clang-format this branch

This commit is contained in:
Adam Ierymenko 2025-07-03 12:02:18 -04:00
parent 8b77ef538a
commit 342fa9d33f
No known key found for this signature in database
GPG key ID: C8877CF2D7A5D7F3
135 changed files with 42729 additions and 42439 deletions

View file

@ -78,247 +78,247 @@ namespace ZeroTier {
*/
class World {
public:
/**
* World type -- do not change IDs
*/
enum Type {
TYPE_NULL = 0,
TYPE_PLANET = 1, // Planets, of which there is currently one (Earth)
TYPE_MOON = 127 // Moons, which are user-created and many
};
/**
* World type -- do not change IDs
*/
enum Type {
TYPE_NULL = 0,
TYPE_PLANET = 1, // Planets, of which there is currently one (Earth)
TYPE_MOON = 127 // Moons, which are user-created and many
};
/**
* Upstream server definition in world/moon
*/
struct Root {
Identity identity;
std::vector<InetAddress> stableEndpoints;
/**
* Upstream server definition in world/moon
*/
struct Root {
Identity identity;
std::vector<InetAddress> stableEndpoints;
inline bool operator==(const Root& r) const
{
return ((identity == r.identity) && (stableEndpoints == r.stableEndpoints));
}
inline bool operator!=(const Root& r) const
{
return (! (*this == r));
}
inline bool operator<(const Root& r) const
{
return (identity < r.identity);
} // for sorting
};
inline bool operator==(const Root& r) const
{
return ((identity == r.identity) && (stableEndpoints == r.stableEndpoints));
}
inline bool operator!=(const Root& r) const
{
return (! (*this == r));
}
inline bool operator<(const Root& r) const
{
return (identity < r.identity);
} // for sorting
};
/**
* Construct an empty / null World
*/
World() : _id(0), _ts(0), _type(TYPE_NULL)
{
}
/**
* Construct an empty / null World
*/
World() : _id(0), _ts(0), _type(TYPE_NULL)
{
}
/**
* @return Root servers for this world and their stable endpoints
*/
inline const std::vector<World::Root>& roots() const
{
return _roots;
}
/**
* @return Root servers for this world and their stable endpoints
*/
inline const std::vector<World::Root>& roots() const
{
return _roots;
}
/**
* @return World type: planet or moon
*/
inline Type type() const
{
return _type;
}
/**
* @return World type: planet or moon
*/
inline Type type() const
{
return _type;
}
/**
* @return World unique identifier
*/
inline uint64_t id() const
{
return _id;
}
/**
* @return World unique identifier
*/
inline uint64_t id() const
{
return _id;
}
/**
* @return World definition timestamp
*/
inline uint64_t timestamp() const
{
return _ts;
}
/**
* @return World definition timestamp
*/
inline uint64_t timestamp() const
{
return _ts;
}
/**
* @return C25519 signature
*/
inline const ECC::Signature& signature() const
{
return _signature;
}
/**
* @return C25519 signature
*/
inline const ECC::Signature& signature() const
{
return _signature;
}
/**
* @return Public key that must sign next update
*/
inline const ECC::Public& updatesMustBeSignedBy() const
{
return _updatesMustBeSignedBy;
}
/**
* @return Public key that must sign next update
*/
inline const ECC::Public& updatesMustBeSignedBy() const
{
return _updatesMustBeSignedBy;
}
/**
* Check whether a world update should replace this one
*
* @param update Candidate update
* @return True if update is newer than current, matches its ID and type, and is properly signed (or if current is NULL)
*/
inline bool shouldBeReplacedBy(const World& update)
{
if ((_id == 0) || (_type == TYPE_NULL)) {
return true;
}
if ((_id == update._id) && (_ts < update._ts) && (_type == update._type)) {
Buffer<ZT_WORLD_MAX_SERIALIZED_LENGTH> tmp;
update.serialize(tmp, true);
return ECC::verify(_updatesMustBeSignedBy, tmp.data(), tmp.size(), update._signature);
}
return false;
}
/**
* Check whether a world update should replace this one
*
* @param update Candidate update
* @return True if update is newer than current, matches its ID and type, and is properly signed (or if current is NULL)
*/
inline bool shouldBeReplacedBy(const World& update)
{
if ((_id == 0) || (_type == TYPE_NULL)) {
return true;
}
if ((_id == update._id) && (_ts < update._ts) && (_type == update._type)) {
Buffer<ZT_WORLD_MAX_SERIALIZED_LENGTH> tmp;
update.serialize(tmp, true);
return ECC::verify(_updatesMustBeSignedBy, tmp.data(), tmp.size(), update._signature);
}
return false;
}
/**
* @return True if this World is non-empty
*/
inline operator bool() const
{
return (_type != TYPE_NULL);
}
/**
* @return True if this World is non-empty
*/
inline operator bool() const
{
return (_type != TYPE_NULL);
}
template <unsigned int C> inline void serialize(Buffer<C>& b, bool forSign = false) const
{
if (forSign) {
b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL);
}
template <unsigned int C> inline void serialize(Buffer<C>& b, bool forSign = false) const
{
if (forSign) {
b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL);
}
b.append((uint8_t)_type);
b.append((uint64_t)_id);
b.append((uint64_t)_ts);
b.append(_updatesMustBeSignedBy.data, ZT_ECC_PUBLIC_KEY_SET_LEN);
if (! forSign) {
b.append(_signature.data, ZT_ECC_SIGNATURE_LEN);
}
b.append((uint8_t)_roots.size());
for (std::vector<Root>::const_iterator r(_roots.begin()); r != _roots.end(); ++r) {
r->identity.serialize(b);
b.append((uint8_t)r->stableEndpoints.size());
for (std::vector<InetAddress>::const_iterator ep(r->stableEndpoints.begin()); ep != r->stableEndpoints.end(); ++ep) {
ep->serialize(b);
}
}
if (_type == TYPE_MOON) {
b.append((uint16_t)0); // no attached dictionary (for future use)
}
b.append((uint8_t)_type);
b.append((uint64_t)_id);
b.append((uint64_t)_ts);
b.append(_updatesMustBeSignedBy.data, ZT_ECC_PUBLIC_KEY_SET_LEN);
if (! forSign) {
b.append(_signature.data, ZT_ECC_SIGNATURE_LEN);
}
b.append((uint8_t)_roots.size());
for (std::vector<Root>::const_iterator r(_roots.begin()); r != _roots.end(); ++r) {
r->identity.serialize(b);
b.append((uint8_t)r->stableEndpoints.size());
for (std::vector<InetAddress>::const_iterator ep(r->stableEndpoints.begin()); ep != r->stableEndpoints.end(); ++ep) {
ep->serialize(b);
}
}
if (_type == TYPE_MOON) {
b.append((uint16_t)0); // no attached dictionary (for future use)
}
if (forSign) {
b.append((uint64_t)0xf7f7f7f7f7f7f7f7ULL);
}
}
if (forSign) {
b.append((uint64_t)0xf7f7f7f7f7f7f7f7ULL);
}
}
template <unsigned int C> inline unsigned int deserialize(const Buffer<C>& b, unsigned int startAt = 0)
{
unsigned int p = startAt;
template <unsigned int C> inline unsigned int deserialize(const Buffer<C>& b, unsigned int startAt = 0)
{
unsigned int p = startAt;
_roots.clear();
_roots.clear();
switch ((Type)b[p++]) {
case TYPE_NULL: // shouldn't ever really happen in serialized data but it's not invalid
_type = TYPE_NULL;
break;
case TYPE_PLANET:
_type = TYPE_PLANET;
break;
case TYPE_MOON:
_type = TYPE_MOON;
break;
default:
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_TYPE;
}
switch ((Type)b[p++]) {
case TYPE_NULL: // shouldn't ever really happen in serialized data but it's not invalid
_type = TYPE_NULL;
break;
case TYPE_PLANET:
_type = TYPE_PLANET;
break;
case TYPE_MOON:
_type = TYPE_MOON;
break;
default:
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_TYPE;
}
_id = b.template at<uint64_t>(p);
p += 8;
_ts = b.template at<uint64_t>(p);
p += 8;
memcpy(_updatesMustBeSignedBy.data, b.field(p, ZT_ECC_PUBLIC_KEY_SET_LEN), ZT_ECC_PUBLIC_KEY_SET_LEN);
p += ZT_ECC_PUBLIC_KEY_SET_LEN;
memcpy(_signature.data, b.field(p, ZT_ECC_SIGNATURE_LEN), ZT_ECC_SIGNATURE_LEN);
p += ZT_ECC_SIGNATURE_LEN;
const unsigned int numRoots = (unsigned int)b[p++];
if (numRoots > ZT_WORLD_MAX_ROOTS) {
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
}
for (unsigned int k = 0; k < numRoots; ++k) {
_roots.push_back(Root());
Root& r = _roots.back();
p += r.identity.deserialize(b, p);
unsigned int numStableEndpoints = b[p++];
if (numStableEndpoints > ZT_WORLD_MAX_STABLE_ENDPOINTS_PER_ROOT) {
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
}
for (unsigned int kk = 0; kk < numStableEndpoints; ++kk) {
r.stableEndpoints.push_back(InetAddress());
p += r.stableEndpoints.back().deserialize(b, p);
}
}
if (_type == TYPE_MOON) {
p += b.template at<uint16_t>(p) + 2;
}
_id = b.template at<uint64_t>(p);
p += 8;
_ts = b.template at<uint64_t>(p);
p += 8;
memcpy(_updatesMustBeSignedBy.data, b.field(p, ZT_ECC_PUBLIC_KEY_SET_LEN), ZT_ECC_PUBLIC_KEY_SET_LEN);
p += ZT_ECC_PUBLIC_KEY_SET_LEN;
memcpy(_signature.data, b.field(p, ZT_ECC_SIGNATURE_LEN), ZT_ECC_SIGNATURE_LEN);
p += ZT_ECC_SIGNATURE_LEN;
const unsigned int numRoots = (unsigned int)b[p++];
if (numRoots > ZT_WORLD_MAX_ROOTS) {
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
}
for (unsigned int k = 0; k < numRoots; ++k) {
_roots.push_back(Root());
Root& r = _roots.back();
p += r.identity.deserialize(b, p);
unsigned int numStableEndpoints = b[p++];
if (numStableEndpoints > ZT_WORLD_MAX_STABLE_ENDPOINTS_PER_ROOT) {
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
}
for (unsigned int kk = 0; kk < numStableEndpoints; ++kk) {
r.stableEndpoints.push_back(InetAddress());
p += r.stableEndpoints.back().deserialize(b, p);
}
}
if (_type == TYPE_MOON) {
p += b.template at<uint16_t>(p) + 2;
}
return (p - startAt);
}
return (p - startAt);
}
inline bool operator==(const World& w) const
{
return (
(_id == w._id) && (_ts == w._ts) && (memcmp(_updatesMustBeSignedBy.data, w._updatesMustBeSignedBy.data, ZT_ECC_PUBLIC_KEY_SET_LEN) == 0) && (memcmp(_signature.data, w._signature.data, ZT_ECC_SIGNATURE_LEN) == 0)
&& (_roots == w._roots) && (_type == w._type));
}
inline bool operator!=(const World& w) const
{
return (! (*this == w));
}
inline bool operator==(const World& w) const
{
return (
(_id == w._id) && (_ts == w._ts) && (memcmp(_updatesMustBeSignedBy.data, w._updatesMustBeSignedBy.data, ZT_ECC_PUBLIC_KEY_SET_LEN) == 0) && (memcmp(_signature.data, w._signature.data, ZT_ECC_SIGNATURE_LEN) == 0)
&& (_roots == w._roots) && (_type == w._type));
}
inline bool operator!=(const World& w) const
{
return (! (*this == w));
}
/**
* Create a World object signed with a key pair
*
* @param t World type
* @param id World ID
* @param ts World timestamp / revision
* @param sk Key that must be used to sign the next future update to this world
* @param roots Roots and their stable endpoints
* @param signWith Key to sign this World with (can have the same public as the next-update signing key, but doesn't have to)
* @return Signed World object
*/
static inline World make(World::Type t, uint64_t id, uint64_t ts, const ECC::Public& sk, const std::vector<World::Root>& roots, const ECC::Pair& signWith)
{
World w;
w._id = id;
w._ts = ts;
w._type = t;
w._updatesMustBeSignedBy = sk;
w._roots = roots;
/**
* Create a World object signed with a key pair
*
* @param t World type
* @param id World ID
* @param ts World timestamp / revision
* @param sk Key that must be used to sign the next future update to this world
* @param roots Roots and their stable endpoints
* @param signWith Key to sign this World with (can have the same public as the next-update signing key, but doesn't have to)
* @return Signed World object
*/
static inline World make(World::Type t, uint64_t id, uint64_t ts, const ECC::Public& sk, const std::vector<World::Root>& roots, const ECC::Pair& signWith)
{
World w;
w._id = id;
w._ts = ts;
w._type = t;
w._updatesMustBeSignedBy = sk;
w._roots = roots;
Buffer<ZT_WORLD_MAX_SERIALIZED_LENGTH> tmp;
w.serialize(tmp, true);
w._signature = ECC::sign(signWith, tmp.data(), tmp.size());
Buffer<ZT_WORLD_MAX_SERIALIZED_LENGTH> tmp;
w.serialize(tmp, true);
w._signature = ECC::sign(signWith, tmp.data(), tmp.size());
return w;
}
return w;
}
protected:
uint64_t _id;
uint64_t _ts;
Type _type;
ECC::Public _updatesMustBeSignedBy;
ECC::Signature _signature;
std::vector<Root> _roots;
uint64_t _id;
uint64_t _ts;
Type _type;
ECC::Public _updatesMustBeSignedBy;
ECC::Signature _signature;
std::vector<Root> _roots;
};
} // namespace ZeroTier
} // namespace ZeroTier
#endif