mirror of
https://github.com/clinton-hall/nzbToMedia.git
synced 2025-08-21 13:53:15 -07:00
Update vendored requests to 2.25.1
Updates certifi to 2021.5.30 Updates chardet to 4.0.0 Updates idna to 2.10 Updates urllib3 to 1.26.13
This commit is contained in:
parent
56c6773c6b
commit
501be2c479
81 changed files with 38530 additions and 4957 deletions
|
@ -26,10 +26,22 @@
|
|||
# 02110-1301 USA
|
||||
######################### END LICENSE BLOCK #########################
|
||||
|
||||
from collections import namedtuple
|
||||
|
||||
from .charsetprober import CharSetProber
|
||||
from .enums import CharacterCategory, ProbingState, SequenceLikelihood
|
||||
|
||||
|
||||
SingleByteCharSetModel = namedtuple('SingleByteCharSetModel',
|
||||
['charset_name',
|
||||
'language',
|
||||
'char_to_order_map',
|
||||
'language_model',
|
||||
'typical_positive_ratio',
|
||||
'keep_ascii_letters',
|
||||
'alphabet'])
|
||||
|
||||
|
||||
class SingleByteCharSetProber(CharSetProber):
|
||||
SAMPLE_SIZE = 64
|
||||
SB_ENOUGH_REL_THRESHOLD = 1024 # 0.25 * SAMPLE_SIZE^2
|
||||
|
@ -65,25 +77,25 @@ class SingleByteCharSetProber(CharSetProber):
|
|||
if self._name_prober:
|
||||
return self._name_prober.charset_name
|
||||
else:
|
||||
return self._model['charset_name']
|
||||
return self._model.charset_name
|
||||
|
||||
@property
|
||||
def language(self):
|
||||
if self._name_prober:
|
||||
return self._name_prober.language
|
||||
else:
|
||||
return self._model.get('language')
|
||||
return self._model.language
|
||||
|
||||
def feed(self, byte_str):
|
||||
if not self._model['keep_english_letter']:
|
||||
# TODO: Make filter_international_words keep things in self.alphabet
|
||||
if not self._model.keep_ascii_letters:
|
||||
byte_str = self.filter_international_words(byte_str)
|
||||
if not byte_str:
|
||||
return self.state
|
||||
char_to_order_map = self._model['char_to_order_map']
|
||||
for i, c in enumerate(byte_str):
|
||||
# XXX: Order is in range 1-64, so one would think we want 0-63 here,
|
||||
# but that leads to 27 more test failures than before.
|
||||
order = char_to_order_map[c]
|
||||
char_to_order_map = self._model.char_to_order_map
|
||||
language_model = self._model.language_model
|
||||
for char in byte_str:
|
||||
order = char_to_order_map.get(char, CharacterCategory.UNDEFINED)
|
||||
# XXX: This was SYMBOL_CAT_ORDER before, with a value of 250, but
|
||||
# CharacterCategory.SYMBOL is actually 253, so we use CONTROL
|
||||
# to make it closer to the original intent. The only difference
|
||||
|
@ -91,20 +103,21 @@ class SingleByteCharSetProber(CharSetProber):
|
|||
# _total_char purposes.
|
||||
if order < CharacterCategory.CONTROL:
|
||||
self._total_char += 1
|
||||
# TODO: Follow uchardet's lead and discount confidence for frequent
|
||||
# control characters.
|
||||
# See https://github.com/BYVoid/uchardet/commit/55b4f23971db61
|
||||
if order < self.SAMPLE_SIZE:
|
||||
self._freq_char += 1
|
||||
if self._last_order < self.SAMPLE_SIZE:
|
||||
self._total_seqs += 1
|
||||
if not self._reversed:
|
||||
i = (self._last_order * self.SAMPLE_SIZE) + order
|
||||
model = self._model['precedence_matrix'][i]
|
||||
else: # reverse the order of the letters in the lookup
|
||||
i = (order * self.SAMPLE_SIZE) + self._last_order
|
||||
model = self._model['precedence_matrix'][i]
|
||||
self._seq_counters[model] += 1
|
||||
lm_cat = language_model[self._last_order][order]
|
||||
else:
|
||||
lm_cat = language_model[order][self._last_order]
|
||||
self._seq_counters[lm_cat] += 1
|
||||
self._last_order = order
|
||||
|
||||
charset_name = self._model['charset_name']
|
||||
charset_name = self._model.charset_name
|
||||
if self.state == ProbingState.DETECTING:
|
||||
if self._total_seqs > self.SB_ENOUGH_REL_THRESHOLD:
|
||||
confidence = self.get_confidence()
|
||||
|
@ -125,7 +138,7 @@ class SingleByteCharSetProber(CharSetProber):
|
|||
r = 0.01
|
||||
if self._total_seqs > 0:
|
||||
r = ((1.0 * self._seq_counters[SequenceLikelihood.POSITIVE]) /
|
||||
self._total_seqs / self._model['typical_positive_ratio'])
|
||||
self._total_seqs / self._model.typical_positive_ratio)
|
||||
r = r * self._freq_char / self._total_char
|
||||
if r >= 1.0:
|
||||
r = 0.99
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue