mirror of
https://github.com/clinton-hall/nzbToMedia.git
synced 2025-08-20 13:23:18 -07:00
Update vendored beets to 1.6.0
Updates colorama to 0.4.6 Adds confuse version 1.7.0 Updates jellyfish to 0.9.0 Adds mediafile 0.10.1 Updates munkres to 1.1.4 Updates musicbrainzngs to 0.7.1 Updates mutagen to 1.46.0 Updates pyyaml to 6.0 Updates unidecode to 1.3.6
This commit is contained in:
parent
5073ec0c6f
commit
56c6773c6b
385 changed files with 25143 additions and 18080 deletions
|
@ -1,8 +1,3 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- coding: iso-8859-1 -*-
|
||||
|
||||
# Documentation is intended to be processed by Epydoc.
|
||||
|
||||
"""
|
||||
Introduction
|
||||
============
|
||||
|
@ -11,286 +6,10 @@ The Munkres module provides an implementation of the Munkres algorithm
|
|||
(also called the Hungarian algorithm or the Kuhn-Munkres algorithm),
|
||||
useful for solving the Assignment Problem.
|
||||
|
||||
Assignment Problem
|
||||
==================
|
||||
|
||||
Let *C* be an *n* by *n* matrix representing the costs of each of *n* workers
|
||||
to perform any of *n* jobs. The assignment problem is to assign jobs to
|
||||
workers in a way that minimizes the total cost. Since each worker can perform
|
||||
only one job and each job can be assigned to only one worker the assignments
|
||||
represent an independent set of the matrix *C*.
|
||||
|
||||
One way to generate the optimal set is to create all permutations of
|
||||
the indexes necessary to traverse the matrix so that no row and column
|
||||
are used more than once. For instance, given this matrix (expressed in
|
||||
Python):
|
||||
|
||||
matrix = [[5, 9, 1],
|
||||
[10, 3, 2],
|
||||
[8, 7, 4]]
|
||||
|
||||
You could use this code to generate the traversal indexes:
|
||||
|
||||
def permute(a, results):
|
||||
if len(a) == 1:
|
||||
results.insert(len(results), a)
|
||||
|
||||
else:
|
||||
for i in range(0, len(a)):
|
||||
element = a[i]
|
||||
a_copy = [a[j] for j in range(0, len(a)) if j != i]
|
||||
subresults = []
|
||||
permute(a_copy, subresults)
|
||||
for subresult in subresults:
|
||||
result = [element] + subresult
|
||||
results.insert(len(results), result)
|
||||
|
||||
results = []
|
||||
permute(range(len(matrix)), results) # [0, 1, 2] for a 3x3 matrix
|
||||
|
||||
After the call to permute(), the results matrix would look like this:
|
||||
|
||||
[[0, 1, 2],
|
||||
[0, 2, 1],
|
||||
[1, 0, 2],
|
||||
[1, 2, 0],
|
||||
[2, 0, 1],
|
||||
[2, 1, 0]]
|
||||
|
||||
You could then use that index matrix to loop over the original cost matrix
|
||||
and calculate the smallest cost of the combinations:
|
||||
|
||||
minval = sys.maxsize
|
||||
for indexes in results:
|
||||
cost = 0
|
||||
for row, col in enumerate(indexes):
|
||||
cost += matrix[row][col]
|
||||
minval = min(cost, minval)
|
||||
|
||||
print minval
|
||||
|
||||
While this approach works fine for small matrices, it does not scale. It
|
||||
executes in O(*n*!) time: Calculating the permutations for an *n*\ x\ *n*
|
||||
matrix requires *n*! operations. For a 12x12 matrix, that's 479,001,600
|
||||
traversals. Even if you could manage to perform each traversal in just one
|
||||
millisecond, it would still take more than 133 hours to perform the entire
|
||||
traversal. A 20x20 matrix would take 2,432,902,008,176,640,000 operations. At
|
||||
an optimistic millisecond per operation, that's more than 77 million years.
|
||||
|
||||
The Munkres algorithm runs in O(*n*\ ^3) time, rather than O(*n*!). This
|
||||
package provides an implementation of that algorithm.
|
||||
|
||||
This version is based on
|
||||
http://csclab.murraystate.edu/~bob.pilgrim/445/munkres.html
|
||||
|
||||
This version was written for Python by Brian Clapper from the algorithm
|
||||
at the above web site. (The ``Algorithm:Munkres`` Perl version, in CPAN, was
|
||||
clearly adapted from the same web site.)
|
||||
|
||||
Usage
|
||||
=====
|
||||
|
||||
Construct a Munkres object:
|
||||
|
||||
from munkres import Munkres
|
||||
|
||||
m = Munkres()
|
||||
|
||||
Then use it to compute the lowest cost assignment from a cost matrix. Here's
|
||||
a sample program:
|
||||
|
||||
from munkres import Munkres, print_matrix
|
||||
|
||||
matrix = [[5, 9, 1],
|
||||
[10, 3, 2],
|
||||
[8, 7, 4]]
|
||||
m = Munkres()
|
||||
indexes = m.compute(matrix)
|
||||
print_matrix(matrix, msg='Lowest cost through this matrix:')
|
||||
total = 0
|
||||
for row, column in indexes:
|
||||
value = matrix[row][column]
|
||||
total += value
|
||||
print '(%d, %d) -> %d' % (row, column, value)
|
||||
print 'total cost: %d' % total
|
||||
|
||||
Running that program produces:
|
||||
|
||||
Lowest cost through this matrix:
|
||||
[5, 9, 1]
|
||||
[10, 3, 2]
|
||||
[8, 7, 4]
|
||||
(0, 0) -> 5
|
||||
(1, 1) -> 3
|
||||
(2, 2) -> 4
|
||||
total cost=12
|
||||
|
||||
The instantiated Munkres object can be used multiple times on different
|
||||
matrices.
|
||||
|
||||
Non-square Cost Matrices
|
||||
========================
|
||||
|
||||
The Munkres algorithm assumes that the cost matrix is square. However, it's
|
||||
possible to use a rectangular matrix if you first pad it with 0 values to make
|
||||
it square. This module automatically pads rectangular cost matrices to make
|
||||
them square.
|
||||
|
||||
Notes:
|
||||
|
||||
- The module operates on a *copy* of the caller's matrix, so any padding will
|
||||
not be seen by the caller.
|
||||
- The cost matrix must be rectangular or square. An irregular matrix will
|
||||
*not* work.
|
||||
|
||||
Calculating Profit, Rather than Cost
|
||||
====================================
|
||||
|
||||
The cost matrix is just that: A cost matrix. The Munkres algorithm finds
|
||||
the combination of elements (one from each row and column) that results in
|
||||
the smallest cost. It's also possible to use the algorithm to maximize
|
||||
profit. To do that, however, you have to convert your profit matrix to a
|
||||
cost matrix. The simplest way to do that is to subtract all elements from a
|
||||
large value. For example:
|
||||
|
||||
from munkres import Munkres, print_matrix
|
||||
|
||||
matrix = [[5, 9, 1],
|
||||
[10, 3, 2],
|
||||
[8, 7, 4]]
|
||||
cost_matrix = []
|
||||
for row in matrix:
|
||||
cost_row = []
|
||||
for col in row:
|
||||
cost_row += [sys.maxsize - col]
|
||||
cost_matrix += [cost_row]
|
||||
|
||||
m = Munkres()
|
||||
indexes = m.compute(cost_matrix)
|
||||
print_matrix(matrix, msg='Highest profit through this matrix:')
|
||||
total = 0
|
||||
for row, column in indexes:
|
||||
value = matrix[row][column]
|
||||
total += value
|
||||
print '(%d, %d) -> %d' % (row, column, value)
|
||||
|
||||
print 'total profit=%d' % total
|
||||
|
||||
Running that program produces:
|
||||
|
||||
Highest profit through this matrix:
|
||||
[5, 9, 1]
|
||||
[10, 3, 2]
|
||||
[8, 7, 4]
|
||||
(0, 1) -> 9
|
||||
(1, 0) -> 10
|
||||
(2, 2) -> 4
|
||||
total profit=23
|
||||
|
||||
The ``munkres`` module provides a convenience method for creating a cost
|
||||
matrix from a profit matrix. By default, it calculates the maximum profit
|
||||
and subtracts every profit from it to obtain a cost. If, however, you
|
||||
need a more general function, you can provide the
|
||||
conversion function; but the convenience method takes care of the actual
|
||||
creation of the matrix:
|
||||
|
||||
import munkres
|
||||
|
||||
cost_matrix = munkres.make_cost_matrix(
|
||||
matrix,
|
||||
lambda profit: 1000.0 - math.sqrt(profit))
|
||||
|
||||
So, the above profit-calculation program can be recast as:
|
||||
|
||||
from munkres import Munkres, print_matrix, make_cost_matrix
|
||||
|
||||
matrix = [[5, 9, 1],
|
||||
[10, 3, 2],
|
||||
[8, 7, 4]]
|
||||
cost_matrix = make_cost_matrix(matrix)
|
||||
# cost_matrix == [[5, 1, 9],
|
||||
# [0, 7, 8],
|
||||
# [2, 3, 6]]
|
||||
m = Munkres()
|
||||
indexes = m.compute(cost_matrix)
|
||||
print_matrix(matrix, msg='Highest profits through this matrix:')
|
||||
total = 0
|
||||
for row, column in indexes:
|
||||
value = matrix[row][column]
|
||||
total += value
|
||||
print '(%d, %d) -> %d' % (row, column, value)
|
||||
print 'total profit=%d' % total
|
||||
|
||||
Disallowed Assignments
|
||||
======================
|
||||
|
||||
You can also mark assignments in your cost or profit matrix as disallowed.
|
||||
Simply use the munkres.DISALLOWED constant.
|
||||
|
||||
from munkres import Munkres, print_matrix, make_cost_matrix, DISALLOWED
|
||||
|
||||
matrix = [[5, 9, DISALLOWED],
|
||||
[10, DISALLOWED, 2],
|
||||
[8, 7, 4]]
|
||||
cost_matrix = make_cost_matrix(matrix, lambda cost: (sys.maxsize - cost) if
|
||||
(cost != DISALLOWED) else DISALLOWED)
|
||||
m = Munkres()
|
||||
indexes = m.compute(cost_matrix)
|
||||
print_matrix(matrix, msg='Highest profit through this matrix:')
|
||||
total = 0
|
||||
for row, column in indexes:
|
||||
value = matrix[row][column]
|
||||
total += value
|
||||
print '(%d, %d) -> %d' % (row, column, value)
|
||||
print 'total profit=%d' % total
|
||||
|
||||
Running this program produces:
|
||||
|
||||
Lowest cost through this matrix:
|
||||
[ 5, 9, D]
|
||||
[10, D, 2]
|
||||
[ 8, 7, 4]
|
||||
(0, 1) -> 9
|
||||
(1, 0) -> 10
|
||||
(2, 2) -> 4
|
||||
total profit=23
|
||||
|
||||
References
|
||||
==========
|
||||
|
||||
1. http://www.public.iastate.edu/~ddoty/HungarianAlgorithm.html
|
||||
|
||||
2. Harold W. Kuhn. The Hungarian Method for the assignment problem.
|
||||
*Naval Research Logistics Quarterly*, 2:83-97, 1955.
|
||||
|
||||
3. Harold W. Kuhn. Variants of the Hungarian method for assignment
|
||||
problems. *Naval Research Logistics Quarterly*, 3: 253-258, 1956.
|
||||
|
||||
4. Munkres, J. Algorithms for the Assignment and Transportation Problems.
|
||||
*Journal of the Society of Industrial and Applied Mathematics*,
|
||||
5(1):32-38, March, 1957.
