#!/usr/bin/env python # -*- coding: utf-8 -*- # # GuessIt - A library for guessing information from filenames # Copyright (c) 2013 Nicolas Wack # # GuessIt is free software; you can redistribute it and/or modify it under # the terms of the Lesser GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # GuessIt is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # Lesser GNU General Public License for more details. # # You should have received a copy of the Lesser GNU General Public License # along with this program. If not, see . # from __future__ import absolute_import, division, print_function, unicode_literals from guessit import UnicodeMixin, s, u, base_text_type from babelfish import Language, Country import json import datetime import logging log = logging.getLogger(__name__) class GuessMetadata(object): """GuessMetadata contains confidence, an input string, span and related property. If defined on a property of Guess object, it overrides the object defined as global. :param parent: The parent metadata, used for undefined properties in self object :type parent: :class: `GuessMedata` :param confidence: The confidence (from 0.0 to 1.0) :type confidence: number :param input: The input string :type input: string :param span: The input string :type span: tuple (int, int) :param prop: The found property definition :type prop: :class `guessit.containers._Property` """ def __init__(self, parent=None, confidence=None, input=None, span=None, prop=None, *args, **kwargs): self.parent = parent if confidence is None and self.parent is None: self._confidence = 1.0 else: self._confidence = confidence self._input = input self._span = span self._prop = prop @property def confidence(self): """The confidence :rtype: int :return: confidence value """ return self._confidence if self._confidence is not None else self.parent.confidence if self.parent else None @confidence.setter def confidence(self, confidence): self._confidence = confidence @property def input(self): """The input :rtype: string :return: String used to find this guess value """ return self._input if self._input is not None else self.parent.input if self.parent else None @input.setter def input(self, input): """The input :rtype: string """ self._input = input @property def span(self): """The span :rtype: tuple (int, int) :return: span of input string used to find this guess value """ return self._span if self._span is not None else self.parent.span if self.parent else None @span.setter def span(self, span): """The span :rtype: tuple (int, int) :return: span of input string used to find this guess value """ self._span = span @property def prop(self): """The property :rtype: :class:`_Property` :return: The property """ return self._prop if self._prop is not None else self.parent.prop if self.parent else None @property def raw(self): """Return the raw information (original match from the string, not the cleaned version) associated with the given property name.""" if self.input and self.span: return self.input[self.span[0]:self.span[1]] return None def __repr__(self, *args, **kwargs): return object.__repr__(self, *args, **kwargs) def _split_kwargs(**kwargs): metadata_args = {} for prop in dir(GuessMetadata): try: metadata_args[prop] = kwargs.pop(prop) except KeyError: pass return metadata_args, kwargs class Guess(UnicodeMixin, dict): """A Guess is a dictionary which has an associated confidence for each of its values. As it is a subclass of dict, you can use it everywhere you expect a simple dict.""" def __init__(self, *args, **kwargs): metadata_kwargs, kwargs = _split_kwargs(**kwargs) self._global_metadata = GuessMetadata(**metadata_kwargs) dict.__init__(self, *args, **kwargs) self._metadata = {} for prop in self: self._metadata[prop] = GuessMetadata(parent=self._global_metadata) def rename(self, old_name, new_name): if old_name in self._metadata: metadata = self._metadata[old_name] del self._metadata[old_name] self._metadata[new_name] = metadata if old_name in self: value = self[old_name] del self[old_name] self[new_name] = value return True return False def to_dict(self, advanced=False): """Return the guess as a dict containing only base types, ie: where dates, languages, countries, etc. are converted to strings. if advanced is True, return the data as a json string containing also the raw information of the properties.""" data = dict(self) for prop, value in data.items(): if isinstance(value, datetime.date): data[prop] = value.isoformat() elif isinstance(value, (UnicodeMixin, base_text_type)): data[prop] = u(value) elif isinstance(value, (Language, Country)): data[prop] = value.guessit elif isinstance(value, list): data[prop] = [u(x) for x in value] if advanced: metadata = self.metadata(prop) prop_data = {'value': data[prop]} if metadata.raw: prop_data['raw'] = metadata.raw if metadata.confidence: prop_data['confidence'] = metadata.confidence data[prop] = prop_data return data def nice_string(self, advanced=False): """Return a string with the property names and their values, that also displays the associated confidence to each property. FIXME: doc with param""" if advanced: data = self.to_dict(advanced) return json.dumps(data, indent=4) else: data = self.to_dict() parts = json.dumps(data, indent=4).split('\n') for i, p in enumerate(parts): if p[:5] != ' "': continue prop = p.split('"')[1] parts[i] = (' [%.2f] "' % self.confidence(prop)) + p[5:] return '\n'.join(parts) def __unicode__(self): return u(self.to_dict()) def metadata(self, prop=None): """Return the metadata associated with the given property name If no property name is given, get the global_metadata """ if prop is None: return self._global_metadata if prop not in self._metadata: self._metadata[prop] = GuessMetadata(parent=self._global_metadata) return self._metadata[prop] def confidence(self, prop=None): return self.metadata(prop).confidence def set_confidence(self, prop, confidence): self.metadata(prop).confidence = confidence def raw(self, prop): return self.metadata(prop).raw def set(self, prop_name, value, *args, **kwargs): if value is None: try: del self[prop_name] except KeyError: pass try: del self._metadata[prop_name] except KeyError: pass else: self[prop_name] = value if 'metadata' in kwargs.keys(): self._metadata[prop_name] = kwargs['metadata'] else: self._metadata[prop_name] = GuessMetadata(parent=self._global_metadata, *args, **kwargs) def update(self, other, confidence=None): dict.update(self, other) if isinstance(other, Guess): for prop in other: try: self._metadata[prop] = other._metadata[prop] except KeyError: pass if confidence is not None: for prop in other: self.set_confidence(prop, confidence) def update_highest_confidence(self, other): """Update this guess with the values from the given one. In case there is property present in both, only the one with the highest one is kept.""" if not isinstance(other, Guess): raise ValueError('Can only call this function on Guess instances') for prop in other: if prop in self and self.metadata(prop).confidence >= other.metadata(prop).confidence: continue self[prop] = other[prop] self._metadata[prop] = other.metadata(prop) def choose_int(g1, g2): """Function used by merge_similar_guesses to choose between 2 possible properties when they are integers.""" v1, c1 = g1 # value, confidence v2, c2 = g2 if (v1 == v2): return (v1, 1 - (1 - c1) * (1 - c2)) else: if c1 > c2: return (v1, c1 - c2) else: return (v2, c2 - c1) def choose_string(g1, g2): """Function used by merge_similar_guesses to choose between 2 possible properties when they are strings. If the 2 strings are similar, or one is contained in the other, the latter is returned with an increased confidence. If the 2 strings are dissimilar, the one with the higher confidence is returned, with a weaker confidence. Note that here, 'similar' means that 2 strings are either equal, or that they differ very little, such as one string being the other one with the 'the' word prepended to it. >>> s(choose_string(('Hello', 0.75), ('World', 0.5))) ('Hello', 0.25) >>> s(choose_string(('Hello', 0.5), ('hello', 0.5))) ('Hello', 0.75) >>> s(choose_string(('Hello', 0.4), ('Hello World', 0.4))) ('Hello', 0.64) >>> s(choose_string(('simpsons', 0.5), ('The Simpsons', 0.5))) ('The Simpsons', 0.75) """ v1, c1 = g1 # value, confidence v2, c2 = g2 if not v1: return g2 elif not v2: return g1 v1, v2 = v1.strip(), v2.strip() v1l, v2l = v1.lower(), v2.lower() combined_prob = 1 - (1 - c1) * (1 - c2) if v1l == v2l: return v1, combined_prob # check for common patterns elif v1l == 'the ' + v2l: return v1, combined_prob elif v2l == 'the ' + v1l: return v2, combined_prob # if one string is contained in the other, return the shortest one elif v2l in v1l: return v2, combined_prob elif v1l in v2l: return v1, combined_prob # in case of conflict, return the one with highest confidence else: if c1 > c2: return v1, c1 - c2 else: return v2, c2 - c1 def _merge_similar_guesses_nocheck(guesses, prop, choose): """Take a list of guesses and merge those which have the same properties, increasing or decreasing the confidence depending on whether their values are similar. This function assumes there are at least 2 valid guesses.""" similar = [guess for guess in guesses if prop in guess] g1, g2 = similar[0], similar[1] # merge only this prop of s2 into s1, updating the confidence for the # considered property v1, v2 = g1[prop], g2[prop] c1, c2 = g1.confidence(prop), g2.confidence(prop) new_value, new_confidence = choose((v1, c1), (v2, c2)) if new_confidence >= c1: msg = "Updating matching property '%s' with confidence %.2f" else: msg = "Updating non-matching property '%s' with confidence %.2f" log.debug(msg % (prop, new_confidence)) g1.set(prop, new_value, confidence=new_confidence) g2.pop(prop) # remove g2 if there are no properties left if not g2.keys(): guesses.remove(g2) def merge_similar_guesses(guesses, prop, choose): """Take a list of guesses and merge those which have the same properties, increasing or decreasing the confidence depending on whether their values are similar.""" similar = [guess for guess in guesses if prop in guess] if len(similar) < 2: # nothing to merge return if len(similar) == 2: _merge_similar_guesses_nocheck(guesses, prop, choose) if len(similar) > 2: log.debug('complex merge, trying our best...') before = len(guesses) _merge_similar_guesses_nocheck(guesses, prop, choose) after = len(guesses) if after < before: # recurse only when the previous call actually did something, # otherwise we end up in an infinite loop merge_similar_guesses(guesses, prop, choose) def merge_all(guesses, append=None): """Merge all the guesses in a single result, remove very unlikely values, and return it. You can specify a list of properties that should be appended into a list instead of being merged. >>> s(merge_all([ Guess({'season': 2}, confidence=0.6), ... Guess({'episodeNumber': 13}, confidence=0.8) ]) ... ) == {'season': 2, 'episodeNumber': 13} True >>> s(merge_all([ Guess({'episodeNumber': 27}, confidence=0.02), ... Guess({'season': 1}, confidence=0.2) ]) ... ) == {'season': 1} True >>> s(merge_all([ Guess({'other': 'PROPER'}, confidence=0.8), ... Guess({'releaseGroup': '2HD'}, confidence=0.8) ], ... append=['other']) ... ) == {'releaseGroup': '2HD', 'other': ['PROPER']} True """ result = Guess() if not guesses: return result if append is None: append = [] for g in guesses: # first append our appendable properties for prop in append: if prop in g: if isinstance(g[prop], (list, set)): new_values = result.get(prop, []) + list(g[prop]) else: new_values = result.get(prop, []) + [g[prop]] result.set(prop, new_values, # TODO: what to do with confidence here? maybe an # arithmetic mean... confidence=g.metadata(prop).confidence, input=g.metadata(prop).input, span=g.metadata(prop).span, prop=g.metadata(prop).prop) del g[prop] # then merge the remaining ones dups = set(result) & set(g) if dups: log.debug('duplicate properties %s in merged result...' % [(result[p], g[p]) for p in dups]) result.update_highest_confidence(g) # delete very unlikely values for p in list(result.keys()): if result.confidence(p) < 0.05: del result[p] # make sure our appendable properties contain unique values for prop in append: try: value = result[prop] if isinstance(value, list): result[prop] = list(set(value)) else: result[prop] = [value] except KeyError: pass return result def smart_merge(guesses): """First tries to merge well-known similar properties, and then merges the rest with a merge_all call. Should be the function to call in most cases, unless one wants to have more control. Warning: this function is destructive, ie: it will merge the list in-place. """ # 1- try to merge similar information together and give it a higher # confidence for int_part in ('year', 'season', 'episodeNumber'): merge_similar_guesses(guesses, int_part, choose_int) for string_part in ('title', 'series', 'container', 'format', 'releaseGroup', 'website', 'audioCodec', 'videoCodec', 'screenSize', 'episodeFormat', 'audioChannels', 'idNumber'): merge_similar_guesses(guesses, string_part, choose_string) # 2- merge the rest, potentially discarding information not properly # merged before result = merge_all(guesses, append=['language', 'subtitleLanguage', 'other', 'episodeDetails', 'unidentified']) return result