Any], ...],
namespace: dict[str, Any],
__pydantic_generic_metadata__: PydanticGenericMetadata | None = None,
__pydantic_reset_parent_namespace__: bool = True,
_create_model_module: str | None = None,
**kwargs: Any,
) -> type:
"""Metaclass for creating Pydantic models.
Args:
cls_name: The name of the class to be created.
bases: The base classes of the class to be created.
namespace: The attribute dictionary of the class to be created.
__pydantic_generic_metadata__: Metadata for generic models.
__pydantic_reset_parent_namespace__: Reset parent namespace.
_create_model_module: The module of the class to be created, if created by `create_model`.
**kwargs: Catch-all for any other keyword arguments.
Returns:
The new class created by the metaclass.
"""
# Note `ModelMetaclass` refers to `BaseModel`, but is also used to *create* `BaseModel`, so we rely on the fact
# that `BaseModel` itself won't have any bases, but any subclass of it will, to determine whether the `__new__`
# call we're in the middle of is for the `BaseModel` class.
if bases:
base_field_names, class_vars, base_private_attributes = mcs._collect_bases_data(bases)
config_wrapper = ConfigWrapper.for_model(bases, namespace, kwargs)
namespace['model_config'] = config_wrapper.config_dict
private_attributes = inspect_namespace(
namespace, config_wrapper.ignored_types, class_vars, base_field_names
)
if private_attributes:
original_model_post_init = get_model_post_init(namespace, bases)
if original_model_post_init is not None:
# if there are private_attributes and a model_post_init function, we handle both
def wrapped_model_post_init(self: BaseModel, __context: Any) -> None:
"""We need to both initialize private attributes and call the user-defined model_post_init
method.
"""
init_private_attributes(self, __context)
original_model_post_init(self, __context)
namespace['model_post_init'] = wrapped_model_post_init
else:
namespace['model_post_init'] = init_private_attributes
namespace['__class_vars__'] = class_vars
namespace['__private_attributes__'] = {**base_private_attributes, **private_attributes}
cls: type[BaseModel] = super().__new__(mcs, cls_name, bases, namespace, **kwargs) # type: ignore
from ..main import BaseModel
mro = cls.__mro__
if Generic in mro and mro.index(Generic) < mro.index(BaseModel):
warnings.warn(
GenericBeforeBaseModelWarning(
'Classes should inherit from `BaseModel` before generic classes (e.g. `typing.Generic[T]`) '
'for pydantic generics to work properly.'
),
stacklevel=2,
)
cls.__pydantic_custom_init__ = not getattr(cls.__init__, '__pydantic_base_init__', False)
cls.__pydantic_post_init__ = None if cls.model_post_init is BaseModel.model_post_init else 'model_post_init'
cls.__pydantic_decorators__ = DecoratorInfos.build(cls)
# Use the getattr below to grab the __parameters__ from the `typing.Generic` parent class
if __pydantic_generic_metadata__:
cls.__pydantic_generic_metadata__ = __pydantic_generic_metadata__
else:
parent_parameters = getattr(cls, '__pydantic_generic_metadata__', {}).get('parameters', ())
parameters = getattr(cls, '__parameters__', None) or parent_parameters
if parameters and parent_parameters and not all(x in parameters for x in parent_parameters):
combined_parameters = parent_parameters + tuple(x for x in parameters if x not in parent_parameters)
parameters_str = ', '.join([str(x) for x in combined_parameters])
generic_type_label = f'typing.Generic[{parameters_str}]'
error_message = (
f'All parameters must be present on typing.Generic;'
f' you should inherit from {generic_type_label}.'
)
if Generic not in bases: # pragma: no cover
# We raise an error here not because it is desirable, but because some cases are mishandled.
# It would be nice to remove this error and still have things behave as expected, it's just
# challenging because we are using a custom `__class_getitem__` to parametrize generic models,
# and not returning a typing._GenericAlias from it.
bases_str = ', '.join([x.__name__ for x in bases] + [generic_type_label])
error_message += (
f' Note: `typing.Generic` must go last: `class {cls.__name__}({bases_str}): ...`)'
)
raise TypeError(error_message)
cls.__pydantic_generic_metadata__ = {
'origin': None,
'args': (),
'parameters': parameters,
}
cls.__pydantic_complete__ = False # Ensure this specific class gets completed
# preserve `__set_name__` protocol defined in https://peps.python.org/pep-0487
# for attributes not in `new_namespace` (e.g. private attributes)
for name, obj in private_attributes.items():
obj.__set_name__(cls, name)
if __pydantic_reset_parent_namespace__:
cls.__pydantic_parent_namespace__ = build_lenient_weakvaluedict(parent_frame_namespace())
parent_namespace = getattr(cls, '__pydantic_parent_namespace__', None)
if isinstance(parent_namespace, dict):
parent_namespace = unpack_lenient_weakvaluedict(parent_namespace)
types_namespace = get_cls_types_namespace(cls, parent_namespace)
set_model_fields(cls, bases, config_wrapper, types_namespace)
if config_wrapper.frozen and '__hash__' not in namespace:
set_default_hash_func(cls, bases)
complete_model_class(
cls,
cls_name,
config_wrapper,
raise_errors=False,
types_namespace=types_namespace,
create_model_module=_create_model_module,
)
# If this is placed before the complete_model_class call above,
# the generic computed fields return type is set to PydanticUndefined
cls.model_computed_fields = {k: v.info for k, v in cls.__pydantic_decorators__.computed_fields.items()}
# using super(cls, cls) on the next line ensures we only call the parent class's __pydantic_init_subclass__
# I believe the `type: ignore` is only necessary because mypy doesn't realize that this code branch is
# only hit for _proper_ subclasses of BaseModel
super(cls, cls).__pydantic_init_subclass__(**kwargs) # type: ignore[misc]
return cls
else:
# this is the BaseModel class itself being created, no logic required
return super().__new__(mcs, cls_name, bases, namespace, **kwargs)
if not typing.TYPE_CHECKING: # pragma: no branch
# We put `__getattr__` in a non-TYPE_CHECKING block because otherwise, mypy allows arbitrary attribute access
def __getattr__(self, item: str) -> Any:
"""This is necessary to keep attribute access working for class attribute access."""
private_attributes = self.__dict__.get('__private_attributes__')
if private_attributes and item in private_attributes:
return private_attributes[item]
if item == '__pydantic_core_schema__':
# This means the class didn't get a schema generated for it, likely because there was an undefined reference
maybe_mock_validator = getattr(self, '__pydantic_validator__', None)
if isinstance(maybe_mock_validator, MockValSer):
rebuilt_validator = maybe_mock_validator.rebuild()
if rebuilt_validator is not None:
# In this case, a validator was built, and so `__pydantic_core_schema__` should now be set
return getattr(self, '__pydantic_core_schema__')
raise AttributeError(item)
@classmethod
def __prepare__(cls, *args: Any, **kwargs: Any) -> dict[str, object]:
return _ModelNamespaceDict()
def __instancecheck__(self, instance: Any) -> bool:
"""Avoid calling ABC _abc_subclasscheck unless we're pretty sure.
See #3829 and python/cpython#92810
"""
return hasattr(instance, '__pydantic_validator__') and super().__instancecheck__(instance)
@staticmethod
def _collect_bases_data(bases: tuple[type[Any], ...]) -> tuple[set[str], set[str], dict[str, ModelPrivateAttr]]:
from ..main import BaseModel
field_names: set[str] = set()
class_vars: set[str] = set()
private_attributes: dict[str, ModelPrivateAttr] = {}
for base in bases:
if issubclass(base, BaseModel) and base is not BaseModel:
# model_fields might not be defined yet in the case of generics, so we use getattr here:
field_names.update(getattr(base, 'model_fields', {}).keys())
class_vars.update(base.__class_vars__)
private_attributes.update(base.__private_attributes__)
return field_names, class_vars, private_attributes
@property
@deprecated('The `__fields__` attribute is deprecated, use `model_fields` instead.', category=None)
def __fields__(self) -> dict[str, FieldInfo]:
warnings.warn(
'The `__fields__` attribute is deprecated, use `model_fields` instead.', PydanticDeprecatedSince20
)
return self.model_fields # type: ignore
def __dir__(self) -> list[str]:
attributes = list(super().__dir__())
if '__fields__' in attributes:
attributes.remove('__fields__')
return attributes
def init_private_attributes(self: BaseModel, __context: Any) -> None:
"""This function is meant to behave like a BaseModel method to initialise private attributes.
It takes context as an argument since that's what pydantic-core passes when calling it.
Args:
self: The BaseModel instance.
__context: The context.
"""
if getattr(self, '__pydantic_private__', None) is None:
pydantic_private = {}
for name, private_attr in self.__private_attributes__.items():
default = private_attr.get_default()
if default is not PydanticUndefined:
pydantic_private[name] = default
object_setattr(self, '__pydantic_private__', pydantic_private)
def get_model_post_init(namespace: dict[str, Any], bases: tuple[type[Any], ...]) -> Callable[..., Any] | None:
"""Get the `model_post_init` method from the namespace or the class bases, or `None` if not defined."""
if 'model_post_init' in namespace:
return namespace['model_post_init']
from ..main import BaseModel
model_post_init = get_attribute_from_bases(bases, 'model_post_init')
if model_post_init is not BaseModel.model_post_init:
return model_post_init
def inspect_namespace( # noqa C901
namespace: dict[str, Any],
ignored_types: tuple[type[Any], ...],
base_class_vars: set[str],
base_class_fields: set[str],
) -> dict[str, ModelPrivateAttr]:
"""Iterate over the namespace and:
* gather private attributes
* check for items which look like fields but are not (e.g. have no annotation) and warn.
Args:
namespace: The attribute dictionary of the class to be created.
ignored_types: A tuple of ignore types.
base_class_vars: A set of base class class variables.
base_class_fields: A set of base class fields.
Returns:
A dict contains private attributes info.
Raises:
TypeError: If there is a `__root__` field in model.
NameError: If private attribute name is invalid.
PydanticUserError:
- If a field does not have a type annotation.
- If a field on base class was overridden by a non-annotated attribute.
"""
from ..fields import FieldInfo, ModelPrivateAttr, PrivateAttr
all_ignored_types = ignored_types + default_ignored_types()
private_attributes: dict[str, ModelPrivateAttr] = {}
raw_annotations = namespace.get('__annotations__', {})
if '__root__' in raw_annotations or '__root__' in namespace:
raise TypeError("To define root models, use `pydantic.RootModel` rather than a field called '__root__'")
ignored_names: set[str] = set()
for var_name, value in list(namespace.items()):
if var_name == 'model_config':
continue
elif (
isinstance(value, type)
and value.__module__ == namespace['__module__']
and value.__qualname__.startswith(namespace['__qualname__'])
):
# `value` is a nested type defined in this namespace; don't error
continue
elif isinstance(value, all_ignored_types) or value.__class__.__module__ == 'functools':
ignored_names.add(var_name)
continue
elif isinstance(value, ModelPrivateAttr):
if var_name.startswith('__'):
raise NameError(
'Private attributes must not use dunder names;'
f' use a single underscore prefix instead of {var_name!r}.'
)
elif is_valid_field_name(var_name):
raise NameError(
'Private attributes must not use valid field names;'
f' use sunder names, e.g. {"_" + var_name!r} instead of {var_name!r}.'
)
private_attributes[var_name] = value
del namespace[var_name]
elif isinstance(value, FieldInfo) and not is_valid_field_name(var_name):
suggested_name = var_name.lstrip('_') or 'my_field' # don't suggest '' for all-underscore name
raise NameError(
f'Fields must not use names with leading underscores;'
f' e.g., use {suggested_name!r} instead of {var_name!r}.'
)
elif var_name.startswith('__'):
continue
elif is_valid_privateattr_name(var_name):
if var_name not in raw_annotations or not is_classvar(raw_annotations[var_name]):
private_attributes[var_name] = PrivateAttr(default=value)
del namespace[var_name]
elif var_name in base_class_vars:
continue
elif var_name not in raw_annotations:
if var_name in base_class_fields:
raise PydanticUserError(
f'Field {var_name!r} defined on a base class was overridden by a non-annotated attribute. '
f'All field definitions, including overrides, require a type annotation.',
code='model-field-overridden',
)
elif isinstance(value, FieldInfo):
raise PydanticUserError(
f'Field {var_name!r} requires a type annotation', code='model-field-missing-annotation'
)
else:
raise PydanticUserError(
f'A non-annotated attribute was detected: `{var_name} = {value!r}`. All model fields require a '
f'type annotation; if `{var_name}` is not meant to be a field, you may be able to resolve this '
f"error by annotating it as a `ClassVar` or updating `model_config['ignored_types']`.",
code='model-field-missing-annotation',
)
for ann_name, ann_type in raw_annotations.items():
if (
is_valid_privateattr_name(ann_name)
and ann_name not in private_attributes
and ann_name not in ignored_names
and not is_classvar(ann_type)
and ann_type not in all_ignored_types
and getattr(ann_type, '__module__', None) != 'functools'
):
if is_annotated(ann_type):
_, *metadata = typing_extensions.get_args(ann_type)
private_attr = next((v for v in metadata if isinstance(v, ModelPrivateAttr)), None)
if private_attr is not None:
private_attributes[ann_name] = private_attr
continue
private_attributes[ann_name] = PrivateAttr()
return private_attributes
def set_default_hash_func(cls: type[BaseModel], bases: tuple[type[Any], ...]) -> None:
base_hash_func = get_attribute_from_bases(bases, '__hash__')
new_hash_func = make_hash_func(cls)
if base_hash_func in {None, object.__hash__} or getattr(base_hash_func, '__code__', None) == new_hash_func.__code__:
# If `__hash__` is some default, we generate a hash function.
# It will be `None` if not overridden from BaseModel.
# It may be `object.__hash__` if there is another
# parent class earlier in the bases which doesn't override `__hash__` (e.g. `typing.Generic`).
# It may be a value set by `set_default_hash_func` if `cls` is a subclass of another frozen model.
# In the last case we still need a new hash function to account for new `model_fields`.
cls.__hash__ = new_hash_func
def make_hash_func(cls: type[BaseModel]) -> Any:
getter = operator.itemgetter(*cls.model_fields.keys()) if cls.model_fields else lambda _: 0
def hash_func(self: Any) -> int:
try:
return hash(getter(self.__dict__))
except KeyError:
# In rare cases (such as when using the deprecated copy method), the __dict__ may not contain
# all model fields, which is how we can get here.
# getter(self.__dict__) is much faster than any 'safe' method that accounts for missing keys,
# and wrapping it in a `try` doesn't slow things down much in the common case.
return hash(getter(SafeGetItemProxy(self.__dict__)))
return hash_func
def set_model_fields(
cls: type[BaseModel], bases: tuple[type[Any], ...], config_wrapper: ConfigWrapper, types_namespace: dict[str, Any]
) -> None:
"""Collect and set `cls.model_fields` and `cls.__class_vars__`.
Args:
cls: BaseModel or dataclass.
bases: Parents of the class, generally `cls.__bases__`.
config_wrapper: The config wrapper instance.
types_namespace: Optional extra namespace to look for types in.
"""
typevars_map = get_model_typevars_map(cls)
fields, class_vars = collect_model_fields(cls, bases, config_wrapper, types_namespace, typevars_map=typevars_map)
cls.model_fields = fields
cls.__class_vars__.update(class_vars)
for k in class_vars:
# Class vars should not be private attributes
# We remove them _here_ and not earlier because we rely on inspecting the class to determine its classvars,
# but private attributes are determined by inspecting the namespace _prior_ to class creation.
# In the case that a classvar with a leading-'_' is defined via a ForwardRef (e.g., when using
# `__future__.annotations`), we want to remove the private attribute which was detected _before_ we knew it
# evaluated to a classvar
value = cls.__private_attributes__.pop(k, None)
if value is not None and value.default is not PydanticUndefined:
setattr(cls, k, value.default)
def complete_model_class(
cls: type[BaseModel],
cls_name: str,
config_wrapper: ConfigWrapper,
*,
raise_errors: bool = True,
types_namespace: dict[str, Any] | None,
create_model_module: str | None = None,
) -> bool:
"""Finish building a model class.
This logic must be called after class has been created since validation functions must be bound
and `get_type_hints` requires a class object.
Args:
cls: BaseModel or dataclass.
cls_name: The model or dataclass name.
config_wrapper: The config wrapper instance.
raise_errors: Whether to raise errors.
types_namespace: Optional extra namespace to look for types in.
create_model_module: The module of the class to be created, if created by `create_model`.
Returns:
`True` if the model is successfully completed, else `False`.
Raises:
PydanticUndefinedAnnotation: If `PydanticUndefinedAnnotation` occurs in`__get_pydantic_core_schema__`
and `raise_errors=True`.
"""
typevars_map = get_model_typevars_map(cls)
gen_schema = GenerateSchema(
config_wrapper,
types_namespace,
typevars_map,
)
handler = CallbackGetCoreSchemaHandler(
partial(gen_schema.generate_schema, from_dunder_get_core_schema=False),
gen_schema,
ref_mode='unpack',
)
if config_wrapper.defer_build:
set_model_mocks(cls, cls_name)
return False
try:
schema = cls.__get_pydantic_core_schema__(cls, handler)
except PydanticUndefinedAnnotation as e:
if raise_errors:
raise
set_model_mocks(cls, cls_name, f'`{e.name}`')
return False
core_config = config_wrapper.core_config(cls)
try:
schema = gen_schema.clean_schema(schema)
except gen_schema.CollectedInvalid:
set_model_mocks(cls, cls_name)
return False
# debug(schema)
cls.__pydantic_core_schema__ = schema
cls.__pydantic_validator__ = create_schema_validator(
schema,
cls,
create_model_module or cls.__module__,
cls.__qualname__,
'create_model' if create_model_module else 'BaseModel',
core_config,
config_wrapper.plugin_settings,
)
cls.__pydantic_serializer__ = SchemaSerializer(schema, core_config)
cls.__pydantic_complete__ = True
# set __signature__ attr only for model class, but not for its instances
cls.__signature__ = ClassAttribute(
'__signature__',
generate_pydantic_signature(init=cls.__init__, fields=cls.model_fields, config_wrapper=config_wrapper),
)
return True
class _PydanticWeakRef:
"""Wrapper for `weakref.ref` that enables `pickle` serialization.
Cloudpickle fails to serialize `weakref.ref` objects due to an arcane error related
to abstract base classes (`abc.ABC`). This class works around the issue by wrapping
`weakref.ref` instead of subclassing it.
See https://github.com/pydantic/pydantic/issues/6763 for context.
Semantics:
- If not pickled, behaves the same as a `weakref.ref`.
- If pickled along with the referenced object, the same `weakref.ref` behavior
will be maintained between them after unpickling.
- If pickled without the referenced object, after unpickling the underlying
reference will be cleared (`__call__` will always return `None`).
"""
def __init__(self, obj: Any):
if obj is None:
# The object will be `None` upon deserialization if the serialized weakref
# had lost its underlying object.
self._wr = None
else:
self._wr = weakref.ref(obj)
def __call__(self) -> Any:
if self._wr is None:
return None
else:
return self._wr()
def __reduce__(self) -> tuple[Callable, tuple[weakref.ReferenceType | None]]:
return _PydanticWeakRef, (self(),)
def build_lenient_weakvaluedict(d: dict[str, Any] | None) -> dict[str, Any] | None:
"""Takes an input dictionary, and produces a new value that (invertibly) replaces the values with weakrefs.
We can't just use a WeakValueDictionary because many types (including int, str, etc.) can't be stored as values
in a WeakValueDictionary.
The `unpack_lenient_weakvaluedict` function can be used to reverse this operation.
"""
if d is None:
return None
result = {}
for k, v in d.items():
try:
proxy = _PydanticWeakRef(v)
except TypeError:
proxy = v
result[k] = proxy
return result
def unpack_lenient_weakvaluedict(d: dict[str, Any] | None) -> dict[str, Any] | None:
"""Inverts the transform performed by `build_lenient_weakvaluedict`."""
if d is None:
return None
result = {}
for k, v in d.items():
if isinstance(v, _PydanticWeakRef):
v = v()
if v is not None:
result[k] = v
else:
result[k] = v
return result
def default_ignored_types() -> tuple[type[Any], ...]:
from ..fields import ComputedFieldInfo
return (
FunctionType,
property,
classmethod,
staticmethod,
PydanticDescriptorProxy,
ComputedFieldInfo,
ValidateCallWrapper,
)

View file

@ -0,0 +1,117 @@
"""Tools to provide pretty/human-readable display of objects."""
from __future__ import annotations as _annotations
import types
import typing
from typing import Any
import typing_extensions
from . import _typing_extra
if typing.TYPE_CHECKING:
ReprArgs: typing_extensions.TypeAlias = 'typing.Iterable[tuple[str | None, Any]]'
RichReprResult: typing_extensions.TypeAlias = (
'typing.Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]'
)
class PlainRepr(str):
"""String class where repr doesn't include quotes. Useful with Representation when you want to return a string
representation of something that is valid (or pseudo-valid) python.
"""
def __repr__(self) -> str:
return str(self)
class Representation:
# Mixin to provide `__str__`, `__repr__`, and `__pretty__` and `__rich_repr__` methods.
# `__pretty__` is used by [devtools](https://python-devtools.helpmanual.io/).
# `__rich_repr__` is used by [rich](https://rich.readthedocs.io/en/stable/pretty.html).
# (this is not a docstring to avoid adding a docstring to classes which inherit from Representation)
# we don't want to use a type annotation here as it can break get_type_hints
__slots__ = tuple() # type: typing.Collection[str]
def __repr_args__(self) -> ReprArgs:
"""Returns the attributes to show in __str__, __repr__, and __pretty__ this is generally overridden.
Can either return:
* name - value pairs, e.g.: `[('foo_name', 'foo'), ('bar_name', ['b', 'a', 'r'])]`
* or, just values, e.g.: `[(None, 'foo'), (None, ['b', 'a', 'r'])]`
"""
attrs_names = self.__slots__
if not attrs_names and hasattr(self, '__dict__'):
attrs_names = self.__dict__.keys()
attrs = ((s, getattr(self, s)) for s in attrs_names)
return [(a, v) for a, v in attrs if v is not None]
def __repr_name__(self) -> str:
"""Name of the instance's class, used in __repr__."""
return self.__class__.__name__
def __repr_str__(self, join_str: str) -> str:
return join_str.join(repr(v) if a is None else f'{a}={v!r}' for a, v in self.__repr_args__())
def __pretty__(self, fmt: typing.Callable[[Any], Any], **kwargs: Any) -> typing.Generator[Any, None, None]:
"""Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects."""
yield self.__repr_name__() + '('
yield 1
for name, value in self.__repr_args__():
if name is not None:
yield name + '='
yield fmt(value)
yield ','
yield 0
yield -1
yield ')'
def __rich_repr__(self) -> RichReprResult:
"""Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects."""
for name, field_repr in self.__repr_args__():
if name is None:
yield field_repr
else:
yield name, field_repr
def __str__(self) -> str:
return self.__repr_str__(' ')
def __repr__(self) -> str:
return f'{self.__repr_name__()}({self.__repr_str__(", ")})'
def display_as_type(obj: Any) -> str:
"""Pretty representation of a type, should be as close as possible to the original type definition string.
Takes some logic from `typing._type_repr`.
"""
if isinstance(obj, types.FunctionType):
return obj.__name__
elif obj is ...:
return '...'
elif isinstance(obj, Representation):
return repr(obj)
elif isinstance(obj, typing_extensions.TypeAliasType):
return str(obj)
if not isinstance(obj, (_typing_extra.typing_base, _typing_extra.WithArgsTypes, type)):
obj = obj.__class__
if _typing_extra.origin_is_union(typing_extensions.get_origin(obj)):
args = ', '.join(map(display_as_type, typing_extensions.get_args(obj)))
return f'Union[{args}]'
elif isinstance(obj, _typing_extra.WithArgsTypes):
if typing_extensions.get_origin(obj) == typing_extensions.Literal:
args = ', '.join(map(repr, typing_extensions.get_args(obj)))
else:
args = ', '.join(map(display_as_type, typing_extensions.get_args(obj)))
try:
return f'{obj.__qualname__}[{args}]'
except AttributeError:
return str(obj) # handles TypeAliasType in 3.12
elif isinstance(obj, type):
return obj.__qualname__
else:
return repr(obj).replace('typing.', '').replace('typing_extensions.', '')

View file

@ -0,0 +1,124 @@
"""Types and utility functions used by various other internal tools."""
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Callable
from pydantic_core import core_schema
from typing_extensions import Literal
from ..annotated_handlers import GetCoreSchemaHandler, GetJsonSchemaHandler
if TYPE_CHECKING:
from ..json_schema import GenerateJsonSchema, JsonSchemaValue
from ._core_utils import CoreSchemaOrField
from ._generate_schema import GenerateSchema
GetJsonSchemaFunction = Callable[[CoreSchemaOrField, GetJsonSchemaHandler], JsonSchemaValue]
HandlerOverride = Callable[[CoreSchemaOrField], JsonSchemaValue]
class GenerateJsonSchemaHandler(GetJsonSchemaHandler):
"""JsonSchemaHandler implementation that doesn't do ref unwrapping by default.
This is used for any Annotated metadata so that we don't end up with conflicting
modifications to the definition schema.
Used internally by Pydantic, please do not rely on this implementation.
See `GetJsonSchemaHandler` for the handler API.
"""
def __init__(self, generate_json_schema: GenerateJsonSchema, handler_override: HandlerOverride | None) -> None:
self.generate_json_schema = generate_json_schema
self.handler = handler_override or generate_json_schema.generate_inner
self.mode = generate_json_schema.mode
def __call__(self, __core_schema: CoreSchemaOrField) -> JsonSchemaValue:
return self.handler(__core_schema)
def resolve_ref_schema(self, maybe_ref_json_schema: JsonSchemaValue) -> JsonSchemaValue:
"""Resolves `$ref` in the json schema.
This returns the input json schema if there is no `$ref` in json schema.
Args:
maybe_ref_json_schema: The input json schema that may contains `$ref`.
Returns:
Resolved json schema.
Raises:
LookupError: If it can't find the definition for `$ref`.
"""
if '$ref' not in maybe_ref_json_schema:
return maybe_ref_json_schema
ref = maybe_ref_json_schema['$ref']
json_schema = self.generate_json_schema.get_schema_from_definitions(ref)
if json_schema is None:
raise LookupError(
f'Could not find a ref for {ref}.'
' Maybe you tried to call resolve_ref_schema from within a recursive model?'
)
return json_schema
class CallbackGetCoreSchemaHandler(GetCoreSchemaHandler):
"""Wrapper to use an arbitrary function as a `GetCoreSchemaHandler`.
Used internally by Pydantic, please do not rely on this implementation.
See `GetCoreSchemaHandler` for the handler API.
"""
def __init__(
self,
handler: Callable[[Any], core_schema.CoreSchema],
generate_schema: GenerateSchema,
ref_mode: Literal['to-def', 'unpack'] = 'to-def',
) -> None:
self._handler = handler
self._generate_schema = generate_schema
self._ref_mode = ref_mode
def __call__(self, __source_type: Any) -> core_schema.CoreSchema:
schema = self._handler(__source_type)
ref = schema.get('ref')
if self._ref_mode == 'to-def':
if ref is not None:
self._generate_schema.defs.definitions[ref] = schema
return core_schema.definition_reference_schema(ref)
return schema
else: # ref_mode = 'unpack
return self.resolve_ref_schema(schema)
def _get_types_namespace(self) -> dict[str, Any] | None:
return self._generate_schema._types_namespace
def generate_schema(self, __source_type: Any) -> core_schema.CoreSchema:
return self._generate_schema.generate_schema(__source_type)
@property
def field_name(self) -> str | None:
return self._generate_schema.field_name_stack.get()
def resolve_ref_schema(self, maybe_ref_schema: core_schema.CoreSchema) -> core_schema.CoreSchema:
"""Resolves reference in the core schema.
Args:
maybe_ref_schema: The input core schema that may contains reference.
Returns:
Resolved core schema.
Raises:
LookupError: If it can't find the definition for reference.
"""
if maybe_ref_schema['type'] == 'definition-ref':
ref = maybe_ref_schema['schema_ref']
if ref not in self._generate_schema.defs.definitions:
raise LookupError(
f'Could not find a ref for {ref}.'
' Maybe you tried to call resolve_ref_schema from within a recursive model?'
)
return self._generate_schema.defs.definitions[ref]
elif maybe_ref_schema['type'] == 'definitions':
return self.resolve_ref_schema(maybe_ref_schema['schema'])
return maybe_ref_schema

View file

@ -0,0 +1,164 @@
from __future__ import annotations
import dataclasses
from inspect import Parameter, Signature, signature
from typing import TYPE_CHECKING, Any, Callable
from pydantic_core import PydanticUndefined
from ._config import ConfigWrapper
from ._utils import is_valid_identifier
if TYPE_CHECKING:
from ..fields import FieldInfo
def _field_name_for_signature(field_name: str, field_info: FieldInfo) -> str:
"""Extract the correct name to use for the field when generating a signature.
Assuming the field has a valid alias, this will return the alias. Otherwise, it will return the field name.
First priority is given to the validation_alias, then the alias, then the field name.
Args:
field_name: The name of the field
field_info: The corresponding FieldInfo object.
Returns:
The correct name to use when generating a signature.
"""
def _alias_if_valid(x: Any) -> str | None:
"""Return the alias if it is a valid alias and identifier, else None."""
return x if isinstance(x, str) and is_valid_identifier(x) else None
return _alias_if_valid(field_info.alias) or _alias_if_valid(field_info.validation_alias) or field_name
def _process_param_defaults(param: Parameter) -> Parameter:
"""Modify the signature for a parameter in a dataclass where the default value is a FieldInfo instance.
Args:
param (Parameter): The parameter
Returns:
Parameter: The custom processed parameter
"""
from ..fields import FieldInfo
param_default = param.default
if isinstance(param_default, FieldInfo):
annotation = param.annotation
# Replace the annotation if appropriate
# inspect does "clever" things to show annotations as strings because we have
# `from __future__ import annotations` in main, we don't want that
if annotation == 'Any':
annotation = Any
# Replace the field default
default = param_default.default
if default is PydanticUndefined:
if param_default.default_factory is PydanticUndefined:
default = Signature.empty
else:
# this is used by dataclasses to indicate a factory exists:
default = dataclasses._HAS_DEFAULT_FACTORY # type: ignore
return param.replace(
annotation=annotation, name=_field_name_for_signature(param.name, param_default), default=default
)
return param
def _generate_signature_parameters( # noqa: C901 (ignore complexity, could use a refactor)
init: Callable[..., None],
fields: dict[str, FieldInfo],
config_wrapper: ConfigWrapper,
) -> dict[str, Parameter]:
"""Generate a mapping of parameter names to Parameter objects for a pydantic BaseModel or dataclass."""
from itertools import islice
present_params = signature(init).parameters.values()
merged_params: dict[str, Parameter] = {}
var_kw = None
use_var_kw = False
for param in islice(present_params, 1, None): # skip self arg
# inspect does "clever" things to show annotations as strings because we have
# `from __future__ import annotations` in main, we don't want that
if fields.get(param.name):
# exclude params with init=False
if getattr(fields[param.name], 'init', True) is False:
continue
param = param.replace(name=_field_name_for_signature(param.name, fields[param.name]))
if param.annotation == 'Any':
param = param.replace(annotation=Any)
if param.kind is param.VAR_KEYWORD:
var_kw = param
continue
merged_params[param.name] = param
if var_kw: # if custom init has no var_kw, fields which are not declared in it cannot be passed through
allow_names = config_wrapper.populate_by_name
for field_name, field in fields.items():
# when alias is a str it should be used for signature generation
param_name = _field_name_for_signature(field_name, field)
if field_name in merged_params or param_name in merged_params:
continue
if not is_valid_identifier(param_name):
if allow_names:
param_name = field_name
else:
use_var_kw = True
continue
kwargs = {} if field.is_required() else {'default': field.get_default(call_default_factory=False)}
merged_params[param_name] = Parameter(
param_name, Parameter.KEYWORD_ONLY, annotation=field.rebuild_annotation(), **kwargs
)
if config_wrapper.extra == 'allow':
use_var_kw = True
if var_kw and use_var_kw:
# Make sure the parameter for extra kwargs
# does not have the same name as a field
default_model_signature = [
('self', Parameter.POSITIONAL_ONLY),
('data', Parameter.VAR_KEYWORD),
]
if [(p.name, p.kind) for p in present_params] == default_model_signature:
# if this is the standard model signature, use extra_data as the extra args name
var_kw_name = 'extra_data'
else:
# else start from var_kw
var_kw_name = var_kw.name
# generate a name that's definitely unique
while var_kw_name in fields:
var_kw_name += '_'
merged_params[var_kw_name] = var_kw.replace(name=var_kw_name)
return merged_params
def generate_pydantic_signature(
init: Callable[..., None], fields: dict[str, FieldInfo], config_wrapper: ConfigWrapper, is_dataclass: bool = False
) -> Signature:
"""Generate signature for a pydantic BaseModel or dataclass.
Args:
init: The class init.
fields: The model fields.
config_wrapper: The config wrapper instance.
is_dataclass: Whether the model is a dataclass.
Returns:
The dataclass/BaseModel subclass signature.
"""
merged_params = _generate_signature_parameters(init, fields, config_wrapper)
if is_dataclass:
merged_params = {k: _process_param_defaults(v) for k, v in merged_params.items()}
return Signature(parameters=list(merged_params.values()), return_annotation=None)

View file

@ -0,0 +1,714 @@
"""Logic for generating pydantic-core schemas for standard library types.
Import of this module is deferred since it contains imports of many standard library modules.
"""
from __future__ import annotations as _annotations
import collections
import collections.abc
import dataclasses
import decimal
import inspect
import os
import typing
from enum import Enum
from functools import partial
from ipaddress import IPv4Address, IPv4Interface, IPv4Network, IPv6Address, IPv6Interface, IPv6Network
from typing import Any, Callable, Iterable, TypeVar
import typing_extensions
from pydantic_core import (
CoreSchema,
MultiHostUrl,
PydanticCustomError,
PydanticOmit,
Url,
core_schema,
)
from typing_extensions import get_args, get_origin
from pydantic.errors import PydanticSchemaGenerationError
from pydantic.fields import FieldInfo
from pydantic.types import Strict
from ..config import ConfigDict
from ..json_schema import JsonSchemaValue, update_json_schema
from . import _known_annotated_metadata, _typing_extra, _validators
from ._core_utils import get_type_ref
from ._internal_dataclass import slots_true
from ._schema_generation_shared import GetCoreSchemaHandler, GetJsonSchemaHandler
if typing.TYPE_CHECKING:
from ._generate_schema import GenerateSchema
StdSchemaFunction = Callable[[GenerateSchema, type[Any]], core_schema.CoreSchema]
@dataclasses.dataclass(**slots_true)
class SchemaTransformer:
get_core_schema: Callable[[Any, GetCoreSchemaHandler], CoreSchema]
get_json_schema: Callable[[CoreSchema, GetJsonSchemaHandler], JsonSchemaValue]
def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> CoreSchema:
return self.get_core_schema(source_type, handler)
def __get_pydantic_json_schema__(self, schema: CoreSchema, handler: GetJsonSchemaHandler) -> JsonSchemaValue:
return self.get_json_schema(schema, handler)
def get_enum_core_schema(enum_type: type[Enum], config: ConfigDict) -> CoreSchema:
cases: list[Any] = list(enum_type.__members__.values())
enum_ref = get_type_ref(enum_type)
description = None if not enum_type.__doc__ else inspect.cleandoc(enum_type.__doc__)
if description == 'An enumeration.': # This is the default value provided by enum.EnumMeta.__new__; don't use it
description = None
updates = {'title': enum_type.__name__, 'description': description}
updates = {k: v for k, v in updates.items() if v is not None}
def get_json_schema(_, handler: GetJsonSchemaHandler) -> JsonSchemaValue:
json_schema = handler(core_schema.literal_schema([x.value for x in cases], ref=enum_ref))
original_schema = handler.resolve_ref_schema(json_schema)
update_json_schema(original_schema, updates)
return json_schema
if not cases:
# Use an isinstance check for enums with no cases.
# The most important use case for this is creating TypeVar bounds for generics that should
# be restricted to enums. This is more consistent than it might seem at first, since you can only
# subclass enum.Enum (or subclasses of enum.Enum) if all parent classes have no cases.
# We use the get_json_schema function when an Enum subclass has been declared with no cases
# so that we can still generate a valid json schema.
return core_schema.is_instance_schema(enum_type, metadata={'pydantic_js_functions': [get_json_schema]})
use_enum_values = config.get('use_enum_values', False)
if len(cases) == 1:
expected = repr(cases[0].value)
else:
expected = ', '.join([repr(case.value) for case in cases[:-1]]) + f' or {cases[-1].value!r}'
def to_enum(__input_value: Any) -> Enum:
try:
enum_field = enum_type(__input_value)
if use_enum_values:
return enum_field.value
return enum_field
except ValueError:
# The type: ignore on the next line is to ignore the requirement of LiteralString
raise PydanticCustomError('enum', f'Input should be {expected}', {'expected': expected}) # type: ignore
strict_python_schema = core_schema.is_instance_schema(enum_type)
if use_enum_values:
strict_python_schema = core_schema.chain_schema(
[strict_python_schema, core_schema.no_info_plain_validator_function(lambda x: x.value)]
)
to_enum_validator = core_schema.no_info_plain_validator_function(to_enum)
if issubclass(enum_type, int):
# this handles `IntEnum`, and also `Foobar(int, Enum)`
updates['type'] = 'integer'
lax = core_schema.chain_schema([core_schema.int_schema(), to_enum_validator])
# Disallow float from JSON due to strict mode
strict = core_schema.json_or_python_schema(
json_schema=core_schema.no_info_after_validator_function(to_enum, core_schema.int_schema()),
python_schema=strict_python_schema,
)
elif issubclass(enum_type, str):
# this handles `StrEnum` (3.11 only), and also `Foobar(str, Enum)`
updates['type'] = 'string'
lax = core_schema.chain_schema([core_schema.str_schema(), to_enum_validator])
strict = core_schema.json_or_python_schema(
json_schema=core_schema.no_info_after_validator_function(to_enum, core_schema.str_schema()),
python_schema=strict_python_schema,
)
elif issubclass(enum_type, float):
updates['type'] = 'numeric'
lax = core_schema.chain_schema([core_schema.float_schema(), to_enum_validator])
strict = core_schema.json_or_python_schema(
json_schema=core_schema.no_info_after_validator_function(to_enum, core_schema.float_schema()),
python_schema=strict_python_schema,
)
else:
lax = to_enum_validator
strict = core_schema.json_or_python_schema(json_schema=to_enum_validator, python_schema=strict_python_schema)
return core_schema.lax_or_strict_schema(
lax_schema=lax, strict_schema=strict, ref=enum_ref, metadata={'pydantic_js_functions': [get_json_schema]}
)
@dataclasses.dataclass(**slots_true)
class InnerSchemaValidator:
"""Use a fixed CoreSchema, avoiding interference from outward annotations."""
core_schema: CoreSchema
js_schema: JsonSchemaValue | None = None
js_core_schema: CoreSchema | None = None
js_schema_update: JsonSchemaValue | None = None
def __get_pydantic_json_schema__(self, _schema: CoreSchema, handler: GetJsonSchemaHandler) -> JsonSchemaValue:
if self.js_schema is not None:
return self.js_schema
js_schema = handler(self.js_core_schema or self.core_schema)
if self.js_schema_update is not None:
js_schema.update(self.js_schema_update)
return js_schema
def __get_pydantic_core_schema__(self, _source_type: Any, _handler: GetCoreSchemaHandler) -> CoreSchema:
return self.core_schema
def decimal_prepare_pydantic_annotations(
source: Any, annotations: Iterable[Any], config: ConfigDict
) -> tuple[Any, list[Any]] | None:
if source is not decimal.Decimal:
return None
metadata, remaining_annotations = _known_annotated_metadata.collect_known_metadata(annotations)
config_allow_inf_nan = config.get('allow_inf_nan')
if config_allow_inf_nan is not None:
metadata.setdefault('allow_inf_nan', config_allow_inf_nan)
_known_annotated_metadata.check_metadata(
metadata, {*_known_annotated_metadata.FLOAT_CONSTRAINTS, 'max_digits', 'decimal_places'}, decimal.Decimal
)
return source, [InnerSchemaValidator(core_schema.decimal_schema(**metadata)), *remaining_annotations]
def datetime_prepare_pydantic_annotations(
source_type: Any, annotations: Iterable[Any], _config: ConfigDict
) -> tuple[Any, list[Any]] | None:
import datetime
metadata, remaining_annotations = _known_annotated_metadata.collect_known_metadata(annotations)
if source_type is datetime.date:
sv = InnerSchemaValidator(core_schema.date_schema(**metadata))
elif source_type is datetime.datetime:
sv = InnerSchemaValidator(core_schema.datetime_schema(**metadata))
elif source_type is datetime.time:
sv = InnerSchemaValidator(core_schema.time_schema(**metadata))
elif source_type is datetime.timedelta:
sv = InnerSchemaValidator(core_schema.timedelta_schema(**metadata))
else:
return None
# check now that we know the source type is correct
_known_annotated_metadata.check_metadata(metadata, _known_annotated_metadata.DATE_TIME_CONSTRAINTS, source_type)
return (source_type, [sv, *remaining_annotations])
def uuid_prepare_pydantic_annotations(
source_type: Any, annotations: Iterable[Any], _config: ConfigDict
) -> tuple[Any, list[Any]] | None:
# UUIDs have no constraints - they are fixed length, constructing a UUID instance checks the length
from uuid import UUID
if source_type is not UUID:
return None
return (source_type, [InnerSchemaValidator(core_schema.uuid_schema()), *annotations])
def path_schema_prepare_pydantic_annotations(
source_type: Any, annotations: Iterable[Any], _config: ConfigDict
) -> tuple[Any, list[Any]] | None:
import pathlib
if source_type not in {
os.PathLike,
pathlib.Path,
pathlib.PurePath,
pathlib.PosixPath,
pathlib.PurePosixPath,
pathlib.PureWindowsPath,
}:
return None
metadata, remaining_annotations = _known_annotated_metadata.collect_known_metadata(annotations)
_known_annotated_metadata.check_metadata(metadata, _known_annotated_metadata.STR_CONSTRAINTS, source_type)
construct_path = pathlib.PurePath if source_type is os.PathLike else source_type
def path_validator(input_value: str) -> os.PathLike[Any]:
try:
return construct_path(input_value)
except TypeError as e:
raise PydanticCustomError('path_type', 'Input is not a valid path') from e
constrained_str_schema = core_schema.str_schema(**metadata)
instance_schema = core_schema.json_or_python_schema(
json_schema=core_schema.no_info_after_validator_function(path_validator, constrained_str_schema),
python_schema=core_schema.is_instance_schema(source_type),
)
strict: bool | None = None
for annotation in annotations:
if isinstance(annotation, Strict):
strict = annotation.strict
schema = core_schema.lax_or_strict_schema(
lax_schema=core_schema.union_schema(
[
instance_schema,
core_schema.no_info_after_validator_function(path_validator, constrained_str_schema),
],
custom_error_type='path_type',
custom_error_message='Input is not a valid path',
strict=True,
),
strict_schema=instance_schema,
serialization=core_schema.to_string_ser_schema(),
strict=strict,
)
return (
source_type,
[
InnerSchemaValidator(schema, js_core_schema=constrained_str_schema, js_schema_update={'format': 'path'}),
*remaining_annotations,
],
)
def dequeue_validator(
input_value: Any, handler: core_schema.ValidatorFunctionWrapHandler, maxlen: None | int
) -> collections.deque[Any]:
if isinstance(input_value, collections.deque):
maxlens = [v for v in (input_value.maxlen, maxlen) if v is not None]
if maxlens:
maxlen = min(maxlens)
return collections.deque(handler(input_value), maxlen=maxlen)
else:
return collections.deque(handler(input_value), maxlen=maxlen)
@dataclasses.dataclass(**slots_true)
class SequenceValidator:
mapped_origin: type[Any]
item_source_type: type[Any]
min_length: int | None = None
max_length: int | None = None
strict: bool = False
def serialize_sequence_via_list(
self, v: Any, handler: core_schema.SerializerFunctionWrapHandler, info: core_schema.SerializationInfo
) -> Any:
items: list[Any] = []
for index, item in enumerate(v):
try:
v = handler(item, index)
except PydanticOmit:
pass
else:
items.append(v)
if info.mode_is_json():
return items
else:
return self.mapped_origin(items)
def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> CoreSchema:
if self.item_source_type is Any:
items_schema = None
else:
items_schema = handler.generate_schema(self.item_source_type)
metadata = {'min_length': self.min_length, 'max_length': self.max_length, 'strict': self.strict}
if self.mapped_origin in (list, set, frozenset):
if self.mapped_origin is list:
constrained_schema = core_schema.list_schema(items_schema, **metadata)
elif self.mapped_origin is set:
constrained_schema = core_schema.set_schema(items_schema, **metadata)
else:
assert self.mapped_origin is frozenset # safety check in case we forget to add a case
constrained_schema = core_schema.frozenset_schema(items_schema, **metadata)
schema = constrained_schema
else:
# safety check in case we forget to add a case
assert self.mapped_origin in (collections.deque, collections.Counter)
if self.mapped_origin is collections.deque:
# if we have a MaxLen annotation might as well set that as the default maxlen on the deque
# this lets us re-use existing metadata annotations to let users set the maxlen on a dequeue
# that e.g. comes from JSON
coerce_instance_wrap = partial(
core_schema.no_info_wrap_validator_function,
partial(dequeue_validator, maxlen=metadata.get('max_length', None)),
)
else:
coerce_instance_wrap = partial(core_schema.no_info_after_validator_function, self.mapped_origin)
constrained_schema = core_schema.list_schema(items_schema, **metadata)
check_instance = core_schema.json_or_python_schema(
json_schema=core_schema.list_schema(),
python_schema=core_schema.is_instance_schema(self.mapped_origin),
)
serialization = core_schema.wrap_serializer_function_ser_schema(
self.serialize_sequence_via_list, schema=items_schema or core_schema.any_schema(), info_arg=True
)
strict = core_schema.chain_schema([check_instance, coerce_instance_wrap(constrained_schema)])
if metadata.get('strict', False):
schema = strict
else:
lax = coerce_instance_wrap(constrained_schema)
schema = core_schema.lax_or_strict_schema(lax_schema=lax, strict_schema=strict)
schema['serialization'] = serialization
return schema
SEQUENCE_ORIGIN_MAP: dict[Any, Any] = {
typing.Deque: collections.deque,
collections.deque: collections.deque,
list: list,
typing.List: list,
set: set,
typing.AbstractSet: set,
typing.Set: set,
frozenset: frozenset,
typing.FrozenSet: frozenset,
typing.Sequence: list,
typing.MutableSequence: list,
typing.MutableSet: set,
# this doesn't handle subclasses of these
# parametrized typing.Set creates one of these
collections.abc.MutableSet: set,
collections.abc.Set: frozenset,
}
def identity(s: CoreSchema) -> CoreSchema:
return s
def sequence_like_prepare_pydantic_annotations(
source_type: Any, annotations: Iterable[Any], _config: ConfigDict
) -> tuple[Any, list[Any]] | None:
origin: Any = get_origin(source_type)
mapped_origin = SEQUENCE_ORIGIN_MAP.get(origin, None) if origin else SEQUENCE_ORIGIN_MAP.get(source_type, None)
if mapped_origin is None:
return None
args = get_args(source_type)
if not args:
args = (Any,)
elif len(args) != 1:
raise ValueError('Expected sequence to have exactly 1 generic parameter')
item_source_type = args[0]
metadata, remaining_annotations = _known_annotated_metadata.collect_known_metadata(annotations)
_known_annotated_metadata.check_metadata(metadata, _known_annotated_metadata.SEQUENCE_CONSTRAINTS, source_type)
return (source_type, [SequenceValidator(mapped_origin, item_source_type, **metadata), *remaining_annotations])
MAPPING_ORIGIN_MAP: dict[Any, Any] = {
typing.DefaultDict: collections.defaultdict,
collections.defaultdict: collections.defaultdict,
collections.OrderedDict: collections.OrderedDict,
typing_extensions.OrderedDict: collections.OrderedDict,
dict: dict,
typing.Dict: dict,
collections.Counter: collections.Counter,
typing.Counter: collections.Counter,
# this doesn't handle subclasses of these
typing.Mapping: dict,
typing.MutableMapping: dict,
# parametrized typing.{Mutable}Mapping creates one of these
collections.abc.MutableMapping: dict,
collections.abc.Mapping: dict,
}
def defaultdict_validator(
input_value: Any, handler: core_schema.ValidatorFunctionWrapHandler, default_default_factory: Callable[[], Any]
) -> collections.defaultdict[Any, Any]:
if isinstance(input_value, collections.defaultdict):
default_factory = input_value.default_factory
return collections.defaultdict(default_factory, handler(input_value))
else:
return collections.defaultdict(default_default_factory, handler(input_value))
def get_defaultdict_default_default_factory(values_source_type: Any) -> Callable[[], Any]:
def infer_default() -> Callable[[], Any]:
allowed_default_types: dict[Any, Any] = {
typing.Tuple: tuple,
tuple: tuple,
collections.abc.Sequence: tuple,
collections.abc.MutableSequence: list,
typing.List: list,
list: list,
typing.Sequence: list,
typing.Set: set,
set: set,
typing.MutableSet: set,
collections.abc.MutableSet: set,
collections.abc.Set: frozenset,
typing.MutableMapping: dict,
typing.Mapping: dict,
collections.abc.Mapping: dict,
collections.abc.MutableMapping: dict,
float: float,
int: int,
str: str,
bool: bool,
}
values_type_origin = get_origin(values_source_type) or values_source_type
instructions = 'set using `DefaultDict[..., Annotated[..., Field(default_factory=...)]]`'
if isinstance(values_type_origin, TypeVar):
def type_var_default_factory() -> None:
raise RuntimeError(
'Generic defaultdict cannot be used without a concrete value type or an'
' explicit default factory, ' + instructions
)
return type_var_default_factory
elif values_type_origin not in allowed_default_types:
# a somewhat subjective set of types that have reasonable default values
allowed_msg = ', '.join([t.__name__ for t in set(allowed_default_types.values())])
raise PydanticSchemaGenerationError(
f'Unable to infer a default factory for keys of type {values_source_type}.'
f' Only {allowed_msg} are supported, other types require an explicit default factory'
' ' + instructions
)
return allowed_default_types[values_type_origin]
# Assume Annotated[..., Field(...)]
if _typing_extra.is_annotated(values_source_type):
field_info = next((v for v in get_args(values_source_type) if isinstance(v, FieldInfo)), None)
else:
field_info = None
if field_info and field_info.default_factory:
default_default_factory = field_info.default_factory
else:
default_default_factory = infer_default()
return default_default_factory
@dataclasses.dataclass(**slots_true)
class MappingValidator:
mapped_origin: type[Any]
keys_source_type: type[Any]
values_source_type: type[Any]
min_length: int | None = None
max_length: int | None = None
strict: bool = False
def serialize_mapping_via_dict(self, v: Any, handler: core_schema.SerializerFunctionWrapHandler) -> Any:
return handler(v)
def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> CoreSchema:
if self.keys_source_type is Any:
keys_schema = None
else:
keys_schema = handler.generate_schema(self.keys_source_type)
if self.values_source_type is Any:
values_schema = None
else:
values_schema = handler.generate_schema(self.values_source_type)
metadata = {'min_length': self.min_length, 'max_length': self.max_length, 'strict': self.strict}
if self.mapped_origin is dict:
schema = core_schema.dict_schema(keys_schema, values_schema, **metadata)
else:
constrained_schema = core_schema.dict_schema(keys_schema, values_schema, **metadata)
check_instance = core_schema.json_or_python_schema(
json_schema=core_schema.dict_schema(),
python_schema=core_schema.is_instance_schema(self.mapped_origin),
)
if self.mapped_origin is collections.defaultdict:
default_default_factory = get_defaultdict_default_default_factory(self.values_source_type)
coerce_instance_wrap = partial(
core_schema.no_info_wrap_validator_function,
partial(defaultdict_validator, default_default_factory=default_default_factory),
)
else:
coerce_instance_wrap = partial(core_schema.no_info_after_validator_function, self.mapped_origin)
serialization = core_schema.wrap_serializer_function_ser_schema(
self.serialize_mapping_via_dict,
schema=core_schema.dict_schema(
keys_schema or core_schema.any_schema(), values_schema or core_schema.any_schema()
),
info_arg=False,
)
strict = core_schema.chain_schema([check_instance, coerce_instance_wrap(constrained_schema)])
if metadata.get('strict', False):
schema = strict
else:
lax = coerce_instance_wrap(constrained_schema)
schema = core_schema.lax_or_strict_schema(lax_schema=lax, strict_schema=strict)
schema['serialization'] = serialization
return schema
def mapping_like_prepare_pydantic_annotations(
source_type: Any, annotations: Iterable[Any], _config: ConfigDict
) -> tuple[Any, list[Any]] | None:
origin: Any = get_origin(source_type)
mapped_origin = MAPPING_ORIGIN_MAP.get(origin, None) if origin else MAPPING_ORIGIN_MAP.get(source_type, None)
if mapped_origin is None:
return None
args = get_args(source_type)
if not args:
args = (Any, Any)
elif mapped_origin is collections.Counter:
# a single generic
if len(args) != 1:
raise ValueError('Expected Counter to have exactly 1 generic parameter')
args = (args[0], int) # keys are always an int
elif len(args) != 2:
raise ValueError('Expected mapping to have exactly 2 generic parameters')
keys_source_type, values_source_type = args
metadata, remaining_annotations = _known_annotated_metadata.collect_known_metadata(annotations)
_known_annotated_metadata.check_metadata(metadata, _known_annotated_metadata.SEQUENCE_CONSTRAINTS, source_type)
return (
source_type,
[
MappingValidator(mapped_origin, keys_source_type, values_source_type, **metadata),
*remaining_annotations,
],
)
def ip_prepare_pydantic_annotations(
source_type: Any, annotations: Iterable[Any], _config: ConfigDict
) -> tuple[Any, list[Any]] | None:
def make_strict_ip_schema(tp: type[Any]) -> CoreSchema:
return core_schema.json_or_python_schema(
json_schema=core_schema.no_info_after_validator_function(tp, core_schema.str_schema()),
python_schema=core_schema.is_instance_schema(tp),
)
if source_type is IPv4Address:
return source_type, [
SchemaTransformer(
lambda _1, _2: core_schema.lax_or_strict_schema(
lax_schema=core_schema.no_info_plain_validator_function(_validators.ip_v4_address_validator),
strict_schema=make_strict_ip_schema(IPv4Address),
serialization=core_schema.to_string_ser_schema(),
),
lambda _1, _2: {'type': 'string', 'format': 'ipv4'},
),
*annotations,
]
if source_type is IPv4Network:
return source_type, [
SchemaTransformer(
lambda _1, _2: core_schema.lax_or_strict_schema(
lax_schema=core_schema.no_info_plain_validator_function(_validators.ip_v4_network_validator),
strict_schema=make_strict_ip_schema(IPv4Network),
serialization=core_schema.to_string_ser_schema(),
),
lambda _1, _2: {'type': 'string', 'format': 'ipv4network'},
),
*annotations,
]
if source_type is IPv4Interface:
return source_type, [
SchemaTransformer(
lambda _1, _2: core_schema.lax_or_strict_schema(
lax_schema=core_schema.no_info_plain_validator_function(_validators.ip_v4_interface_validator),
strict_schema=make_strict_ip_schema(IPv4Interface),
serialization=core_schema.to_string_ser_schema(),
),
lambda _1, _2: {'type': 'string', 'format': 'ipv4interface'},
),
*annotations,
]
if source_type is IPv6Address:
return source_type, [
SchemaTransformer(
lambda _1, _2: core_schema.lax_or_strict_schema(
lax_schema=core_schema.no_info_plain_validator_function(_validators.ip_v6_address_validator),
strict_schema=make_strict_ip_schema(IPv6Address),
serialization=core_schema.to_string_ser_schema(),
),
lambda _1, _2: {'type': 'string', 'format': 'ipv6'},
),
*annotations,
]
if source_type is IPv6Network:
return source_type, [
SchemaTransformer(
lambda _1, _2: core_schema.lax_or_strict_schema(
lax_schema=core_schema.no_info_plain_validator_function(_validators.ip_v6_network_validator),
strict_schema=make_strict_ip_schema(IPv6Network),
serialization=core_schema.to_string_ser_schema(),
),
lambda _1, _2: {'type': 'string', 'format': 'ipv6network'},
),
*annotations,
]
if source_type is IPv6Interface:
return source_type, [
SchemaTransformer(
lambda _1, _2: core_schema.lax_or_strict_schema(
lax_schema=core_schema.no_info_plain_validator_function(_validators.ip_v6_interface_validator),
strict_schema=make_strict_ip_schema(IPv6Interface),
serialization=core_schema.to_string_ser_schema(),
),
lambda _1, _2: {'type': 'string', 'format': 'ipv6interface'},
),
*annotations,
]
return None
def url_prepare_pydantic_annotations(
source_type: Any, annotations: Iterable[Any], _config: ConfigDict
) -> tuple[Any, list[Any]] | None:
if source_type is Url:
return source_type, [
SchemaTransformer(
lambda _1, _2: core_schema.url_schema(),
lambda cs, handler: handler(cs),
),
*annotations,
]
if source_type is MultiHostUrl:
return source_type, [
SchemaTransformer(
lambda _1, _2: core_schema.multi_host_url_schema(),
lambda cs, handler: handler(cs),
),
*annotations,
]
PREPARE_METHODS: tuple[Callable[[Any, Iterable[Any], ConfigDict], tuple[Any, list[Any]] | None], ...] = (
decimal_prepare_pydantic_annotations,
sequence_like_prepare_pydantic_annotations,
datetime_prepare_pydantic_annotations,
uuid_prepare_pydantic_annotations,
path_schema_prepare_pydantic_annotations,
mapping_like_prepare_pydantic_annotations,
ip_prepare_pydantic_annotations,
url_prepare_pydantic_annotations,
)

View file

@ -0,0 +1,469 @@
"""Logic for interacting with type annotations, mostly extensions, shims and hacks to wrap python's typing module."""
from __future__ import annotations as _annotations
import dataclasses
import sys
import types
import typing
from collections.abc import Callable
from functools import partial
from types import GetSetDescriptorType
from typing import TYPE_CHECKING, Any, Final
from typing_extensions import Annotated, Literal, TypeAliasType, TypeGuard, get_args, get_origin
if TYPE_CHECKING:
from ._dataclasses import StandardDataclass
try:
from typing import _TypingBase # type: ignore[attr-defined]
except ImportError:
from typing import _Final as _TypingBase # type: ignore[attr-defined]
typing_base = _TypingBase
if sys.version_info < (3, 9):
# python < 3.9 does not have GenericAlias (list[int], tuple[str, ...] and so on)
TypingGenericAlias = ()
else:
from typing import GenericAlias as TypingGenericAlias # type: ignore
if sys.version_info < (3, 11):
from typing_extensions import NotRequired, Required
else:
from typing import NotRequired, Required # noqa: F401
if sys.version_info < (3, 10):
def origin_is_union(tp: type[Any] | None) -> bool:
return tp is typing.Union
WithArgsTypes = (TypingGenericAlias,)
else:
def origin_is_union(tp: type[Any] | None) -> bool:
return tp is typing.Union or tp is types.UnionType
WithArgsTypes = typing._GenericAlias, types.GenericAlias, types.UnionType # type: ignore[attr-defined]
if sys.version_info < (3, 10):
NoneType = type(None)
EllipsisType = type(Ellipsis)
else:
from types import NoneType as NoneType
LITERAL_TYPES: set[Any] = {Literal}
if hasattr(typing, 'Literal'):
LITERAL_TYPES.add(typing.Literal) # type: ignore
NONE_TYPES: tuple[Any, ...] = (None, NoneType, *(tp[None] for tp in LITERAL_TYPES))
TypeVarType = Any # since mypy doesn't allow the use of TypeVar as a type
def is_none_type(type_: Any) -> bool:
return type_ in NONE_TYPES
def is_callable_type(type_: type[Any]) -> bool:
return type_ is Callable or get_origin(type_) is Callable
def is_literal_type(type_: type[Any]) -> bool:
return Literal is not None and get_origin(type_) in LITERAL_TYPES
def literal_values(type_: type[Any]) -> tuple[Any, ...]:
return get_args(type_)
def all_literal_values(type_: type[Any]) -> list[Any]:
"""This method is used to retrieve all Literal values as
Literal can be used recursively (see https://www.python.org/dev/peps/pep-0586)
e.g. `Literal[Literal[Literal[1, 2, 3], "foo"], 5, None]`.
"""
if not is_literal_type(type_):
return [type_]
values = literal_values(type_)
return list(x for value in values for x in all_literal_values(value))
def is_annotated(ann_type: Any) -> bool:
from ._utils import lenient_issubclass
origin = get_origin(ann_type)
return origin is not None and lenient_issubclass(origin, Annotated)
def is_namedtuple(type_: type[Any]) -> bool:
"""Check if a given class is a named tuple.
It can be either a `typing.NamedTuple` or `collections.namedtuple`.
"""
from ._utils import lenient_issubclass
return lenient_issubclass(type_, tuple) and hasattr(type_, '_fields')
test_new_type = typing.NewType('test_new_type', str)
def is_new_type(type_: type[Any]) -> bool:
"""Check whether type_ was created using typing.NewType.
Can't use isinstance because it fails <3.10.
"""
return isinstance(type_, test_new_type.__class__) and hasattr(type_, '__supertype__') # type: ignore[arg-type]
def _check_classvar(v: type[Any] | None) -> bool:
if v is None:
return False
return v.__class__ == typing.ClassVar.__class__ and getattr(v, '_name', None) == 'ClassVar'
def is_classvar(ann_type: type[Any]) -> bool:
if _check_classvar(ann_type) or _check_classvar(get_origin(ann_type)):
return True
# this is an ugly workaround for class vars that contain forward references and are therefore themselves
# forward references, see #3679
if ann_type.__class__ == typing.ForwardRef and ann_type.__forward_arg__.startswith('ClassVar['): # type: ignore
return True
return False
def _check_finalvar(v: type[Any] | None) -> bool:
"""Check if a given type is a `typing.Final` type."""
if v is None:
return False
return v.__class__ == Final.__class__ and (sys.version_info < (3, 8) or getattr(v, '_name', None) == 'Final')
def is_finalvar(ann_type: Any) -> bool:
return _check_finalvar(ann_type) or _check_finalvar(get_origin(ann_type))
def parent_frame_namespace(*, parent_depth: int = 2) -> dict[str, Any] | None:
"""We allow use of items in parent namespace to get around the issue with `get_type_hints` only looking in the
global module namespace. See https://github.com/pydantic/pydantic/issues/2678#issuecomment-1008139014 -> Scope
and suggestion at the end of the next comment by @gvanrossum.
WARNING 1: it matters exactly where this is called. By default, this function will build a namespace from the
parent of where it is called.
WARNING 2: this only looks in the parent namespace, not other parents since (AFAIK) there's no way to collect a
dict of exactly what's in scope. Using `f_back` would work sometimes but would be very wrong and confusing in many
other cases. See https://discuss.python.org/t/is-there-a-way-to-access-parent-nested-namespaces/20659.
"""
frame = sys._getframe(parent_depth)
# if f_back is None, it's the global module namespace and we don't need to include it here
if frame.f_back is None:
return None
else:
return frame.f_locals
def add_module_globals(obj: Any, globalns: dict[str, Any] | None = None) -> dict[str, Any]:
module_name = getattr(obj, '__module__', None)
if module_name:
try:
module_globalns = sys.modules[module_name].__dict__
except KeyError:
# happens occasionally, see https://github.com/pydantic/pydantic/issues/2363
pass
else:
if globalns:
return {**module_globalns, **globalns}
else:
# copy module globals to make sure it can't be updated later
return module_globalns.copy()
return globalns or {}
def get_cls_types_namespace(cls: type[Any], parent_namespace: dict[str, Any] | None = None) -> dict[str, Any]:
ns = add_module_globals(cls, parent_namespace)
ns[cls.__name__] = cls
return ns
def get_cls_type_hints_lenient(obj: Any, globalns: dict[str, Any] | None = None) -> dict[str, Any]:
"""Collect annotations from a class, including those from parent classes.
Unlike `typing.get_type_hints`, this function will not error if a forward reference is not resolvable.
"""
hints = {}
for base in reversed(obj.__mro__):
ann = base.__dict__.get('__annotations__')
localns = dict(vars(base))
if ann is not None and ann is not GetSetDescriptorType:
for name, value in ann.items():
hints[name] = eval_type_lenient(value, globalns, localns)
return hints
def eval_type_lenient(value: Any, globalns: dict[str, Any] | None = None, localns: dict[str, Any] | None = None) -> Any:
"""Behaves like typing._eval_type, except it won't raise an error if a forward reference can't be resolved."""
if value is None:
value = NoneType
elif isinstance(value, str):
value = _make_forward_ref(value, is_argument=False, is_class=True)
try:
return eval_type_backport(value, globalns, localns)
except NameError:
# the point of this function is to be tolerant to this case
return value
def eval_type_backport(
value: Any, globalns: dict[str, Any] | None = None, localns: dict[str, Any] | None = None
) -> Any:
"""Like `typing._eval_type`, but falls back to the `eval_type_backport` package if it's
installed to let older Python versions use newer typing features.
Specifically, this transforms `X | Y` into `typing.Union[X, Y]`
and `list[X]` into `typing.List[X]` etc. (for all the types made generic in PEP 585)
if the original syntax is not supported in the current Python version.
"""
try:
return typing._eval_type( # type: ignore
value, globalns, localns
)
except TypeError as e:
if not (isinstance(value, typing.ForwardRef) and is_backport_fixable_error(e)):
raise
try:
from eval_type_backport import eval_type_backport
except ImportError:
raise TypeError(
f'You have a type annotation {value.__forward_arg__!r} '
f'which makes use of newer typing features than are supported in your version of Python. '
f'To handle this error, you should either remove the use of new syntax '
f'or install the `eval_type_backport` package.'
) from e
return eval_type_backport(value, globalns, localns, try_default=False)
def is_backport_fixable_error(e: TypeError) -> bool:
msg = str(e)
return msg.startswith('unsupported operand type(s) for |: ') or "' object is not subscriptable" in msg
def get_function_type_hints(
function: Callable[..., Any], *, include_keys: set[str] | None = None, types_namespace: dict[str, Any] | None = None
) -> dict[str, Any]:
"""Like `typing.get_type_hints`, but doesn't convert `X` to `Optional[X]` if the default value is `None`, also
copes with `partial`.
"""
if isinstance(function, partial):
annotations = function.func.__annotations__
else:
annotations = function.__annotations__
globalns = add_module_globals(function)
type_hints = {}
for name, value in annotations.items():
if include_keys is not None and name not in include_keys:
continue
if value is None:
value = NoneType
elif isinstance(value, str):
value = _make_forward_ref(value)
type_hints[name] = eval_type_backport(value, globalns, types_namespace)
return type_hints
if sys.version_info < (3, 9, 8) or (3, 10) <= sys.version_info < (3, 10, 1):
def _make_forward_ref(
arg: Any,
is_argument: bool = True,
*,
is_class: bool = False,
) -> typing.ForwardRef:
"""Wrapper for ForwardRef that accounts for the `is_class` argument missing in older versions.
The `module` argument is omitted as it breaks <3.9.8, =3.10.0 and isn't used in the calls below.
See https://github.com/python/cpython/pull/28560 for some background.
The backport happened on 3.9.8, see:
https://github.com/pydantic/pydantic/discussions/6244#discussioncomment-6275458,
and on 3.10.1 for the 3.10 branch, see:
https://github.com/pydantic/pydantic/issues/6912
Implemented as EAFP with memory.
"""
return typing.ForwardRef(arg, is_argument)
else:
_make_forward_ref = typing.ForwardRef
if sys.version_info >= (3, 10):
get_type_hints = typing.get_type_hints
else:
"""
For older versions of python, we have a custom implementation of `get_type_hints` which is a close as possible to
the implementation in CPython 3.10.8.
"""
@typing.no_type_check
def get_type_hints( # noqa: C901
obj: Any,
globalns: dict[str, Any] | None = None,
localns: dict[str, Any] | None = None,
include_extras: bool = False,
) -> dict[str, Any]: # pragma: no cover
"""Taken verbatim from python 3.10.8 unchanged, except:
* type annotations of the function definition above.
* prefixing `typing.` where appropriate
* Use `_make_forward_ref` instead of `typing.ForwardRef` to handle the `is_class` argument.
https://github.com/python/cpython/blob/aaaf5174241496afca7ce4d4584570190ff972fe/Lib/typing.py#L1773-L1875
DO NOT CHANGE THIS METHOD UNLESS ABSOLUTELY NECESSARY.
======================================================
Return type hints for an object.
This is often the same as obj.__annotations__, but it handles
forward references encoded as string literals, adds Optional[t] if a
default value equal to None is set and recursively replaces all
'Annotated[T, ...]' with 'T' (unless 'include_extras=True').
The argument may be a module, class, method, or function. The annotations
are returned as a dictionary. For classes, annotations include also
inherited members.
TypeError is raised if the argument is not of a type that can contain
annotations, and an empty dictionary is returned if no annotations are
present.
BEWARE -- the behavior of globalns and localns is counterintuitive
(unless you are familiar with how eval() and exec() work). The
search order is locals first, then globals.
- If no dict arguments are passed, an attempt is made to use the
globals from obj (or the respective module's globals for classes),
and these are also used as the locals. If the object does not appear
to have globals, an empty dictionary is used. For classes, the search
order is globals first then locals.
- If one dict argument is passed, it is used for both globals and
locals.
- If two dict arguments are passed, they specify globals and
locals, respectively.
"""
if getattr(obj, '__no_type_check__', None):
return {}
# Classes require a special treatment.
if isinstance(obj, type):
hints = {}
for base in reversed(obj.__mro__):
if globalns is None:
base_globals = getattr(sys.modules.get(base.__module__, None), '__dict__', {})
else:
base_globals = globalns
ann = base.__dict__.get('__annotations__', {})
if isinstance(ann, types.GetSetDescriptorType):
ann = {}
base_locals = dict(vars(base)) if localns is None else localns
if localns is None and globalns is None:
# This is surprising, but required. Before Python 3.10,
# get_type_hints only evaluated the globalns of
# a class. To maintain backwards compatibility, we reverse
# the globalns and localns order so that eval() looks into
# *base_globals* first rather than *base_locals*.
# This only affects ForwardRefs.
base_globals, base_locals = base_locals, base_globals
for name, value in ann.items():
if value is None:
value = type(None)
if isinstance(value, str):
value = _make_forward_ref(value, is_argument=False, is_class=True)
value = eval_type_backport(value, base_globals, base_locals)
hints[name] = value
if not include_extras and hasattr(typing, '_strip_annotations'):
return {
k: typing._strip_annotations(t) # type: ignore
for k, t in hints.items()
}
else:
return hints
if globalns is None:
if isinstance(obj, types.ModuleType):
globalns = obj.__dict__
else:
nsobj = obj
# Find globalns for the unwrapped object.
while hasattr(nsobj, '__wrapped__'):
nsobj = nsobj.__wrapped__
globalns = getattr(nsobj, '__globals__', {})
if localns is None:
localns = globalns
elif localns is None:
localns = globalns
hints = getattr(obj, '__annotations__', None)
if hints is None:
# Return empty annotations for something that _could_ have them.
if isinstance(obj, typing._allowed_types): # type: ignore
return {}
else:
raise TypeError(f'{obj!r} is not a module, class, method, ' 'or function.')
defaults = typing._get_defaults(obj) # type: ignore
hints = dict(hints)
for name, value in hints.items():
if value is None:
value = type(None)
if isinstance(value, str):
# class-level forward refs were handled above, this must be either
# a module-level annotation or a function argument annotation
value = _make_forward_ref(
value,
is_argument=not isinstance(obj, types.ModuleType),
is_class=False,
)
value = eval_type_backport(value, globalns, localns)
if name in defaults and defaults[name] is None:
value = typing.Optional[value]
hints[name] = value
return hints if include_extras else {k: typing._strip_annotations(t) for k, t in hints.items()} # type: ignore
def is_dataclass(_cls: type[Any]) -> TypeGuard[type[StandardDataclass]]:
# The dataclasses.is_dataclass function doesn't seem to provide TypeGuard functionality,
# so I created this convenience function
return dataclasses.is_dataclass(_cls)
def origin_is_type_alias_type(origin: Any) -> TypeGuard[TypeAliasType]:
return isinstance(origin, TypeAliasType)
if sys.version_info >= (3, 10):
def is_generic_alias(type_: type[Any]) -> bool:
return isinstance(type_, (types.GenericAlias, typing._GenericAlias)) # type: ignore[attr-defined]
else:
def is_generic_alias(type_: type[Any]) -> bool:
return isinstance(type_, typing._GenericAlias) # type: ignore

View file

@ -0,0 +1,362 @@
"""Bucket of reusable internal utilities.
This should be reduced as much as possible with functions only used in one place, moved to that place.
"""
from __future__ import annotations as _annotations
import dataclasses
import keyword
import typing
import weakref
from collections import OrderedDict, defaultdict, deque
from copy import deepcopy
from itertools import zip_longest
from types import BuiltinFunctionType, CodeType, FunctionType, GeneratorType, LambdaType, ModuleType
from typing import Any, Mapping, TypeVar
from typing_extensions import TypeAlias, TypeGuard
from . import _repr, _typing_extra
if typing.TYPE_CHECKING:
MappingIntStrAny: TypeAlias = 'typing.Mapping[int, Any] | typing.Mapping[str, Any]'
AbstractSetIntStr: TypeAlias = 'typing.AbstractSet[int] | typing.AbstractSet[str]'
from ..main import BaseModel
# these are types that are returned unchanged by deepcopy
IMMUTABLE_NON_COLLECTIONS_TYPES: set[type[Any]] = {
int,
float,
complex,
str,
bool,
bytes,
type,
_typing_extra.NoneType,
FunctionType,
BuiltinFunctionType,
LambdaType,
weakref.ref,
CodeType,
# note: including ModuleType will differ from behaviour of deepcopy by not producing error.
# It might be not a good idea in general, but considering that this function used only internally
# against default values of fields, this will allow to actually have a field with module as default value
ModuleType,
NotImplemented.__class__,
Ellipsis.__class__,
}
# these are types that if empty, might be copied with simple copy() instead of deepcopy()
BUILTIN_COLLECTIONS: set[type[Any]] = {
list,
set,
tuple,
frozenset,
dict,
OrderedDict,
defaultdict,
deque,
}
def sequence_like(v: Any) -> bool:
return isinstance(v, (list, tuple, set, frozenset, GeneratorType, deque))
def lenient_isinstance(o: Any, class_or_tuple: type[Any] | tuple[type[Any], ...] | None) -> bool: # pragma: no cover
try:
return isinstance(o, class_or_tuple) # type: ignore[arg-type]
except TypeError:
return False
def lenient_issubclass(cls: Any, class_or_tuple: Any) -> bool: # pragma: no cover
try:
return isinstance(cls, type) and issubclass(cls, class_or_tuple)
except TypeError:
if isinstance(cls, _typing_extra.WithArgsTypes):
return False
raise # pragma: no cover
def is_model_class(cls: Any) -> TypeGuard[type[BaseModel]]:
"""Returns true if cls is a _proper_ subclass of BaseModel, and provides proper type-checking,
unlike raw calls to lenient_issubclass.
"""
from ..main import BaseModel
return lenient_issubclass(cls, BaseModel) and cls is not BaseModel
def is_valid_identifier(identifier: str) -> bool:
"""Checks that a string is a valid identifier and not a Python keyword.
:param identifier: The identifier to test.
:return: True if the identifier is valid.
"""
return identifier.isidentifier() and not keyword.iskeyword(identifier)
KeyType = TypeVar('KeyType')
def deep_update(mapping: dict[KeyType, Any], *updating_mappings: dict[KeyType, Any]) -> dict[KeyType, Any]:
updated_mapping = mapping.copy()
for updating_mapping in updating_mappings:
for k, v in updating_mapping.items():
if k in updated_mapping and isinstance(updated_mapping[k], dict) and isinstance(v, dict):
updated_mapping[k] = deep_update(updated_mapping[k], v)
else:
updated_mapping[k] = v
return updated_mapping
def update_not_none(mapping: dict[Any, Any], **update: Any) -> None:
mapping.update({k: v for k, v in update.items() if v is not None})
T = TypeVar('T')
def unique_list(
input_list: list[T] | tuple[T, ...],
*,
name_factory: typing.Callable[[T], str] = str,
) -> list[T]:
"""Make a list unique while maintaining order.
We update the list if another one with the same name is set
(e.g. model validator overridden in subclass).
"""
result: list[T] = []
result_names: list[str] = []
for v in input_list:
v_name = name_factory(v)
if v_name not in result_names:
result_names.append(v_name)
result.append(v)
else:
result[result_names.index(v_name)] = v
return result
class ValueItems(_repr.Representation):
"""Class for more convenient calculation of excluded or included fields on values."""
__slots__ = ('_items', '_type')
def __init__(self, value: Any, items: AbstractSetIntStr | MappingIntStrAny) -> None:
items = self._coerce_items(items)
if isinstance(value, (list, tuple)):
items = self._normalize_indexes(items, len(value)) # type: ignore
self._items: MappingIntStrAny = items # type: ignore
def is_excluded(self, item: Any) -> bool:
"""Check if item is fully excluded.
:param item: key or index of a value
"""
return self.is_true(self._items.get(item))
def is_included(self, item: Any) -> bool:
"""Check if value is contained in self._items.
:param item: key or index of value
"""
return item in self._items
def for_element(self, e: int | str) -> AbstractSetIntStr | MappingIntStrAny | None:
""":param e: key or index of element on value
:return: raw values for element if self._items is dict and contain needed element
"""
item = self._items.get(e) # type: ignore
return item if not self.is_true(item) else None
def _normalize_indexes(self, items: MappingIntStrAny, v_length: int) -> dict[int | str, Any]:
""":param items: dict or set of indexes which will be normalized
:param v_length: length of sequence indexes of which will be
>>> self._normalize_indexes({0: True, -2: True, -1: True}, 4)
{0: True, 2: True, 3: True}
>>> self._normalize_indexes({'__all__': True}, 4)
{0: True, 1: True, 2: True, 3: True}
"""
normalized_items: dict[int | str, Any] = {}
all_items = None
for i, v in items.items():
if not (isinstance(v, typing.Mapping) or isinstance(v, typing.AbstractSet) or self.is_true(v)):
raise TypeError(f'Unexpected type of exclude value for index "{i}" {v.__class__}')
if i == '__all__':
all_items = self._coerce_value(v)
continue
if not isinstance(i, int):
raise TypeError(
'Excluding fields from a sequence of sub-models or dicts must be performed index-wise: '
'expected integer keys or keyword "__all__"'
)
normalized_i = v_length + i if i < 0 else i
normalized_items[normalized_i] = self.merge(v, normalized_items.get(normalized_i))
if not all_items:
return normalized_items
if self.is_true(all_items):
for i in range(v_length):
normalized_items.setdefault(i, ...)
return normalized_items
for i in range(v_length):
normalized_item = normalized_items.setdefault(i, {})
if not self.is_true(normalized_item):
normalized_items[i] = self.merge(all_items, normalized_item)
return normalized_items
@classmethod
def merge(cls, base: Any, override: Any, intersect: bool = False) -> Any:
"""Merge a `base` item with an `override` item.
Both `base` and `override` are converted to dictionaries if possible.
Sets are converted to dictionaries with the sets entries as keys and
Ellipsis as values.
Each key-value pair existing in `base` is merged with `override`,
while the rest of the key-value pairs are updated recursively with this function.
Merging takes place based on the "union" of keys if `intersect` is
set to `False` (default) and on the intersection of keys if
`intersect` is set to `True`.
"""
override = cls._coerce_value(override)
base = cls._coerce_value(base)
if override is None:
return base
if cls.is_true(base) or base is None:
return override
if cls.is_true(override):
return base if intersect else override
# intersection or union of keys while preserving ordering:
if intersect:
merge_keys = [k for k in base if k in override] + [k for k in override if k in base]
else:
merge_keys = list(base) + [k for k in override if k not in base]
merged: dict[int | str, Any] = {}
for k in merge_keys:
merged_item = cls.merge(base.get(k), override.get(k), intersect=intersect)
if merged_item is not None:
merged[k] = merged_item
return merged
@staticmethod
def _coerce_items(items: AbstractSetIntStr | MappingIntStrAny) -> MappingIntStrAny:
if isinstance(items, typing.Mapping):
pass
elif isinstance(items, typing.AbstractSet):
items = dict.fromkeys(items, ...) # type: ignore
else:
class_name = getattr(items, '__class__', '???')
raise TypeError(f'Unexpected type of exclude value {class_name}')
return items # type: ignore
@classmethod
def _coerce_value(cls, value: Any) -> Any:
if value is None or cls.is_true(value):
return value
return cls._coerce_items(value)
@staticmethod
def is_true(v: Any) -> bool:
return v is True or v is ...
def __repr_args__(self) -> _repr.ReprArgs:
return [(None, self._items)]
if typing.TYPE_CHECKING:
def ClassAttribute(name: str, value: T) -> T:
...
else:
class ClassAttribute:
"""Hide class attribute from its instances."""
__slots__ = 'name', 'value'
def __init__(self, name: str, value: Any) -> None:
self.name = name
self.value = value
def __get__(self, instance: Any, owner: type[Any]) -> None:
if instance is None:
return self.value
raise AttributeError(f'{self.name!r} attribute of {owner.__name__!r} is class-only')
Obj = TypeVar('Obj')
def smart_deepcopy(obj: Obj) -> Obj:
"""Return type as is for immutable built-in types
Use obj.copy() for built-in empty collections
Use copy.deepcopy() for non-empty collections and unknown objects.
"""
obj_type = obj.__class__
if obj_type in IMMUTABLE_NON_COLLECTIONS_TYPES:
return obj # fastest case: obj is immutable and not collection therefore will not be copied anyway
try:
if not obj and obj_type in BUILTIN_COLLECTIONS:
# faster way for empty collections, no need to copy its members
return obj if obj_type is tuple else obj.copy() # tuple doesn't have copy method # type: ignore
except (TypeError, ValueError, RuntimeError):
# do we really dare to catch ALL errors? Seems a bit risky
pass
return deepcopy(obj) # slowest way when we actually might need a deepcopy
_SENTINEL = object()
def all_identical(left: typing.Iterable[Any], right: typing.Iterable[Any]) -> bool:
"""Check that the items of `left` are the same objects as those in `right`.
>>> a, b = object(), object()
>>> all_identical([a, b, a], [a, b, a])
True
>>> all_identical([a, b, [a]], [a, b, [a]]) # new list object, while "equal" is not "identical"
False
"""
for left_item, right_item in zip_longest(left, right, fillvalue=_SENTINEL):
if left_item is not right_item:
return False
return True
@dataclasses.dataclass(frozen=True)
class SafeGetItemProxy:
"""Wrapper redirecting `__getitem__` to `get` with a sentinel value as default
This makes is safe to use in `operator.itemgetter` when some keys may be missing
"""
# Define __slots__manually for performances
# @dataclasses.dataclass() only support slots=True in python>=3.10
__slots__ = ('wrapped',)
wrapped: Mapping[str, Any]
def __getitem__(self, __key: str) -> Any:
return self.wrapped.get(__key, _SENTINEL)
# required to pass the object to operator.itemgetter() instances due to a quirk of typeshed
# https://github.com/python/mypy/issues/13713
# https://github.com/python/typeshed/pull/8785
# Since this is typing-only, hide it in a typing.TYPE_CHECKING block
if typing.TYPE_CHECKING:
def __contains__(self, __key: str) -> bool:
return self.wrapped.__contains__(__key)

View file

@ -0,0 +1,84 @@
from __future__ import annotations as _annotations
import inspect
from functools import partial
from typing import Any, Awaitable, Callable
import pydantic_core
from ..config import ConfigDict
from ..plugin._schema_validator import create_schema_validator
from . import _generate_schema, _typing_extra
from ._config import ConfigWrapper
class ValidateCallWrapper:
"""This is a wrapper around a function that validates the arguments passed to it, and optionally the return value."""
__slots__ = (
'__pydantic_validator__',
'__name__',
'__qualname__',
'__annotations__',
'__dict__', # required for __module__
)
def __init__(self, function: Callable[..., Any], config: ConfigDict | None, validate_return: bool):
if isinstance(function, partial):
func = function.func
schema_type = func
self.__name__ = f'partial({func.__name__})'
self.__qualname__ = f'partial({func.__qualname__})'
self.__module__ = func.__module__
else:
schema_type = function
self.__name__ = function.__name__
self.__qualname__ = function.__qualname__
self.__module__ = function.__module__
namespace = _typing_extra.add_module_globals(function, None)
config_wrapper = ConfigWrapper(config)
gen_schema = _generate_schema.GenerateSchema(config_wrapper, namespace)
schema = gen_schema.clean_schema(gen_schema.generate_schema(function))
core_config = config_wrapper.core_config(self)
self.__pydantic_validator__ = create_schema_validator(
schema,
schema_type,
self.__module__,
self.__qualname__,
'validate_call',
core_config,
config_wrapper.plugin_settings,
)
if validate_return:
signature = inspect.signature(function)
return_type = signature.return_annotation if signature.return_annotation is not signature.empty else Any
gen_schema = _generate_schema.GenerateSchema(config_wrapper, namespace)
schema = gen_schema.clean_schema(gen_schema.generate_schema(return_type))
validator = create_schema_validator(
schema,
schema_type,
self.__module__,
self.__qualname__,
'validate_call',
core_config,
config_wrapper.plugin_settings,
)
if inspect.iscoroutinefunction(function):
async def return_val_wrapper(aw: Awaitable[Any]) -> None:
return validator.validate_python(await aw)
self.__return_pydantic_validator__ = return_val_wrapper
else:
self.__return_pydantic_validator__ = validator.validate_python
else:
self.__return_pydantic_validator__ = None
def __call__(self, *args: Any, **kwargs: Any) -> Any:
res = self.__pydantic_validator__.validate_python(pydantic_core.ArgsKwargs(args, kwargs))
if self.__return_pydantic_validator__:
return self.__return_pydantic_validator__(res)
return res

View file

@ -0,0 +1,278 @@
"""Validator functions for standard library types.
Import of this module is deferred since it contains imports of many standard library modules.
"""
from __future__ import annotations as _annotations
import math
import re
import typing
from ipaddress import IPv4Address, IPv4Interface, IPv4Network, IPv6Address, IPv6Interface, IPv6Network
from typing import Any
from pydantic_core import PydanticCustomError, core_schema
from pydantic_core._pydantic_core import PydanticKnownError
def sequence_validator(
__input_value: typing.Sequence[Any],
validator: core_schema.ValidatorFunctionWrapHandler,
) -> typing.Sequence[Any]:
"""Validator for `Sequence` types, isinstance(v, Sequence) has already been called."""
value_type = type(__input_value)
# We don't accept any plain string as a sequence
# Relevant issue: https://github.com/pydantic/pydantic/issues/5595
if issubclass(value_type, (str, bytes)):
raise PydanticCustomError(
'sequence_str',
"'{type_name}' instances are not allowed as a Sequence value",
{'type_name': value_type.__name__},
)
v_list = validator(__input_value)
# the rest of the logic is just re-creating the original type from `v_list`
if value_type == list:
return v_list
elif issubclass(value_type, range):
# return the list as we probably can't re-create the range
return v_list
else:
# best guess at how to re-create the original type, more custom construction logic might be required
return value_type(v_list) # type: ignore[call-arg]
def import_string(value: Any) -> Any:
if isinstance(value, str):
try:
return _import_string_logic(value)
except ImportError as e:
raise PydanticCustomError('import_error', 'Invalid python path: {error}', {'error': str(e)}) from e
else:
# otherwise we just return the value and let the next validator do the rest of the work
return value
def _import_string_logic(dotted_path: str) -> Any:
"""Inspired by uvicorn — dotted paths should include a colon before the final item if that item is not a module.
(This is necessary to distinguish between a submodule and an attribute when there is a conflict.).
If the dotted path does not include a colon and the final item is not a valid module, importing as an attribute
rather than a submodule will be attempted automatically.
So, for example, the following values of `dotted_path` result in the following returned values:
* 'collections': <module 'collections'>
* 'collections.abc': <module 'collections.abc'>
* 'collections.abc:Mapping': <class 'collections.abc.Mapping'>
* `collections.abc.Mapping`: <class 'collections.abc.Mapping'> (though this is a bit slower than the previous line)
An error will be raised under any of the following scenarios:
* `dotted_path` contains more than one colon (e.g., 'collections:abc:Mapping')
* the substring of `dotted_path` before the colon is not a valid module in the environment (e.g., '123:Mapping')
* the substring of `dotted_path` after the colon is not an attribute of the module (e.g., 'collections:abc123')
"""
from importlib import import_module
components = dotted_path.strip().split(':')
if len(components) > 2:
raise ImportError(f"Import strings should have at most one ':'; received {dotted_path!r}")
module_path = components[0]
if not module_path:
raise ImportError(f'Import strings should have a nonempty module name; received {dotted_path!r}')
try:
module = import_module(module_path)
except ModuleNotFoundError as e:
if '.' in module_path:
# Check if it would be valid if the final item was separated from its module with a `:`
maybe_module_path, maybe_attribute = dotted_path.strip().rsplit('.', 1)
try:
return _import_string_logic(f'{maybe_module_path}:{maybe_attribute}')
except ImportError:
pass
raise ImportError(f'No module named {module_path!r}') from e
raise e
if len(components) > 1:
attribute = components[1]
try:
return getattr(module, attribute)
except AttributeError as e:
raise ImportError(f'cannot import name {attribute!r} from {module_path!r}') from e
else:
return module
def pattern_either_validator(__input_value: Any) -> typing.Pattern[Any]:
if isinstance(__input_value, typing.Pattern):
return __input_value
elif isinstance(__input_value, (str, bytes)):
# todo strict mode
return compile_pattern(__input_value) # type: ignore
else:
raise PydanticCustomError('pattern_type', 'Input should be a valid pattern')
def pattern_str_validator(__input_value: Any) -> typing.Pattern[str]:
if isinstance(__input_value, typing.Pattern):
if isinstance(__input_value.pattern, str):
return __input_value
else:
raise PydanticCustomError('pattern_str_type', 'Input should be a string pattern')
elif isinstance(__input_value, str):
return compile_pattern(__input_value)
elif isinstance(__input_value, bytes):
raise PydanticCustomError('pattern_str_type', 'Input should be a string pattern')
else:
raise PydanticCustomError('pattern_type', 'Input should be a valid pattern')
def pattern_bytes_validator(__input_value: Any) -> typing.Pattern[bytes]:
if isinstance(__input_value, typing.Pattern):
if isinstance(__input_value.pattern, bytes):
return __input_value
else:
raise PydanticCustomError('pattern_bytes_type', 'Input should be a bytes pattern')
elif isinstance(__input_value, bytes):
return compile_pattern(__input_value)
elif isinstance(__input_value, str):
raise PydanticCustomError('pattern_bytes_type', 'Input should be a bytes pattern')
else:
raise PydanticCustomError('pattern_type', 'Input should be a valid pattern')
PatternType = typing.TypeVar('PatternType', str, bytes)
def compile_pattern(pattern: PatternType) -> typing.Pattern[PatternType]:
try:
return re.compile(pattern)
except re.error:
raise PydanticCustomError('pattern_regex', 'Input should be a valid regular expression')
def ip_v4_address_validator(__input_value: Any) -> IPv4Address:
if isinstance(__input_value, IPv4Address):
return __input_value
try:
return IPv4Address(__input_value)
except ValueError:
raise PydanticCustomError('ip_v4_address', 'Input is not a valid IPv4 address')
def ip_v6_address_validator(__input_value: Any) -> IPv6Address:
if isinstance(__input_value, IPv6Address):
return __input_value
try:
return IPv6Address(__input_value)
except ValueError:
raise PydanticCustomError('ip_v6_address', 'Input is not a valid IPv6 address')
def ip_v4_network_validator(__input_value: Any) -> IPv4Network:
"""Assume IPv4Network initialised with a default `strict` argument.
See more:
https://docs.python.org/library/ipaddress.html#ipaddress.IPv4Network
"""
if isinstance(__input_value, IPv4Network):
return __input_value
try:
return IPv4Network(__input_value)
except ValueError:
raise PydanticCustomError('ip_v4_network', 'Input is not a valid IPv4 network')
def ip_v6_network_validator(__input_value: Any) -> IPv6Network:
"""Assume IPv6Network initialised with a default `strict` argument.
See more:
https://docs.python.org/library/ipaddress.html#ipaddress.IPv6Network
"""
if isinstance(__input_value, IPv6Network):
return __input_value
try:
return IPv6Network(__input_value)
except ValueError:
raise PydanticCustomError('ip_v6_network', 'Input is not a valid IPv6 network')
def ip_v4_interface_validator(__input_value: Any) -> IPv4Interface:
if isinstance(__input_value, IPv4Interface):
return __input_value
try:
return IPv4Interface(__input_value)
except ValueError:
raise PydanticCustomError('ip_v4_interface', 'Input is not a valid IPv4 interface')
def ip_v6_interface_validator(__input_value: Any) -> IPv6Interface:
if isinstance(__input_value, IPv6Interface):
return __input_value
try:
return IPv6Interface(__input_value)
except ValueError:
raise PydanticCustomError('ip_v6_interface', 'Input is not a valid IPv6 interface')
def greater_than_validator(x: Any, gt: Any) -> Any:
if not (x > gt):
raise PydanticKnownError('greater_than', {'gt': gt})
return x
def greater_than_or_equal_validator(x: Any, ge: Any) -> Any:
if not (x >= ge):
raise PydanticKnownError('greater_than_equal', {'ge': ge})
return x
def less_than_validator(x: Any, lt: Any) -> Any:
if not (x < lt):
raise PydanticKnownError('less_than', {'lt': lt})
return x
def less_than_or_equal_validator(x: Any, le: Any) -> Any:
if not (x <= le):
raise PydanticKnownError('less_than_equal', {'le': le})
return x
def multiple_of_validator(x: Any, multiple_of: Any) -> Any:
if not (x % multiple_of == 0):
raise PydanticKnownError('multiple_of', {'multiple_of': multiple_of})
return x
def min_length_validator(x: Any, min_length: Any) -> Any:
if not (len(x) >= min_length):
raise PydanticKnownError(
'too_short',
{'field_type': 'Value', 'min_length': min_length, 'actual_length': len(x)},
)
return x
def max_length_validator(x: Any, max_length: Any) -> Any:
if len(x) > max_length:
raise PydanticKnownError(
'too_long',
{'field_type': 'Value', 'max_length': max_length, 'actual_length': len(x)},
)
return x
def forbid_inf_nan_check(x: Any) -> Any:
if not math.isfinite(x):
raise PydanticKnownError('finite_number')
return x