nzbToMedia/libs/more_itertools/recipes.py
Labrys 6bb4ae56bd Update jaraco.windows to v3.6:
Dependencies:
* backports.functools-lru-cache	1.2.1
* jaraco.classes	1.3
* jaraco.collections	1.3.2
* jaraco.functools	1.11
* jaraco.structures	1.0
* jaraco.text	1.7
* jaraco.ui	1.4
* jaraco.windows	3.6
* more-itertools	2.2
* path.py	8.2.1
* six	1.10.0
2016-06-06 13:02:07 -04:00

331 lines
8.7 KiB
Python

"""Imported from the recipes section of the itertools documentation.
All functions taken from the recipes section of the itertools library docs
[1]_.
Some backward-compatible usability improvements have been made.
.. [1] http://docs.python.org/library/itertools.html#recipes
"""
from collections import deque
from itertools import chain, combinations, count, cycle, groupby, ifilterfalse, imap, islice, izip, izip_longest, repeat, starmap, tee # Wrapping breaks 2to3.
import operator
from random import randrange, sample, choice
__all__ = ['take', 'tabulate', 'consume', 'nth', 'quantify', 'padnone',
'ncycles', 'dotproduct', 'flatten', 'repeatfunc', 'pairwise',
'grouper', 'roundrobin', 'powerset', 'unique_everseen',
'unique_justseen', 'iter_except', 'random_product',
'random_permutation', 'random_combination',
'random_combination_with_replacement']
def take(n, iterable):
"""Return first n items of the iterable as a list
>>> take(3, range(10))
[0, 1, 2]
>>> take(5, range(3))
[0, 1, 2]
Effectively a short replacement for ``next`` based iterator consumption
when you want more than one item, but less than the whole iterator.
"""
return list(islice(iterable, n))
def tabulate(function, start=0):
"""Return an iterator mapping the function over linear input.
The start argument will be increased by 1 each time the iterator is called
and fed into the function.
>>> t = tabulate(lambda x: x**2, -3)
>>> take(3, t)
[9, 4, 1]
"""
return imap(function, count(start))
def consume(iterator, n=None):
"""Advance the iterator n-steps ahead. If n is none, consume entirely.
Efficiently exhausts an iterator without returning values. Defaults to
consuming the whole iterator, but an optional second argument may be
provided to limit consumption.
>>> i = (x for x in range(10))
>>> next(i)
0
>>> consume(i, 3)
>>> next(i)
4
>>> consume(i)
>>> next(i)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
If the iterator has fewer items remaining than the provided limit, the
whole iterator will be consumed.
>>> i = (x for x in range(3))
>>> consume(i, 5)
>>> next(i)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
"""
# Use functions that consume iterators at C speed.
if n is None:
# feed the entire iterator into a zero-length deque
deque(iterator, maxlen=0)
else:
# advance to the empty slice starting at position n
next(islice(iterator, n, n), None)
def nth(iterable, n, default=None):
"""Returns the nth item or a default value
>>> l = range(10)
>>> nth(l, 3)
3
>>> nth(l, 20, "zebra")
'zebra'
"""
return next(islice(iterable, n, None), default)
def quantify(iterable, pred=bool):
"""Return the how many times the predicate is true
>>> quantify([True, False, True])
2
"""
return sum(imap(pred, iterable))
def padnone(iterable):
"""Returns the sequence of elements and then returns None indefinitely.
>>> take(5, padnone(range(3)))
[0, 1, 2, None, None]
Useful for emulating the behavior of the built-in map() function.
"""
return chain(iterable, repeat(None))
def ncycles(iterable, n):
"""Returns the sequence elements n times
>>> list(ncycles(["a", "b"], 3))
['a', 'b', 'a', 'b', 'a', 'b']
"""
return chain.from_iterable(repeat(tuple(iterable), n))
def dotproduct(vec1, vec2):
"""Returns the dot product of the two iterables
>>> dotproduct([10, 10], [20, 20])
400
"""
return sum(imap(operator.mul, vec1, vec2))
def flatten(listOfLists):
"""Return an iterator flattening one level of nesting in a list of lists
>>> list(flatten([[0, 1], [2, 3]]))
[0, 1, 2, 3]
"""
return chain.from_iterable(listOfLists)
def repeatfunc(func, times=None, *args):
"""Repeat calls to func with specified arguments.
>>> list(repeatfunc(lambda: 5, 3))
[5, 5, 5]
>>> list(repeatfunc(lambda x: x ** 2, 3, 3))
[9, 9, 9]
"""
if times is None:
return starmap(func, repeat(args))
return starmap(func, repeat(args, times))
def pairwise(iterable):
"""Returns an iterator of paired items, overlapping, from the original
>>> take(4, pairwise(count()))
[(0, 1), (1, 2), (2, 3), (3, 4)]
"""
a, b = tee(iterable)
next(b, None)
return izip(a, b)
def grouper(n, iterable, fillvalue=None):
"""Collect data into fixed-length chunks or blocks
>>> list(grouper(3, 'ABCDEFG', 'x'))
[('A', 'B', 'C'), ('D', 'E', 'F'), ('G', 'x', 'x')]
"""
args = [iter(iterable)] * n
return izip_longest(fillvalue=fillvalue, *args)
def roundrobin(*iterables):
"""Yields an item from each iterable, alternating between them
>>> list(roundrobin('ABC', 'D', 'EF'))
['A', 'D', 'E', 'B', 'F', 'C']
"""
# Recipe credited to George Sakkis
pending = len(iterables)
nexts = cycle(iter(it).next for it in iterables)
while pending:
try:
for next in nexts:
yield next()
except StopIteration:
pending -= 1
nexts = cycle(islice(nexts, pending))
def powerset(iterable):
"""Yields all possible subsets of the iterable
>>> list(powerset([1,2,3]))
[(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]
"""
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
def unique_everseen(iterable, key=None):
"""Yield unique elements, preserving order.
>>> list(unique_everseen('AAAABBBCCDAABBB'))
['A', 'B', 'C', 'D']
>>> list(unique_everseen('ABBCcAD', str.lower))
['A', 'B', 'C', 'D']
"""
seen = set()
seen_add = seen.add
if key is None:
for element in ifilterfalse(seen.__contains__, iterable):
seen_add(element)
yield element
else:
for element in iterable:
k = key(element)
if k not in seen:
seen_add(k)
yield element
def unique_justseen(iterable, key=None):
"""Yields elements in order, ignoring serial duplicates
>>> list(unique_justseen('AAAABBBCCDAABBB'))
['A', 'B', 'C', 'D', 'A', 'B']
>>> list(unique_justseen('ABBCcAD', str.lower))
['A', 'B', 'C', 'A', 'D']
"""
return imap(next, imap(operator.itemgetter(1), groupby(iterable, key)))
def iter_except(func, exception, first=None):
"""Yields results from a function repeatedly until an exception is raised.
Converts a call-until-exception interface to an iterator interface.
Like __builtin__.iter(func, sentinel) but uses an exception instead
of a sentinel to end the loop.
>>> l = range(3)
>>> list(iter_except(l.pop, IndexError))
[2, 1, 0]
"""
try:
if first is not None:
yield first()
while 1:
yield func()
except exception:
pass
def random_product(*args, **kwds):
"""Returns a random pairing of items from each iterable argument
If `repeat` is provided as a kwarg, it's value will be used to indicate
how many pairings should be chosen.
>>> random_product(['a', 'b', 'c'], [1, 2], repeat=2) # doctest:+SKIP
('b', '2', 'c', '2')
"""
pools = map(tuple, args) * kwds.get('repeat', 1)
return tuple(choice(pool) for pool in pools)
def random_permutation(iterable, r=None):
"""Returns a random permutation.
If r is provided, the permutation is truncated to length r.
>>> random_permutation(range(5)) # doctest:+SKIP
(3, 4, 0, 1, 2)
"""
pool = tuple(iterable)
r = len(pool) if r is None else r
return tuple(sample(pool, r))
def random_combination(iterable, r):
"""Returns a random combination of length r, chosen without replacement.
>>> random_combination(range(5), 3) # doctest:+SKIP
(2, 3, 4)
"""
pool = tuple(iterable)
n = len(pool)
indices = sorted(sample(xrange(n), r))
return tuple(pool[i] for i in indices)
def random_combination_with_replacement(iterable, r):
"""Returns a random combination of length r, chosen with replacement.
>>> random_combination_with_replacement(range(3), 5) # # doctest:+SKIP
(0, 0, 1, 2, 2)
"""
pool = tuple(iterable)
n = len(pool)
indices = sorted(randrange(n) for i in xrange(r))
return tuple(pool[i] for i in indices)