mirror of
https://github.com/Microsoft/calculator.git
synced 2025-08-22 14:13:30 -07:00
Add unit tests + fix issue when a mod b == 0 with b negative
This commit is contained in:
parent
ca802d86af
commit
4908efcb96
8 changed files with 195 additions and 84 deletions
|
@ -182,6 +182,12 @@ namespace CalcEngine
|
|||
return *this;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Calculate the remainder after division, the sign of the result will match the sign of the current object.
|
||||
/// </summary>
|
||||
/// <remarks>
|
||||
/// This function has the same behavior than the standard C/C++ operator '%', to calculate the modulus after division instead, use <see cref="Rational::operator%"/> instead.
|
||||
/// </remarks>
|
||||
Rational& Rational::operator%=(Rational const& rhs)
|
||||
{
|
||||
PRAT lhsRat = this->ToPRAT();
|
||||
|
@ -342,6 +348,12 @@ namespace CalcEngine
|
|||
return lhs;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Calculate the remainder after division, the sign of the result will match the sign of a.
|
||||
/// </summary>
|
||||
/// <remarks>
|
||||
/// This function has the same behavior than the standard C/C++ operator '%', to calculate the modulus after division instead, use <see cref="Rational::operator%"/> instead.
|
||||
/// </remarks>
|
||||
Rational operator%(Rational lhs, Rational const& rhs)
|
||||
{
|
||||
lhs %= rhs;
|
||||
|
|
|
@ -388,11 +388,16 @@ Rational RationalMath::ATanh(Rational const& rat)
|
|||
return result;
|
||||
}
|
||||
|
||||
|
||||
Rational RationalMath::Mod(Rational const& base, Rational const& n)
|
||||
/// <summary>
|
||||
/// Calculate the modulus after division, the sign of the result will match the sign of b.
|
||||
/// </summary>
|
||||
/// <remarks>
|
||||
/// When one of the operand is negative, the result will differ from the C/C++ operator '%', use <see cref="Rational::operator%"/> instead to calculate the remainder after division.
|
||||
/// </remarks>
|
||||
Rational RationalMath::Mod(Rational const& a, Rational const& b)
|
||||
{
|
||||
PRAT prat = base.ToPRAT();
|
||||
PRAT pn = n.ToPRAT();
|
||||
PRAT prat = a.ToPRAT();
|
||||
PRAT pn = b.ToPRAT();
|
||||
|
||||
try
|
||||
{
|
||||
|
|
|
@ -45,7 +45,7 @@ namespace CalculationManager
|
|||
class IResourceProvider;
|
||||
}
|
||||
|
||||
namespace CalculatorUnitTests
|
||||
namespace CalculatorEngineTests
|
||||
{
|
||||
class CalcEngineTests;
|
||||
}
|
||||
|
@ -159,5 +159,5 @@ private:
|
|||
static void ChangeBaseConstants(uint32_t radix, int maxIntDigits, int32_t precision);
|
||||
void BaseOrPrecisionChanged();
|
||||
|
||||
friend class CalculatorUnitTests::CalcEngineTests;
|
||||
friend class CalculatorEngineTests::CalcEngineTests;
|
||||
};
|
||||
|
|
|
@ -13,7 +13,7 @@ namespace CalcEngine::RationalMath
|
|||
Rational Pow(Rational const& base, Rational const& pow);
|
||||
Rational Root(Rational const& base, Rational const& root);
|
||||
Rational Fact(Rational const& rat);
|
||||
Rational Mod(Rational const& base, Rational const& n);
|
||||
Rational Mod(Rational const& a, Rational const& b);
|
||||
|
||||
Rational Exp(Rational const& rat);
|
||||
Rational Log(Rational const& rat);
|
||||
|
|
|
@ -18,54 +18,54 @@
|
|||
|
||||
using namespace std;
|
||||
|
||||
void lshrat( PRAT *pa, PRAT b, uint32_t radix, int32_t precision)
|
||||
void lshrat(PRAT *pa, PRAT b, uint32_t radix, int32_t precision)
|
||||
|
||||
{
|
||||
PRAT pwr= nullptr;
|
||||
PRAT pwr = nullptr;
|
||||
int32_t intb;
|
||||
|
||||
intrat(pa, radix, precision);
|
||||
if ( !zernum( (*pa)->pp ) )
|
||||
{
|
||||
if (!zernum((*pa)->pp))
|
||||
{
|
||||
// If input is zero we're done.