|
||||
|
||||
5. http://en.wikipedia.org/wiki/Hungarian_algorithm
|
||||
|
||||
Copyright and License
|
||||
=====================
|
||||
|
||||
Copyright 2008-2016 Brian M. Clapper
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
For complete usage documentation, see: https://software.clapper.org/munkres/
|
||||
"""
|
||||
|
||||
__docformat__ = 'restructuredtext'
|
||||
__docformat__ = 'markdown'
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
# Imports
|
||||
|
@ -298,6 +17,7 @@ __docformat__ = 'restructuredtext'
|
|||
|
||||
import sys
|
||||
import copy
|
||||
from typing import Union, NewType, Sequence, Tuple, Optional, Callable
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
# Exports
|
||||
|
@ -309,11 +29,14 @@ __all__ = ['Munkres', 'make_cost_matrix', 'DISALLOWED']
|
|||
# Globals
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
AnyNum = NewType('AnyNum', Union[int, float])
|
||||
Matrix = NewType('Matrix', Sequence[Sequence[AnyNum]])
|
||||
|
||||
# Info about the module
|
||||
__version__ = "1.0.12"
|
||||
__version__ = "1.1.4"
|
||||
__author__ = "Brian Clapper, bmc@clapper.org"
|
||||
__url__ = "http://software.clapper.org/munkres/"
|
||||
__copyright__ = "(c) 2008-2017 Brian M. Clapper"
|
||||
__url__ = "https://software.clapper.org/munkres/"
|
||||
__copyright__ = "(c) 2008-2020 Brian M. Clapper"
|
||||
__license__ = "Apache Software License"
|
||||
|
||||
# Constants
|
||||
|
@ -353,30 +76,18 @@ class Munkres:
|
|||
self.marked = None
|
||||
self.path = None
|
||||
|
||||
def make_cost_matrix(profit_matrix, inversion_function):
|
||||
"""
|
||||
**DEPRECATED**
|
||||
|
||||
Please use the module function ``make_cost_matrix()``.
|
||||
"""
|
||||
import munkres
|
||||
return munkres.make_cost_matrix(profit_matrix, inversion_function)
|
||||
|
||||
make_cost_matrix = staticmethod(make_cost_matrix)
|
||||
|
||||
def pad_matrix(self, matrix, pad_value=0):
|
||||
def pad_matrix(self, matrix: Matrix, pad_value: int=0) -> Matrix:
|
||||
"""
|
||||
Pad a possibly non-square matrix to make it square.
|
||||
|
||||
:Parameters:
|
||||
matrix : list of lists
|
||||
matrix to pad
|
||||
**Parameters**
|
||||
|
||||
pad_value : int
|
||||
value to use to pad the matrix
|
||||
- `matrix` (list of lists of numbers): matrix to pad
|
||||
- `pad_value` (`int`): value to use to pad the matrix
|
||||
|
||||
:rtype: list of lists
|
||||
:return: a new, possibly padded, matrix
|
||||
**Returns**
|
||||
|
||||
a new, possibly padded, matrix
|
||||
"""
|
||||
max_columns = 0
|
||||
total_rows = len(matrix)
|
||||
|
@ -400,26 +111,27 @@ class Munkres:
|
|||
|
||||
return new_matrix
|
||||
|
||||
def compute(self, cost_matrix):
|
||||
def compute(self, cost_matrix: Matrix) -> Sequence[Tuple[int, int]]:
|
||||
"""
|
||||
Compute the indexes for the lowest-cost pairings between rows and
|
||||
columns in the database. Returns a list of (row, column) tuples
|
||||
columns in the database. Returns a list of `(row, column)` tuples
|
||||
that can be used to traverse the matrix.
|
||||
|
||||
:Parameters:
|
||||
cost_matrix : list of lists
|
||||
The cost matrix. If this cost matrix is not square, it
|
||||
will be padded with zeros, via a call to ``pad_matrix()``.
|
||||
(This method does *not* modify the caller's matrix. It
|
||||
operates on a copy of the matrix.)
|
||||
**WARNING**: This code handles square and rectangular matrices. It
|
||||
does *not* handle irregular matrices.
|
||||
|
||||
**WARNING**: This code handles square and rectangular
|
||||
matrices. It does *not* handle irregular matrices.
|
||||
**Parameters**
|
||||
|
||||
:rtype: list
|
||||
:return: A list of ``(row, column)`` tuples that describe the lowest
|
||||
cost path through the matrix
|
||||
- `cost_matrix` (list of lists of numbers): The cost matrix. If this
|
||||
cost matrix is not square, it will be padded with zeros, via a call
|
||||
to `pad_matrix()`. (This method does *not* modify the caller's
|
||||
matrix. It operates on a copy of the matrix.)
|
||||
|
||||
|
||||
**Returns**
|
||||
|
||||
A list of `(row, column)` tuples that describe the lowest cost path
|
||||
through the matrix
|
||||
"""
|
||||
self.C = self.pad_matrix(cost_matrix)
|
||||
self.n = len(self.C)
|
||||
|
@ -458,18 +170,18 @@ class Munkres:
|
|||
|
||||
return results
|
||||
|
||||
def __copy_matrix(self, matrix):
|
||||
def __copy_matrix(self, matrix: Matrix) -> Matrix:
|
||||
"""Return an exact copy of the supplied matrix"""
|
||||
return copy.deepcopy(matrix)
|
||||
|
||||
def __make_matrix(self, n, val):
|
||||
def __make_matrix(self, n: int, val: AnyNum) -> Matrix:
|
||||
"""Create an *n*x*n* matrix, populating it with the specific value."""
|
||||
matrix = []
|
||||
for i in range(n):
|
||||
matrix += [[val for j in range(n)]]
|
||||
return matrix
|
||||
|
||||
def __step1(self):
|
||||
def __step1(self) -> int:
|
||||
"""
|
||||
For each row of the matrix, find the smallest element and
|
||||
subtract it from every element in its row. Go to Step 2.
|
||||
|
@ -492,7 +204,7 @@ class Munkres:
|
|||
self.C[i][j] -= minval
|
||||
return 2
|
||||
|
||||
def __step2(self):
|
||||
def __step2(self) -> int:
|
||||
"""
|
||||
Find a zero (Z) in the resulting matrix. If there is no starred
|
||||
zero in its row or column, star Z. Repeat for each element in the
|
||||
|
@ -512,7 +224,7 @@ class Munkres:
|
|||
self.__clear_covers()
|
||||
return 3
|
||||
|
||||
def __step3(self):
|
||||
def __step3(self) -> int:
|
||||
"""
|
||||
Cover each column containing a starred zero. If K columns are
|
||||
covered, the starred zeros describe a complete set of unique
|
||||
|
@ -533,7 +245,7 @@ class Munkres:
|
|||
|
||||
return step
|
||||
|
||||
def __step4(self):
|
||||
def __step4(self) -> int:
|
||||
"""
|
||||
Find a noncovered zero and prime it. If there is no starred zero
|
||||
in the row containing this primed zero, Go to Step 5. Otherwise,
|
||||
|
@ -566,7 +278,7 @@ class Munkres:
|
|||
|
||||
return step
|
||||
|
||||
def __step5(self):
|
||||
def __step5(self) -> int:
|
||||
"""
|
||||
Construct a series of alternating primed and starred zeros as
|
||||
follows. Let Z0 represent the uncovered primed zero found in Step 4.
|
||||
|
@ -602,7 +314,7 @@ class Munkres:
|
|||
self.__erase_primes()
|
||||
return 3
|
||||
|
||||
def __step6(self):
|
||||
def __step6(self) -> int:
|
||||
"""
|
||||
Add the value found in Step 4 to every element of each covered
|
||||
row, and subtract it from every element of each uncovered column.
|
||||
|
@ -627,7 +339,7 @@ class Munkres:
|
|||
raise UnsolvableMatrix("Matrix cannot be solved!")
|
||||
return 4
|
||||
|
||||
def __find_smallest(self):
|
||||
def __find_smallest(self) -> AnyNum:
|
||||
"""Find the smallest uncovered value in the matrix."""
|
||||
minval = sys.maxsize
|
||||
for i in range(self.n):
|
||||
|
@ -638,7 +350,7 @@ class Munkres:
|
|||
return minval
|
||||
|
||||
|
||||
def __find_a_zero(self, i0=0, j0=0):
|
||||
def __find_a_zero(self, i0: int = 0, j0: int = 0) -> Tuple[int, int]:
|
||||
"""Find the first uncovered element with value 0"""
|
||||
row = -1
|
||||
col = -1
|
||||
|
@ -664,7 +376,7 @@ class Munkres:
|
|||
|
||||
return (row, col)
|
||||
|
||||
def __find_star_in_row(self, row):
|
||||
def __find_star_in_row(self, row: Sequence[AnyNum]) -> int:
|
||||
"""
|
||||
Find the first starred element in the specified row. Returns
|
||||
the column index, or -1 if no starred element was found.
|
||||
|
@ -677,7 +389,7 @@ class Munkres:
|
|||
|
||||
return col
|
||||
|
||||
def __find_star_in_col(self, col):
|
||||
def __find_star_in_col(self, col: Sequence[AnyNum]) -> int:
|
||||
"""
|
||||
Find the first starred element in the specified row. Returns
|
||||
the row index, or -1 if no starred element was found.
|
||||
|
@ -690,7 +402,7 @@ class Munkres:
|
|||
|
||||
return row
|
||||
|
||||
def __find_prime_in_row(self, row):
|
||||
def __find_prime_in_row(self, row) -> int:
|
||||
"""
|
||||
Find the first prime element in the specified row. Returns
|
||||
the column index, or -1 if no starred element was found.
|
||||
|
@ -703,20 +415,22 @@ class Munkres:
|
|||
|
||||
return col
|
||||
|
||||
def __convert_path(self, path, count):
|
||||
def __convert_path(self,
|
||||
path: Sequence[Sequence[int]],
|
||||
count: int) -> None:
|
||||
for i in range(count+1):
|
||||
if self.marked[path[i][0]][path[i][1]] == 1:
|
||||
self.marked[path[i][0]][path[i][1]] = 0
|
||||
else:
|
||||
self.marked[path[i][0]][path[i][1]] = 1
|
||||
|
||||
def __clear_covers(self):
|
||||
def __clear_covers(self) -> None:
|
||||
"""Clear all covered matrix cells"""
|
||||
for i in range(self.n):
|
||||
self.row_covered[i] = False
|
||||
self.col_covered[i] = False
|
||||
|
||||
def __erase_primes(self):
|
||||
def __erase_primes(self) -> None:
|
||||
"""Erase all prime markings"""
|
||||
for i in range(self.n):
|
||||
for j in range(self.n):
|
||||
|
@ -727,37 +441,38 @@ class Munkres:
|
|||
# Functions
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
def make_cost_matrix(profit_matrix, inversion_function=None):
|
||||
def make_cost_matrix(
|
||||
profit_matrix: Matrix,
|
||||
inversion_function: Optional[Callable[[AnyNum], AnyNum]] = None
|
||||
) -> Matrix:
|
||||
"""
|
||||
Create a cost matrix from a profit matrix by calling
|
||||
'inversion_function' to invert each value. The inversion
|
||||
function must take one numeric argument (of any type) and return
|
||||
another numeric argument which is presumed to be the cost inverse
|
||||
of the original profit. In case the inversion function is not provided,
|
||||
calculate it as max(matrix) - matrix.
|
||||
Create a cost matrix from a profit matrix by calling `inversion_function()`
|
||||
to invert each value. The inversion function must take one numeric argument
|
||||
(of any type) and return another numeric argument which is presumed to be
|
||||
the cost inverse of the original profit value. If the inversion function
|
||||
is not provided, a given cell's inverted value is calculated as
|
||||
`max(matrix) - value`.
|
||||
|
||||
This is a static method. Call it like this:
|
||||
|
||||
.. python:
|
||||
|
||||
from munkres import Munkres
|
||||
cost_matrix = Munkres.make_cost_matrix(matrix, inversion_func)
|
||||
|
||||
For example:
|
||||
|
||||
.. python:
|
||||
|
||||
from munkres import Munkres
|
||||
cost_matrix = Munkres.make_cost_matrix(matrix, lambda x : sys.maxsize - x)
|
||||
|
||||
:Parameters:
|
||||
profit_matrix : list of lists
|
||||
The matrix to convert from a profit to a cost matrix
|
||||
**Parameters**
|
||||
|
||||
inversion_function : function
|
||||
The function to use to invert each entry in the profit matrix.
|
||||
In case it is not provided, calculate it as max(matrix) - matrix.
|
||||
- `profit_matrix` (list of lists of numbers): The matrix to convert from
|
||||
profit to cost values.
|
||||
- `inversion_function` (`function`): The function to use to invert each
|
||||
entry in the profit matrix.
|
||||
|
||||
:rtype: list of lists
|
||||
:return: The converted matrix
|
||||
**Returns**
|
||||
|
||||
A new matrix representing the inversion of `profix_matrix`.
|
||||
"""
|
||||
if not inversion_function:
|
||||
maximum = max(max(row) for row in profit_matrix)
|
||||
|
@ -768,16 +483,14 @@ def make_cost_matrix(profit_matrix, inversion_function=None):
|
|||
cost_matrix.append([inversion_function(value) for value in row])
|
||||
return cost_matrix
|
||||
|
||||
def print_matrix(matrix, msg=None):
|
||||
def print_matrix(matrix: Matrix, msg: Optional[str] = None) -> None:
|
||||
"""
|
||||
Convenience function: Displays the contents of a matrix of integers.
|
||||
Convenience function: Displays the contents of a matrix.
|
||||
|
||||
:Parameters:
|
||||
matrix : list of lists
|
||||
Matrix to print
|
||||
**Parameters**
|
||||
|
||||
msg : str
|
||||
Optional message to print before displaying the matrix
|
||||
- `matrix` (list of lists of numbers): The matrix to print
|
||||
- `msg` (`str`): Optional message to print before displaying the matrix
|
||||
"""
|
||||
import math
|
||||
|
||||
|
@ -800,8 +513,8 @@ def print_matrix(matrix, msg=None):
|
|||
sep = '['
|
||||
for val in row:
|
||||
if val is DISALLOWED:
|
||||
formatted = ((format + 's') % DISALLOWED_PRINTVAL)
|
||||
else: formatted = ((format + 'd') % val)
|
||||
val = DISALLOWED_PRINTVAL
|
||||
formatted = ((format + 's') % val)
|
||||
sys.stdout.write(sep + formatted)
|
||||
sep = ', '
|
||||
sys.stdout.write(']\n')
|
||||
|
@ -832,12 +545,24 @@ if __name__ == '__main__':
|
|||
[9, 7, 4]],
|
||||
18),
|
||||
|
||||
# Square variant with floating point value
|
||||
([[10.1, 10.2, 8.3],
|
||||
[9.4, 8.5, 1.6],
|
||||
[9.7, 7.8, 4.9]],
|
||||
19.5),
|
||||
|
||||
# Rectangular variant
|
||||
([[10, 10, 8, 11],
|
||||
[9, 8, 1, 1],
|
||||
[9, 7, 4, 10]],
|
||||
15),
|
||||
|
||||
# Rectangular variant with floating point value
|
||||
([[10.01, 10.02, 8.03, 11.04],
|
||||
[9.05, 8.06, 1.07, 1.08],
|
||||
[9.09, 7.1, 4.11, 10.12]],
|
||||
15.2),
|
||||
|
||||
# Rectangular with DISALLOWED
|
||||
([[4, 5, 6, DISALLOWED],
|
||||
[1, 9, 12, 11],
|
||||
|
@ -845,12 +570,26 @@ if __name__ == '__main__':
|
|||
[12, 12, 12, 10]],
|
||||
20),
|
||||
|
||||
# Rectangular variant with DISALLOWED and floating point value
|
||||
([[4.001, 5.002, 6.003, DISALLOWED],
|
||||
[1.004, 9.005, 12.006, 11.007],
|
||||
[DISALLOWED, 5.008, 4.009, DISALLOWED],
|
||||
[12.01, 12.011, 12.012, 10.013]],
|
||||
20.028),
|
||||
|
||||
# DISALLOWED to force pairings
|
||||
([[1, DISALLOWED, DISALLOWED, DISALLOWED],
|
||||
[DISALLOWED, 2, DISALLOWED, DISALLOWED],
|
||||
[DISALLOWED, DISALLOWED, 3, DISALLOWED],
|
||||
[DISALLOWED, DISALLOWED, DISALLOWED, 4]],
|
||||
10)]
|
||||
10),
|
||||
|
||||
# DISALLOWED to force pairings with floating point value
|
||||
([[1.1, DISALLOWED, DISALLOWED, DISALLOWED],
|
||||
[DISALLOWED, 2.2, DISALLOWED, DISALLOWED],
|
||||
[DISALLOWED, DISALLOWED, 3.3, DISALLOWED],
|
||||
[DISALLOWED, DISALLOWED, DISALLOWED, 4.4]],
|
||||
11.0)]
|
||||
|
||||
m = Munkres()
|
||||
for cost_matrix, expected_total in matrices:
|
||||
|
@ -860,6 +599,6 @@ if __name__ == '__main__':
|
|||
for r, c in indexes:
|
||||
x = cost_matrix[r][c]
|
||||
total_cost += x
|
||||
print('(%d, %d) -> %d' % (r, c, x))
|
||||
print('lowest cost=%d' % total_cost)
|
||||
print(('(%d, %d) -> %s' % (r, c, x)))
|
||||
print(('lowest cost=%s' % total_cost))
|
||||
assert expected_total == total_cost
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue