mirror of
https://github.com/clinton-hall/nzbToMedia.git
synced 2025-08-20 05:13:16 -07:00
Added GuessIt library and required libs for it.
We now perform a guessit on the nzbName to extract movie title and year instead of a regex, this is more accurate.
This commit is contained in:
parent
d26cc388d1
commit
c1a1354636
69 changed files with 9263 additions and 38 deletions
452
lib/guessit/guess.py
Normal file
452
lib/guessit/guess.py
Normal file
|
@ -0,0 +1,452 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# GuessIt - A library for guessing information from filenames
|
||||
# Copyright (c) 2013 Nicolas Wack <wackou@gmail.com>
|
||||
#
|
||||
# GuessIt is free software; you can redistribute it and/or modify it under
|
||||
# the terms of the Lesser GNU General Public License as published by
|
||||
# the Free Software Foundation; either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# GuessIt is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# Lesser GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the Lesser GNU General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
|
||||
from __future__ import absolute_import, division, print_function, unicode_literals
|
||||
|
||||
from guessit import UnicodeMixin, s, u, base_text_type
|
||||
import json
|
||||
import datetime
|
||||
import logging
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class GuessMetadata(object):
|
||||
"""GuessMetadata contains confidence, an input string, span and related property.
|
||||
|
||||
If defined on a property of Guess object, it overrides the object defined as global.
|
||||
|
||||
:param parent: The parent metadata, used for undefined properties in self object
|
||||
:type parent: :class: `GuessMedata`
|
||||
:param confidence: The confidence (from 0.0 to 1.0)
|
||||
:type confidence: number
|
||||
:param input: The input string
|
||||
:type input: string
|
||||
:param span: The input string
|
||||
:type span: tuple (int, int)
|
||||
:param prop: The found property definition
|
||||
:type prop: :class `guessit.containers._Property`
|
||||
"""
|
||||
def __init__(self, parent=None, confidence=None, input=None, span=None, prop=None, *args, **kwargs):
|
||||
self.parent = parent
|
||||
if confidence is None and self.parent is None:
|
||||
self._confidence = 1.0
|
||||
else:
|
||||
self._confidence = confidence
|
||||
self._input = input
|
||||
self._span = span
|
||||
self._prop = prop
|
||||
|
||||
@property
|
||||
def confidence(self):
|
||||
"""The confidence
|
||||
|
||||
:rtype: int
|
||||
:return: confidence value
|
||||
"""
|
||||
return self._confidence if not self._confidence is None else self.parent.confidence if self.parent else None
|
||||
|
||||
@confidence.setter
|
||||
def confidence(self, confidence):
|
||||
self._confidence = confidence
|
||||
|
||||
@property
|
||||
def input(self):
|
||||
"""The input
|
||||
|
||||
:rtype: string
|
||||
:return: String used to find this guess value
|
||||
"""
|
||||
return self._input if not self._input is None else self.parent.input if self.parent else None
|
||||
|
||||
@property
|
||||
def span(self):
|
||||
"""The span
|
||||
|
||||
:rtype: tuple (int, int)
|
||||
:return: span of input string used to find this guess value
|
||||
"""
|
||||
return self._span if not self._span is None else self.parent.span if self.parent else None
|
||||
|
||||
@span.setter
|
||||
def span(self, span):
|
||||
"""The span
|
||||
|
||||
:rtype: tuple (int, int)
|
||||
:return: span of input string used to find this guess value
|
||||
"""
|
||||
self._span = span
|
||||
|
||||
@property
|
||||
def prop(self):
|
||||
"""The property
|
||||
|
||||
:rtype: :class:`_Property`
|
||||
:return: The property
|
||||
"""
|
||||
return self._prop if not self._prop is None else self.parent.prop if self.parent else None
|
||||
|
||||
@property
|
||||
def raw(self):
|
||||
"""Return the raw information (original match from the string,
|
||||
not the cleaned version) associated with the given property name."""
|
||||
if self.input and self.span:
|
||||
return self.input[self.span[0]:self.span[1]]
|
||||
return None
|
||||
|
||||
def __repr__(self, *args, **kwargs):
|
||||
return object.__repr__(self, *args, **kwargs)
|
||||
|
||||
|
||||
def _split_kwargs(**kwargs):
|
||||
metadata_args = {}
|
||||
for prop in dir(GuessMetadata):
|
||||
try:
|
||||
metadata_args[prop] = kwargs.pop(prop)
|
||||
except KeyError:
|
||||
pass
|
||||
return metadata_args, kwargs
|
||||
|
||||
|
||||
class Guess(UnicodeMixin, dict):
|
||||
"""A Guess is a dictionary which has an associated confidence for each of
|
||||
its values.
|
||||
|
||||
As it is a subclass of dict, you can use it everywhere you expect a
|
||||
simple dict."""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
metadata_kwargs, kwargs = _split_kwargs(**kwargs)
|
||||
self._global_metadata = GuessMetadata(**metadata_kwargs)
|
||||
dict.__init__(self, *args, **kwargs)
|
||||
|
||||
self._metadata = {}
|
||||
for prop in self:
|
||||
self._metadata[prop] = GuessMetadata(parent=self._global_metadata)
|
||||
|
||||
def to_dict(self, advanced=False):
|
||||
"""Return the guess as a dict containing only base types, ie:
|
||||
where dates, languages, countries, etc. are converted to strings.
|
||||
|
||||
if advanced is True, return the data as a json string containing
|
||||
also the raw information of the properties."""
|
||||
data = dict(self)
|
||||
for prop, value in data.items():
|
||||
if isinstance(value, datetime.date):
|
||||
data[prop] = value.isoformat()
|
||||
elif isinstance(value, (UnicodeMixin, base_text_type)):
|
||||
data[prop] = u(value)
|
||||
elif isinstance(value, list):
|
||||
data[prop] = [u(x) for x in value]
|
||||
if advanced:
|
||||
metadata = self.metadata(prop)
|
||||
prop_data = {'value': data[prop]}
|
||||
if metadata.raw:
|
||||
prop_data['raw'] = metadata.raw
|
||||
if metadata.confidence:
|
||||
prop_data['confidence'] = metadata.confidence
|
||||
data[prop] = prop_data
|
||||
|
||||
return data
|
||||
|
||||
def nice_string(self, advanced=False):
|
||||
"""Return a string with the property names and their values,
|
||||
that also displays the associated confidence to each property.
|
||||
|
||||
FIXME: doc with param"""
|
||||
if advanced:
|
||||
data = self.to_dict(advanced)
|
||||
return json.dumps(data, indent=4)
|
||||
else:
|
||||
data = self.to_dict()
|
||||
|
||||
parts = json.dumps(data, indent=4).split('\n')
|
||||
for i, p in enumerate(parts):
|
||||
if p[:5] != ' "':
|
||||
continue
|
||||
|
||||
prop = p.split('"')[1]
|
||||
parts[i] = (' [%.2f] "' % self.confidence(prop)) + p[5:]
|
||||
|
||||
return '\n'.join(parts)
|
||||
|
||||
def __unicode__(self):
|
||||
return u(self.to_dict())
|
||||
|
||||
def metadata(self, prop=None):
|
||||
"""Return the metadata associated with the given property name
|
||||
|
||||
If no property name is given, get the global_metadata
|
||||
"""
|
||||
if prop is None:
|
||||
return self._global_metadata
|
||||
if not prop in self._metadata:
|
||||
self._metadata[prop] = GuessMetadata(parent=self._global_metadata)
|
||||
return self._metadata[prop]
|
||||
|
||||
def confidence(self, prop=None):
|
||||
return self.metadata(prop).confidence
|
||||
|
||||
def set_confidence(self, prop, confidence):
|
||||
self.metadata(prop).confidence = confidence
|
||||
|
||||
def raw(self, prop):
|
||||
return self.metadata(prop).raw
|
||||
|
||||
def set(self, prop_name, value, *args, **kwargs):
|
||||
self[prop_name] = value
|
||||
self._metadata[prop_name] = GuessMetadata(parent=self._global_metadata, *args, **kwargs)
|
||||
|
||||
def update(self, other, confidence=None):
|
||||
dict.update(self, other)
|
||||
if isinstance(other, Guess):
|
||||
for prop in other:
|
||||
try:
|
||||
self._metadata[prop] = other._metadata[prop]
|
||||
except KeyError:
|
||||
pass
|
||||
if not confidence is None:
|
||||
for prop in other:
|
||||
self.set_confidence(prop, confidence)
|
||||
|
||||
def update_highest_confidence(self, other):
|
||||
"""Update this guess with the values from the given one. In case
|
||||
there is property present in both, only the one with the highest one
|
||||
is kept."""
|
||||
if not isinstance(other, Guess):
|
||||
raise ValueError('Can only call this function on Guess instances')
|
||||
|
||||
for prop in other:
|
||||
if prop in self and self.metadata(prop).confidence >= other.metadata(prop).confidence:
|
||||
continue
|
||||
self[prop] = other[prop]
|
||||
self._metadata[prop] = other.metadata(prop)
|
||||
|
||||
|
||||
def choose_int(g1, g2):
|
||||
"""Function used by merge_similar_guesses to choose between 2 possible
|
||||
properties when they are integers."""
|
||||
v1, c1 = g1 # value, confidence
|
||||
v2, c2 = g2
|
||||
if (v1 == v2):
|
||||
return (v1, 1 - (1 - c1) * (1 - c2))
|
||||
else:
|
||||
if c1 > c2:
|
||||
return (v1, c1 - c2)
|
||||
else:
|
||||
return (v2, c2 - c1)
|
||||
|
||||
|
||||
def choose_string(g1, g2):
|
||||
"""Function used by merge_similar_guesses to choose between 2 possible
|
||||
properties when they are strings.
|
||||
|
||||
If the 2 strings are similar, or one is contained in the other, the latter is returned
|
||||
with an increased confidence.
|
||||
|
||||
If the 2 strings are dissimilar, the one with the higher confidence is returned, with
|
||||
a weaker confidence.
|
||||
|
||||
Note that here, 'similar' means that 2 strings are either equal, or that they
|
||||
differ very little, such as one string being the other one with the 'the' word
|
||||
prepended to it.
|
||||
|
||||
>>> s(choose_string(('Hello', 0.75), ('World', 0.5)))
|
||||
('Hello', 0.25)
|
||||
|
||||
>>> s(choose_string(('Hello', 0.5), ('hello', 0.5)))
|
||||
('Hello', 0.75)
|
||||
|
||||
>>> s(choose_string(('Hello', 0.4), ('Hello World', 0.4)))
|
||||
('Hello', 0.64)
|
||||
|
||||
>>> s(choose_string(('simpsons', 0.5), ('The Simpsons', 0.5)))
|
||||
('The Simpsons', 0.75)
|
||||
|
||||
"""
|
||||
v1, c1 = g1 # value, confidence
|
||||
v2, c2 = g2
|
||||
|
||||
if not v1:
|
||||
return g2
|
||||
elif not v2:
|
||||
return g1
|
||||
|
||||
v1, v2 = v1.strip(), v2.strip()
|
||||
v1l, v2l = v1.lower(), v2.lower()
|
||||
|
||||
combined_prob = 1 - (1 - c1) * (1 - c2)
|
||||
|
||||
if v1l == v2l:
|
||||
return (v1, combined_prob)
|
||||
|
||||
# check for common patterns
|
||||
elif v1l == 'the ' + v2l:
|
||||
return (v1, combined_prob)
|
||||
elif v2l == 'the ' + v1l:
|
||||
return (v2, combined_prob)
|
||||
|
||||
# if one string is contained in the other, return the shortest one
|
||||
elif v2l in v1l:
|
||||
return (v2, combined_prob)
|
||||
elif v1l in v2l:
|
||||
return (v1, combined_prob)
|
||||
|
||||
# in case of conflict, return the one with highest confidence
|
||||
else:
|
||||
if c1 > c2:
|
||||
return (v1, c1 - c2)
|
||||
else:
|
||||
return (v2, c2 - c1)
|
||||
|
||||
|
||||
def _merge_similar_guesses_nocheck(guesses, prop, choose):
|
||||
"""Take a list of guesses and merge those which have the same properties,
|
||||
increasing or decreasing the confidence depending on whether their values
|
||||
are similar.
|
||||
|
||||
This function assumes there are at least 2 valid guesses."""
|
||||
|
||||
similar = [guess for guess in guesses if prop in guess]
|
||||
|
||||
g1, g2 = similar[0], similar[1]
|
||||
|
||||
other_props = set(g1) & set(g2) - set([prop])
|
||||
if other_props:
|
||||
log.debug('guess 1: %s' % g1)
|
||||
log.debug('guess 2: %s' % g2)
|
||||
for prop in other_props:
|
||||
if g1[prop] != g2[prop]:
|
||||
log.warning('both guesses to be merged have more than one '
|
||||
'different property in common, bailing out...')
|
||||
return
|
||||
|
||||
# merge all props of s2 into s1, updating the confidence for the
|
||||
# considered property
|
||||
v1, v2 = g1[prop], g2[prop]
|
||||
c1, c2 = g1.confidence(prop), g2.confidence(prop)
|
||||
|
||||
new_value, new_confidence = choose((v1, c1), (v2, c2))
|
||||
if new_confidence >= c1:
|
||||
msg = "Updating matching property '%s' with confidence %.2f"
|
||||
else:
|
||||
msg = "Updating non-matching property '%s' with confidence %.2f"
|
||||
log.debug(msg % (prop, new_confidence))
|
||||
|
||||
g2[prop] = new_value
|
||||
g2.set_confidence(prop, new_confidence)
|
||||
|
||||
g1.update(g2)
|
||||
guesses.remove(g2)
|
||||
|
||||
|
||||
def merge_similar_guesses(guesses, prop, choose):
|
||||
"""Take a list of guesses and merge those which have the same properties,
|
||||
increasing or decreasing the confidence depending on whether their values
|
||||
are similar."""
|
||||
|
||||
similar = [guess for guess in guesses if prop in guess]
|
||||
if len(similar) < 2:
|
||||
# nothing to merge
|
||||
return
|
||||
|
||||
if len(similar) == 2:
|
||||
_merge_similar_guesses_nocheck(guesses, prop, choose)
|
||||
|
||||
if len(similar) > 2:
|
||||
log.debug('complex merge, trying our best...')
|
||||
before = len(guesses)
|
||||
_merge_similar_guesses_nocheck(guesses, prop, choose)
|
||||
after = len(guesses)
|
||||
if after < before:
|
||||
# recurse only when the previous call actually did something,
|
||||
# otherwise we end up in an infinite loop
|
||||
merge_similar_guesses(guesses, prop, choose)
|
||||
|
||||
|
||||
def merge_all(guesses, append=None):
|
||||
"""Merge all the guesses in a single result, remove very unlikely values,
|
||||
and return it.
|
||||
You can specify a list of properties that should be appended into a list
|
||||
instead of being merged.
|
||||
|
||||
>>> s(merge_all([ Guess({'season': 2}, confidence=0.6),
|
||||
... Guess({'episodeNumber': 13}, confidence=0.8) ])
|
||||
... ) == {'season': 2, 'episodeNumber': 13}
|
||||
True
|
||||
|
||||
|
||||
>>> s(merge_all([ Guess({'episodeNumber': 27}, confidence=0.02),
|
||||
... Guess({'season': 1}, confidence=0.2) ])
|
||||
... ) == {'season': 1}
|
||||
True
|
||||
|
||||
>>> s(merge_all([ Guess({'other': 'PROPER'}, confidence=0.8),
|
||||
... Guess({'releaseGroup': '2HD'}, confidence=0.8) ],
|
||||
... append=['other'])
|
||||
... ) == {'releaseGroup': '2HD', 'other': ['PROPER']}
|
||||
True
|
||||
|
||||
"""
|
||||
result = Guess()
|
||||
if not guesses:
|
||||
return result
|
||||
|
||||
if append is None:
|
||||
append = []
|
||||
|
||||
for g in guesses:
|
||||
# first append our appendable properties
|
||||
for prop in append:
|
||||
if prop in g:
|
||||
result.set(prop, result.get(prop, []) + [g[prop]],
|
||||
# TODO: what to do with confidence here? maybe an
|
||||
# arithmetic mean...
|
||||
confidence=g.metadata(prop).confidence,
|
||||
input=g.metadata(prop).input,
|
||||
span=g.metadata(prop).span,
|
||||
prop=g.metadata(prop).prop)
|
||||
|
||||
del g[prop]
|
||||
|
||||
# then merge the remaining ones
|
||||
dups = set(result) & set(g)
|
||||
if dups:
|
||||
log.warning('duplicate properties %s in merged result...' % [(result[p], g[p]) for p in dups])
|
||||
|
||||
result.update_highest_confidence(g)
|
||||
|
||||
# delete very unlikely values
|
||||
for p in list(result.keys()):
|
||||
if result.confidence(p) < 0.05:
|
||||
del result[p]
|
||||
|
||||
# make sure our appendable properties contain unique values
|
||||
for prop in append:
|
||||
try:
|
||||
value = result[prop]
|
||||
if isinstance(value, list):
|
||||
result[prop] = list(set(value))
|
||||
else:
|
||||
result[prop] = [value]
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
return result
|
Loading…
Add table
Add a link
Reference in a new issue