|
||||
if ( rat_gt( b, rat_max_exp, precision) )
|
||||
{
|
||||
if (rat_gt(b, rat_max_exp, precision))
|
||||
{
|
||||
// Don't attempt lsh of anything big
|
||||
throw( CALC_E_DOMAIN );
|
||||
}
|
||||
throw(CALC_E_DOMAIN);
|
||||
}
|
||||
intb = rattoi32(b, radix, precision);
|
||||
DUPRAT(pwr,rat_two);
|
||||
DUPRAT(pwr, rat_two);
|
||||
ratpowi32(&pwr, intb, precision);
|
||||
mulrat(pa, pwr, precision);
|
||||
destroyrat(pwr);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void rshrat( PRAT *pa, PRAT b, uint32_t radix, int32_t precision)
|
||||
void rshrat(PRAT *pa, PRAT b, uint32_t radix, int32_t precision)
|
||||
|
||||
{
|
||||
PRAT pwr= nullptr;
|
||||
PRAT pwr = nullptr;
|
||||
int32_t intb;
|
||||
|
||||
intrat(pa, radix, precision);
|
||||
if ( !zernum( (*pa)->pp ) )
|
||||
{
|
||||
if (!zernum((*pa)->pp))
|
||||
{
|
||||
// If input is zero we're done.
|
||||
if ( rat_lt( b, rat_min_exp, precision) )
|
||||
{
|
||||
if (rat_lt(b, rat_min_exp, precision))
|
||||
{
|
||||
// Don't attempt rsh of anything big and negative.
|
||||
throw( CALC_E_DOMAIN );
|
||||
}
|
||||
throw(CALC_E_DOMAIN);
|
||||
}
|
||||
intb = rattoi32(b, radix, precision);
|
||||
DUPRAT(pwr,rat_two);
|
||||
DUPRAT(pwr, rat_two);
|
||||
ratpowi32(&pwr, intb, precision);
|
||||
divrat(pa, pwr, precision);
|
||||
destroyrat(pwr);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void boolrat( PRAT *pa, PRAT b, int func, uint32_t radix, int32_t precision);
|
||||
void boolnum( PNUMBER *pa, PNUMBER b, int func );
|
||||
void boolrat(PRAT *pa, PRAT b, int func, uint32_t radix, int32_t precision);
|
||||
void boolnum(PNUMBER *pa, PNUMBER b, int func);
|
||||
|
||||
|
||||
enum {
|
||||
|
@ -74,22 +74,22 @@ enum {
|
|||
FUNC_XOR
|
||||
} BOOL_FUNCS;
|
||||
|
||||
void andrat( PRAT *pa, PRAT b, uint32_t radix, int32_t precision)
|
||||
void andrat(PRAT *pa, PRAT b, uint32_t radix, int32_t precision)
|
||||
|
||||
{
|
||||
boolrat( pa, b, FUNC_AND, radix, precision);
|
||||
boolrat(pa, b, FUNC_AND, radix, precision);
|
||||
}
|
||||
|
||||
void orrat( PRAT *pa, PRAT b, uint32_t radix, int32_t precision)
|
||||
void orrat(PRAT *pa, PRAT b, uint32_t radix, int32_t precision)
|
||||
|
||||
{
|
||||
boolrat( pa, b, FUNC_OR, radix, precision);
|
||||
boolrat(pa, b, FUNC_OR, radix, precision);
|
||||
}
|
||||
|
||||
void xorrat( PRAT *pa, PRAT b, uint32_t radix, int32_t precision)
|
||||
void xorrat(PRAT *pa, PRAT b, uint32_t radix, int32_t precision)
|
||||
|
||||
{
|
||||
boolrat( pa, b, FUNC_XOR, radix, precision);
|
||||
boolrat(pa, b, FUNC_XOR, radix, precision);
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
@ -104,15 +104,15 @@ void xorrat( PRAT *pa, PRAT b, uint32_t radix, int32_t precision)
|
|||
//
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
void boolrat( PRAT *pa, PRAT b, int func, uint32_t radix, int32_t precision)
|
||||
void boolrat(PRAT *pa, PRAT b, int func, uint32_t radix, int32_t precision)
|
||||
|
||||
{
|
||||
PRAT tmp= nullptr;
|
||||
intrat( pa, radix, precision);
|
||||
DUPRAT(tmp,b);
|
||||
intrat( &tmp, radix, precision);
|
||||
PRAT tmp = nullptr;
|
||||
intrat(pa, radix, precision);
|
||||
DUPRAT(tmp, b);
|
||||
intrat(&tmp, radix, precision);
|
||||
|
||||
boolnum( &((*pa)->pp), tmp->pp, func );
|
||||
boolnum(&((*pa)->pp), tmp->pp, func);
|
||||
destroyrat(tmp);
|
||||
}
|
||||
|
||||
|
@ -130,11 +130,11 @@ void boolrat( PRAT *pa, PRAT b, int func, uint32_t radix, int32_t precision)
|
|||
//
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
void boolnum( PNUMBER *pa, PNUMBER b, int func )
|
||||
void boolnum(PNUMBER *pa, PNUMBER b, int func)
|
||||
|
||||
{
|
||||
PNUMBER c= nullptr;
|
||||
PNUMBER a= nullptr;
|
||||
PNUMBER c = nullptr;
|
||||
PNUMBER a = nullptr;
|
||||
MANTTYPE *pcha;
|
||||
MANTTYPE *pchb;
|
||||
MANTTYPE *pchc;
|
||||
|
@ -143,26 +143,26 @@ void boolnum( PNUMBER *pa, PNUMBER b, int func )
|
|||
MANTTYPE da;
|
||||
MANTTYPE db;
|
||||
|
||||
a=*pa;
|
||||
cdigits = max( a->cdigit+a->exp, b->cdigit+b->exp ) -
|
||||
min( a->exp, b->exp );
|
||||
createnum( c, cdigits );
|
||||
c->exp = min( a->exp, b->exp );
|
||||
a = *pa;
|
||||
cdigits = max(a->cdigit + a->exp, b->cdigit + b->exp) -
|
||||
min(a->exp, b->exp);
|
||||
createnum(c, cdigits);
|
||||
c->exp = min(a->exp, b->exp);
|
||||
mexp = c->exp;
|
||||
c->cdigit = cdigits;
|
||||
pcha = a->mant;
|
||||
pchb = b->mant;
|
||||
pchc = c->mant;
|
||||
for ( ;cdigits > 0; cdigits--, mexp++ )
|
||||
for (; cdigits > 0; cdigits--, mexp++)
|
||||
{
|
||||
da = (((mexp >= a->exp) && (cdigits + a->exp - c->exp >
|
||||
(c->cdigit - a->cdigit))) ?
|
||||
*pcha++ : 0);
|
||||
db = (((mexp >= b->exp) && (cdigits + b->exp - c->exp >
|
||||
(c->cdigit - b->cdigit))) ?
|
||||
*pchb++ : 0);
|
||||
switch (func)
|
||||
{
|
||||
da = ( ( ( mexp >= a->exp ) && ( cdigits + a->exp - c->exp >
|
||||
(c->cdigit - a->cdigit) ) ) ?
|
||||
*pcha++ : 0 );
|
||||
db = ( ( ( mexp >= b->exp ) && ( cdigits + b->exp - c->exp >
|
||||
(c->cdigit - b->cdigit) ) ) ?
|
||||
*pchb++ : 0 );
|
||||
switch ( func )
|
||||
{
|
||||
case FUNC_AND:
|
||||
*pchc++ = da & db;
|
||||
break;
|
||||
|
@ -172,15 +172,15 @@ void boolnum( PNUMBER *pa, PNUMBER b, int func )
|
|||
case FUNC_XOR:
|
||||
*pchc++ = da ^ db;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
c->sign = a->sign;
|
||||
while ( c->cdigit > 1 && *(--pchc) == 0 )
|
||||
{
|
||||
while (c->cdigit > 1 && *(--pchc) == 0)
|
||||
{
|
||||
c->cdigit--;
|
||||
}
|
||||
destroynum( *pa );
|
||||
*pa=c;
|
||||
}
|
||||
destroynum(*pa);
|
||||
*pa = c;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
|
@ -191,8 +191,9 @@ void boolnum( PNUMBER *pa, PNUMBER b, int func )
|
|||
//
|
||||
// RETURN: None, changes pointer.
|
||||
//
|
||||
// DESCRIPTION: Calculate the remainder of *pa / b, equivalent of 'pa % b' in C;
|
||||
// NOTE: produces a result that is either zero or has the same sign as the dividend.
|
||||
// DESCRIPTION: Calculate the remainder of *pa / b,
|
||||
// equivalent of 'pa % b' in C/C++ and produces a result
|
||||
// that is either zero or has the same sign as the dividend.
|
||||
//
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
|
@ -226,8 +227,10 @@ void remrat(PRAT *pa, PRAT b)
|
|||
//
|
||||
// RETURN: None, changes pointer.
|
||||
//
|
||||
// DESCRIPTION: Calculate the remainder of *pa / b, equivalent of 'pa modulo b' in arithmetic
|
||||
// NOTE: produces a result that is either zero or has the same sign as the divisor.
|
||||
// DESCRIPTION: Calculate the remainder of *pa / b, with the sign of the result
|
||||
// either zero or has the same sign as the divisor.
|
||||
// NOTE: When *pa or b are negative, the result won't be the same as
|
||||
// the C/C++ operator %, use remrat if it's the behavior you expect.
|
||||
//
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
|
@ -249,7 +252,7 @@ void modrat(PRAT *pa, PRAT b)
|
|||
remnum(&((*pa)->pp), tmp->pp, BASEX);
|
||||
mulnumx(&((*pa)->pq), tmp->pq);
|
||||
|
||||
if (needAdjust)
|
||||
if (needAdjust && !zerrat(*pa))
|
||||
{
|
||||
addrat(pa, b, BASEX);
|
||||
}
|
||||
|
|
|
@ -13,7 +13,7 @@ using namespace Microsoft::VisualStudio::CppUnitTestFramework;
|
|||
|
||||
static constexpr size_t MAX_HISTORY_SIZE = 20;
|
||||
|
||||
namespace CalculatorUnitTests
|
||||
namespace CalculatorEngineTests
|
||||
{
|
||||
TEST_CLASS(CalcEngineTests)
|
||||
{
|
||||
|
|
|
@ -8,7 +8,7 @@ using namespace std;
|
|||
using namespace CalculationManager;
|
||||
using namespace Microsoft::VisualStudio::CppUnitTestFramework;
|
||||
|
||||
namespace CalculatorUnitTests
|
||||
namespace CalculatorEngineTests
|
||||
{
|
||||
TEST_CLASS(CalcInputTest)
|
||||
{
|
||||
|
|
|
@ -10,7 +10,7 @@ using namespace CalcEngine;
|
|||
using namespace CalcEngine::RationalMath;
|
||||
using namespace Microsoft::VisualStudio::CppUnitTestFramework;
|
||||
|
||||
namespace CalculatorManagerTest
|
||||
namespace CalculatorEngineTests
|
||||
{
|
||||
TEST_CLASS(RationalTest)
|
||||
{
|
||||
|
@ -44,10 +44,44 @@ namespace CalculatorManagerTest
|
|||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"-8113");
|
||||
res = Mod(Rational(-643), Rational(-8756));
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"-643");
|
||||
|
||||
res = Mod(Rational(1000), Rational(250));
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"0");
|
||||
res = Mod(Rational(1000), Rational(-250));
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"0");
|
||||
//Test with Zero
|
||||
res = Mod(Rational(343654332), Rational(0));
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"343654332");
|
||||
res = Mod(Rational(0), Rational(8756));
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"0");
|
||||
res = Mod(Rational(0), Rational(-242));
|
||||
auto dfd = res.ToString(10, FMT_FLOAT, 128);
|
||||
VERIFY_ARE_EQUAL(dfd, L"0");
|
||||
res = Mod(Rational(0), Rational(0));
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"0");
|
||||
res = Mod(Rational(Number(1, 0, { 23242 }), Number(1, 0, { 2 })), Rational(Number(1, 0, { 0 }), Number(1, 0, { 23 })));
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"11621");
|
||||
|
||||
//Test with rational numbers
|
||||
res = Mod(Rational(Number(1, 0, { 250 }), Number(1, 0, { 100 })), Rational(89));
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"2.5");
|
||||
res = Mod(Rational(Number(1, 0, { 3330 }), Number(1, 0, { 1332 })), Rational(1));
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"0.5");
|
||||
res = Mod(Rational(Number(1, 0, { 12250 }), Number(1, 0, { 100 })), Rational(10));
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"2.5");
|
||||
res = Mod(Rational(Number(-1, 0, { 12250 }), Number(1, 0, { 100 })), Rational(10));
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"7.5");
|
||||
res = Mod(Rational(Number(-1, 0, { 12250 }), Number(1, 0, { 100 })), Rational(-10));
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"-2.5");
|
||||
res = Mod(Rational(Number(1, 0, { 12250 }), Number(1, 0, { 100 })), Rational(-10));
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"-7.5");
|
||||
res = Mod(Rational(Number(1, 0, { 1000 }), Number(1, 0, { 3 })), Rational(1));
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 8), L"0.33333333");
|
||||
res = Mod(Rational(Number(1, 0, { 1000 }), Number(1, 0, { 3 })), Rational(-10));
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 8), L"-6.6666667");
|
||||
res = Mod(Rational(834345), Rational(Number(1, 0, { 103 }), Number(1, 0, { 100 })));
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 8), L"0.71");
|
||||
res = Mod(Rational(834345), Rational(Number(-1, 0, { 103 }), Number(1, 0, { 100 })));
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 8), L"-0.32");
|
||||
}
|
||||
|
||||
TEST_METHOD(RemainderTest)
|
||||
|
@ -76,23 +110,80 @@ namespace CalculatorManagerTest
|
|||
res = Rational(-643) % Rational(-8756);
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"-643");
|
||||
|
||||
res = Rational(-124) % Rational(-124);
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"0");
|
||||
res = Rational(24) % Rational(24);
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"0");
|
||||
|
||||
//Test with Zero
|
||||
try
|
||||
res = Rational(0) % Rational(3654);
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"0");
|
||||
|
||||
res = Rational(0) % Rational(-242);
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"0");
|
||||
for (auto number : { 343654332, 0, -23423 })
|
||||
{
|
||||
res = Rational(343654332) % Rational(0);
|
||||
Assert::Fail();
|
||||
}
|
||||
catch (uint32_t t)
|
||||
{
|
||||
if (t != CALC_E_INDEFINITE)
|
||||
try
|
||||
{
|
||||
res = Rational(number) % Rational(0);
|
||||
Assert::Fail();
|
||||
}
|
||||
catch (uint32_t t)
|
||||
{
|
||||
if (t != CALC_E_INDEFINITE)
|
||||
{
|
||||
Assert::Fail();
|
||||
}
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
Assert::Fail();
|
||||
}
|
||||
|
||||
try
|
||||
{
|
||||
res = Rational(Number(1, number, { 0 }), Number(1, 0, { 2 })) % Rational(Number(1, 0, { 0 }), Number(1, 0, { 23 }));
|
||||
Assert::Fail();
|
||||
}
|
||||
catch (uint32_t t)
|
||||
{
|
||||
if (t != CALC_E_INDEFINITE)
|
||||
{
|
||||
Assert::Fail();
|
||||
}
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
Assert::Fail();
|
||||
}
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
Assert::Fail();
|
||||
}
|
||||
|
||||
//Test with rational numbers
|
||||
res = Rational(Number(1, 0, { 250 }), Number(1, 0, { 100 })) % Rational(89);
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"2.5");
|
||||
res = Rational(Number(1, 0, { 3330 }), Number(1, 0, { 1332 })) % Rational(1);
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"0.5");
|
||||
res = Rational(Number(1, 0, { 12250 }), Number(1, 0, { 100 })) % Rational(10);
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"2.5");
|
||||
res = Rational(Number(-1, 0, { 12250 }), Number(1, 0, { 100 })) % Rational(10);
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"-2.5");
|
||||
res = Rational(Number(-1, 0, { 12250 }), Number(1, 0, { 100 })) % Rational(-10);
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"-2.5");
|
||||
res = Rational(Number(1, 0, { 12250 }), Number(1, 0, { 100 })) % Rational(-10);
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 128), L"2.5");
|
||||
res = Rational(Number(1, 0, { 1000 }), Number(1, 0, { 3 })) % Rational(1);
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 8), L"0.33333333");
|
||||
res = Rational(Number(1, 0, { 1000 }), Number(1, 0, { 3 })) % Rational(-10);
|
||||
auto sdsdas = res.ToString(10, FMT_FLOAT, 8);
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 8), L"3.3333333");
|
||||
res = Rational(Number(-1, 0, { 1000 }), Number(1, 0, { 3 })) % Rational(-10);
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 8), L"-3.3333333");
|
||||
res = Rational(834345) % Rational(Number(1, 0, { 103 }), Number(1, 0, { 100 }));
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 8), L"0.71");
|
||||
res = Rational(834345) % Rational(Number(-1, 0, { 103 }), Number(1, 0, { 100 }));
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 8), L"0.71");
|
||||
res = Rational(-834345) % Rational(Number(1, 0, { 103 }), Number(1, 0, { 100 }));
|
||||
VERIFY_ARE_EQUAL(res.ToString(10, FMT_FLOAT, 8), L"-0.71");
|
||||
}
|
||||
};
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue