RRG-Proxmark3/client/src/cmdhf14b.c

1789 lines
58 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
// Modified 2018, 2020 iceman
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// High frequency ISO14443B commands
//-----------------------------------------------------------------------------
#include "cmdhf14b.h"
#include <ctype.h>
#include "iso14b.h"
#include "fileutils.h"
#include "cmdparser.h" // command_t
#include "commonutil.h" // ARRAYLEN
#include "comms.h" // clearCommandBuffer
#include "emv/emvcore.h" // TLVPrintFromBuffer
#include "cmdtrace.h"
#include "cliparser.h"
#include "crc16.h"
#include "cmdhf14a.h"
#include "protocols.h" // definitions of ISO14B/7816 protocol
#include "emv/apduinfo.h" // GetAPDUCodeDescription
#include "mifare/ndef.h" // NDEFRecordsDecodeAndPrint
#define TIMEOUT 2000
// iso14b apdu input frame length
static uint16_t apdu_frame_length = 0;
uint16_t ats_fsc[] = {16, 24, 32, 40, 48, 64, 96, 128, 256};
bool apdu_in_framing_enable = true;
static int CmdHelp(const char *Cmd);
static int usage_hf_14b_info(void) {
PrintAndLogEx(NORMAL, "Usage: hf 14b info [h] [s]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h this help");
PrintAndLogEx(NORMAL, " s silently");
PrintAndLogEx(NORMAL, "Example:");
PrintAndLogEx(NORMAL, _YELLOW_(" hf 14b info"));
return PM3_SUCCESS;
}
static int usage_hf_14b_reader(void) {
PrintAndLogEx(NORMAL, "Usage: hf 14b reader [h] [v]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h this help");
PrintAndLogEx(NORMAL, " v verbose");
PrintAndLogEx(NORMAL, "Example:");
PrintAndLogEx(NORMAL, _YELLOW_(" hf 14b reader"));
return PM3_SUCCESS;
}
static int usage_hf_14b_sniff(void) {
PrintAndLogEx(NORMAL, "It get data from the field and saves it into command buffer.");
PrintAndLogEx(NORMAL, "Buffer accessible from command 'hf list 14b'");
PrintAndLogEx(NORMAL, "Usage: hf 14b sniff [h]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h this help");
PrintAndLogEx(NORMAL, "Example:");
PrintAndLogEx(NORMAL, _YELLOW_(" hf 14b sniff"));
return PM3_SUCCESS;
}
static int usage_hf_14b_sim(void) {
PrintAndLogEx(NORMAL, "Emulating ISO/IEC 14443 type B tag with 4 UID / PUPI");
PrintAndLogEx(NORMAL, "Usage: hf 14b sim [h] u <uid>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h this help");
PrintAndLogEx(NORMAL, " u 4byte UID/PUPI");
PrintAndLogEx(NORMAL, "Example:");
PrintAndLogEx(NORMAL, _YELLOW_(" hf 14b sim"));
PrintAndLogEx(NORMAL, _YELLOW_(" hf 14b sim u 11223344"));
return PM3_SUCCESS;
}
static int usage_hf_14b_read_srx(void) {
PrintAndLogEx(NORMAL, "Usage: hf 14b sriread [h] <1|2>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h this help");
PrintAndLogEx(NORMAL, " <1|2> 1 = SRIX4K , 2 = SRI512");
PrintAndLogEx(NORMAL, "Example:");
PrintAndLogEx(NORMAL, _YELLOW_(" hf 14b sriread 1"));
PrintAndLogEx(NORMAL, _YELLOW_(" hf 14b sriread 2"));
return PM3_SUCCESS;
}
static int usage_hf_14b_write_srx(void) {
PrintAndLogEx(NORMAL, "Usage: hf 14b [h] sriwrite <1|2> <block> <data>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h this help");
PrintAndLogEx(NORMAL, " <1|2> 1 = SRIX4K , 2 = SRI512");
PrintAndLogEx(NORMAL, " <block> (hex) block number depends on tag, special block == FF");
PrintAndLogEx(NORMAL, " <data> hex bytes of data to be written");
PrintAndLogEx(NORMAL, "Example:");
PrintAndLogEx(NORMAL, _YELLOW_(" hf 14b sriwrite 1 7F 11223344"));
PrintAndLogEx(NORMAL, _YELLOW_(" hf 14b sriwrite 1 FF 11223344"));
PrintAndLogEx(NORMAL, _YELLOW_(" hf 14b sriwrite 2 15 11223344"));
PrintAndLogEx(NORMAL, _YELLOW_(" hf 14b sriwrite 2 FF 11223344"));
return PM3_SUCCESS;
}
static int usage_hf_14b_dump(void) {
PrintAndLogEx(NORMAL, "This command dumps the contents of a ISO-14443-B tag and save it to file\n"
"If memory size defaults to SRI4K if auto detect fails.\n"
"\n"
"Usage: hf 14b dump [h] <f filename> \n"
"Options:\n"
"\th this help\n"
"\tf <name> (optional) filename, if no <name> UID will be used as filename\n"
"\n"
"Example:\n"
_YELLOW_("\thf 14b dump\n")
_YELLOW_("\thf 14b dump f mydump")
);
return PM3_SUCCESS;
}
static int switch_off_field_14b(void) {
clearCommandBuffer();
SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_DISCONNECT, 0, 0, NULL, 0);
return PM3_SUCCESS;
}
static uint16_t get_sw(uint8_t *d, uint8_t n) {
if (n < 2)
return 0;
n -= 2;
return d[n] * 0x0100 + d[n + 1];
}
static bool waitCmd14b(bool verbose) {
PacketResponseNG resp;
if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT)) {
uint16_t len = (resp.oldarg[1] & 0xFFFF);
uint8_t *data = resp.data.asBytes;
if (verbose) {
if (len >= 3) {
bool crc = check_crc(CRC_14443_B, data, len);
PrintAndLogEx(SUCCESS, "len %u | %s[%02X %02X] %s",
len,
sprint_hex(data, len - 2),
data[len - 2],
data[len - 1],
(crc) ? _GREEN_("ok") : _RED_("fail")
);
} else if (len == 0) {
if (verbose)
PrintAndLogEx(INFO, "no response from tag");
} else {
PrintAndLogEx(SUCCESS, "len %u | %s", len, sprint_hex(data, len));
}
}
return true;
} else {
PrintAndLogEx(WARNING, "command execution timeout");
return false;
}
}
static int CmdHF14BList(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
CmdTraceList("14b");
return PM3_SUCCESS;
}
static int CmdHF14BSim(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (cmdp == 'h') return usage_hf_14b_sim();
uint32_t pupi = 0;
if (cmdp == 'u') {
pupi = param_get32ex(Cmd, 1, 0, 16);
}
clearCommandBuffer();
SendCommandMIX(CMD_HF_ISO14443B_SIMULATE, pupi, 0, 0, NULL, 0);
return PM3_SUCCESS;
}
static int CmdHF14BSniff(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (cmdp == 'h') return usage_hf_14b_sniff();
clearCommandBuffer();
SendCommandNG(CMD_HF_ISO14443B_SNIFF, NULL, 0);
return PM3_SUCCESS;
}
static int CmdHF14BCmdRaw(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "hf 14b raw",
"Sends raw bytes to card ",
"hf 14b raw -s 0 -c -k 0200a40400"
);
void *argtable[] = {
arg_param_begin,
arg_lit0("k", "keep", "leave the signal field ON after receive response"),
arg_int0("s", "select", "decimal", "activate field and select card (0 = std, 1 = SRx ST, 2 = ASK C-ticket"),
arg_lit0("c", "crc", "calculate and append CRC"),
arg_lit0("r", "noresponse", "do not read response"),
arg_int0("t", "timeout", "decimal", "timeout in ms"),
arg_lit0("v", "verbose", "verbose"),
arg_strx0(NULL, NULL, "<data (hex)>", "bytes to send"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, false);
bool select = false;
bool keep_field_on = arg_get_lit(ctx, 1);
int select_type = arg_get_int_def(ctx, 2, -1);
bool add_crc = arg_get_lit(ctx, 3);
bool read_reply = arg_get_lit(ctx, 4);
int user_timeout = arg_get_int_def(ctx, 5, -1);
bool verbose = arg_get_lit(ctx, 6);
uint32_t flags = ISO14B_CONNECT;
if (add_crc) {
flags |= ISO14B_APPEND_CRC;
}
switch(select_type) {
case 0:
select = true;
flags |= ISO14B_SELECT_STD;
if (verbose)
PrintAndLogEx(INFO, "using standard select");
break;
case 1:
select = true;
flags |= ISO14B_SELECT_SR;
if (verbose)
PrintAndLogEx(INFO, "using SRx ST select");
break;
case 2:
select = true;
flags |= ISO14B_SELECT_CTS;
if (verbose)
PrintAndLogEx(INFO, "using ASK C-ticket select");
break;
}
uint8_t data[PM3_CMD_DATA_SIZE] = {0x00};
int datalen = 0;
CLIParamHexToBuf(arg_get_str(ctx, 7), data, sizeof(data), &datalen);
CLIParserFree(ctx);
uint32_t time_wait = 0;
if (user_timeout > 0) {
#define MAX_14B_TIMEOUT 40542464 // = (2^32-1) * (8*16) / 13560000Hz * 1000ms/s
flags |= ISO14B_SET_TIMEOUT;
if (user_timeout > MAX_14B_TIMEOUT) {
user_timeout = MAX_14B_TIMEOUT;
PrintAndLogEx(INFO, "Set timeout to 40542 seconds (11.26 hours). The max we can wait for response");
}
time_wait = 13560000 / 1000 / (8 * 16) * user_timeout; // timeout in ETUs (time to transfer 1 bit, approx. 9.4 us)
}
if (keep_field_on == 0)
flags |= ISO14B_DISCONNECT;
if (datalen > 0)
flags |= ISO14B_RAW;
// Max buffer is PM3_CMD_DATA_SIZE
datalen = (datalen > PM3_CMD_DATA_SIZE) ? PM3_CMD_DATA_SIZE : datalen;
clearCommandBuffer();
SendCommandMIX(CMD_HF_ISO14443B_COMMAND, flags, datalen, time_wait, data, datalen);
if (read_reply == false) {
return PM3_SUCCESS;
}
bool success = true;
// get back iso14b_card_select_t, don't print it.
if (select) {
success = waitCmd14b(verbose);
}
// get back response from the raw bytes you sent.
if (success && datalen > 0) {
waitCmd14b(true);
}
return PM3_SUCCESS;
}
static bool get_14b_UID(iso14b_card_select_t *card) {
if (card == NULL)
return false;
int status = 0;
PacketResponseNG resp;
clearCommandBuffer();
SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_CONNECT | ISO14B_SELECT_SR | ISO14B_DISCONNECT, 0, 0, NULL, 0);
if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT)) {
status = resp.oldarg[0];
if (status == 0) {
memcpy(card, (iso14b_card_select_t *)resp.data.asBytes, sizeof(iso14b_card_select_t));
return true;
}
}
// test 14b standard
clearCommandBuffer();
SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_CONNECT | ISO14B_SELECT_STD | ISO14B_DISCONNECT, 0, 0, NULL, 0);
if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT)) {
status = resp.oldarg[0];
if (status == 0) {
memcpy(card, (iso14b_card_select_t *)resp.data.asBytes, sizeof(iso14b_card_select_t));
return true;
}
}
PrintAndLogEx(WARNING, "timeout while waiting for reply.");
return false;
}
// print full atqb info
// bytes
// 0,1,2,3 = application data
// 4 = bit rate capacity
// 5 = max frame size / -4 info
// 6 = FWI / Coding options
static int print_atqb_resp(uint8_t *data, uint8_t cid) {
//PrintAndLogEx(SUCCESS, " UID: %s", sprint_hex(data+1,4));
PrintAndLogEx(SUCCESS, " App Data: %s", sprint_hex(data, 4));
PrintAndLogEx(SUCCESS, " Protocol: %s", sprint_hex(data + 4, 3));
uint8_t BitRate = data[4];
if (!BitRate) PrintAndLogEx(SUCCESS, " Bit Rate: 106 kbit/s only PICC <-> PCD");
if (BitRate & 0x10) PrintAndLogEx(SUCCESS, " Bit Rate: 212 kbit/s PICC -> PCD supported");
if (BitRate & 0x20) PrintAndLogEx(SUCCESS, " Bit Rate: 424 kbit/s PICC -> PCD supported");
if (BitRate & 0x40) PrintAndLogEx(SUCCESS, " Bit Rate: 847 kbit/s PICC -> PCD supported");
if (BitRate & 0x01) PrintAndLogEx(SUCCESS, " Bit Rate: 212 kbit/s PICC <- PCD supported");
if (BitRate & 0x02) PrintAndLogEx(SUCCESS, " Bit Rate: 424 kbit/s PICC <- PCD supported");
if (BitRate & 0x04) PrintAndLogEx(SUCCESS, " Bit Rate: 847 kbit/s PICC <- PCD supported");
if (BitRate & 0x80) PrintAndLogEx(SUCCESS, " Same bit rate <-> required");
uint16_t maxFrame = data[5] >> 4;
if (maxFrame < 5) maxFrame = 8 * maxFrame + 16;
else if (maxFrame == 5) maxFrame = 64;
else if (maxFrame == 6) maxFrame = 96;
else if (maxFrame == 7) maxFrame = 128;
else if (maxFrame == 8) maxFrame = 256;
else maxFrame = 257;
PrintAndLogEx(SUCCESS, "Max Frame Size: %u%s bytes", maxFrame, (maxFrame == 257) ? "+ RFU" : "");
uint8_t protocolT = data[5] & 0xF;
PrintAndLogEx(SUCCESS, " Protocol Type: Protocol is %scompliant with ISO/IEC 14443-4", (protocolT) ? "" : "not ");
uint8_t fwt = data[6] >> 4;
if (fwt < 16) {
uint32_t etus = (32 << fwt);
uint32_t fwt_time = (302 << fwt);
PrintAndLogEx(SUCCESS, "Frame Wait Integer: %u - %u ETUs | %u us", fwt, etus, fwt_time);
} else {
PrintAndLogEx(SUCCESS, "Frame Wait Integer: %u - RFU", fwt);
}
PrintAndLogEx(SUCCESS, " App Data Code: Application is %s", (data[6] & 4) ? "Standard" : "Proprietary");
PrintAndLogEx(SUCCESS, " Frame Options: NAD is %ssupported", (data[6] & 2) ? "" : "not ");
PrintAndLogEx(SUCCESS, " Frame Options: CID is %ssupported", (data[6] & 1) ? "" : "not ");
PrintAndLogEx(SUCCESS, "Tag :");
PrintAndLogEx(SUCCESS, " Max Buf Length: %u (MBLI) %s", cid >> 4, (cid & 0xF0) ? "" : "chained frames not supported");
PrintAndLogEx(SUCCESS, " CID : %u", cid & 0x0f);
return PM3_SUCCESS;
}
// get SRx chip model (from UID) // from ST Microelectronics
static char *get_ST_Chip_Model(uint8_t data) {
static char model[20];
char *retStr = model;
memset(model, 0, sizeof(model));
switch (data) {
case 0x0:
sprintf(retStr, "SRIX4K (Special)");
break;
case 0x2:
sprintf(retStr, "SR176");
break;
case 0x3:
sprintf(retStr, "SRIX4K");
break;
case 0x4:
sprintf(retStr, "SRIX512");
break;
case 0x6:
sprintf(retStr, "SRI512");
break;
case 0x7:
sprintf(retStr, "SRI4K");
break;
case 0xC:
sprintf(retStr, "SRT512");
break;
default :
sprintf(retStr, "Unknown");
break;
}
return retStr;
}
static char *get_st_lock_info(uint8_t model, uint8_t *lockbytes, uint8_t blk) {
static char str[16];
char *s = str;
sprintf(s, " ");
if (blk > 15) {
return s;
}
uint8_t mask = 0;
switch (model) {
case 0x0: // SRIX4K special
case 0x3: // SRIx4K
case 0x7: { // SRI4K
//only need data[3]
switch (blk) {
case 7:
case 8:
mask = 0x01;
break;
case 9:
mask = 0x02;
break;
case 10:
mask = 0x04;
break;
case 11:
mask = 0x08;
break;
case 12:
mask = 0x10;
break;
case 13:
mask = 0x20;
break;
case 14:
mask = 0x40;
break;
case 15:
mask = 0x80;
break;
default:
return s;
}
if ((lockbytes[1] & mask) == 0) {
sprintf(s, _RED_("1"));
}
return s;
}
case 0x4: // SRIX512
case 0x6: // SRI512
case 0xC: { // SRT512
//need data[2] and data[3]
uint8_t b = 1;
switch (blk) {
case 0:
mask = 0x01;
break;
case 1:
mask = 0x02;
break;
case 2:
mask = 0x04;
break;
case 3:
mask = 0x08;
break;
case 4:
mask = 0x10;
break;
case 5:
mask = 0x20;
break;
case 6:
mask = 0x40;
break;
case 7:
mask = 0x80;
break;
case 8:
mask = 0x01;
b = 0;
break;
case 9:
mask = 0x02;
b = 0;
break;
case 10:
mask = 0x04;
b = 0;
break;
case 11:
mask = 0x08;
b = 0;
break;
case 12:
mask = 0x10;
b = 0;
break;
case 13:
mask = 0x20;
b = 0;
break;
case 14:
mask = 0x40;
b = 0;
break;
case 15:
mask = 0x80;
b = 0;
break;
}
if ((lockbytes[b] & mask) == 0) {
sprintf(s, _RED_("1"));
}
return s;
}
case 0x2: { // SR176
//need data[2]
switch (blk) {
case 0:
case 1:
mask = 0x1;
break;
case 2:
case 3:
mask = 0x2;
break;
case 4:
case 5:
mask = 0x4;
break;
case 6:
case 7:
mask = 0x8;
break;
case 8:
case 9:
mask = 0x10;
break;
case 10:
case 11:
mask = 0x20;
break;
case 12:
case 13:
mask = 0x40;
break;
case 14:
case 15:
mask = 0x80;
break;
}
// iceman: this is opposite! need sample to test with.
if ((lockbytes[0] & mask)) {
sprintf(s, _RED_("1"));
}
return s;
}
default:
break;
}
return s;
}
static uint8_t get_st_chipid(uint8_t *uid) {
return uid[5] >> 2;
}
static uint8_t get_st_cardsize(uint8_t *uid) {
uint8_t chipid = get_st_chipid(uid);
switch (chipid) {
case 0x0:
case 0x3:
case 0x7:
return 1;
case 0x4:
case 0x6:
case 0xC:
return 2;
default:
return 0;
}
return 0;
}
// print UID info from SRx chips (ST Microelectronics)
static void print_st_general_info(uint8_t *data, uint8_t len) {
//uid = first 8 bytes in data
uint8_t mfgid = data[6];
uint8_t chipid = get_st_chipid(data);
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(SUCCESS, " UID: " _GREEN_("%s"), sprint_hex(SwapEndian64(data, 8, 8), len));
PrintAndLogEx(SUCCESS, " MFG: %02X, " _YELLOW_("%s"), mfgid, getTagInfo(mfgid));
PrintAndLogEx(SUCCESS, "Chip: %02X, " _YELLOW_("%s"), chipid, get_ST_Chip_Model(chipid));
}
// print UID info from ASK CT chips
static void print_ct_general_info(void *vcard) {
iso14b_cts_card_select_t card;
memcpy(&card, (iso14b_cts_card_select_t *)vcard, sizeof(iso14b_cts_card_select_t));
uint32_t uid32 = (card.uid[0] |card.uid[1] << 8 |card.uid[2] << 16 | card.uid[3] << 24);
PrintAndLogEx(SUCCESS, "ASK C-Ticket");
PrintAndLogEx(SUCCESS, " UID: " _GREEN_("%s") " ( " _YELLOW_("%u") " )", sprint_hex(card.uid, sizeof(card.uid)), uid32);
PrintAndLogEx(SUCCESS, " Product Code: %02X", card.pc);
PrintAndLogEx(SUCCESS, " Facility Code: %02X", card.fc);
PrintAndLogEx(NORMAL, "");
}
// iceman, some 14B APDU break down
// 05 00 00 = find one tag in field
// 1d xx xx xx xx 00 08 01 00 = attrib xx=UID (resp 10 [f9 e0])
// a3 = ? (resp 03 [e2 c2])
// 02 = ? (resp 02 [6a d3])
// 022b (resp 02 67 00 [29 5b])
// 0200a40400 (resp 02 67 00 [29 5b])
// 0200a4040c07a0000002480300 (resp 02 67 00 [29 5b])
// 0200a4040c07a0000002480200 (resp 02 67 00 [29 5b])
// 0200a4040006a0000000010100 (resp 02 6a 82 [4b 4c])
// 0200a4040c09d27600002545500200 (resp 02 67 00 [29 5b])
// 0200a404000cd2760001354b414e4d30310000 (resp 02 6a 82 [4b 4c])
// 0200a404000ca000000063504b43532d313500 (resp 02 6a 82 [4b 4c])
// 0200a4040010a000000018300301000000000000000000 (resp 02 6a 82 [4b 4c])
// 03 = ? (resp 03 [e3 c2])
// c2 = ? (resp c2 [66 15])
// b2 = ? (resp a3 [e9 67])
// a2 = ? (resp 02 [6a d3])
// 14b get and print Full Info (as much as we know)
static bool HF14B_Std_Info(bool verbose) {
bool is_success = false;
// 14b get and print UID only (general info)
clearCommandBuffer();
PacketResponseNG resp;
SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_CONNECT | ISO14B_SELECT_STD | ISO14B_DISCONNECT, 0, 0, NULL, 0);
if (!WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT)) {
if (verbose) PrintAndLogEx(WARNING, "command execution timeout");
switch_off_field_14b();
return is_success;
}
iso14b_card_select_t card;
memcpy(&card, (iso14b_card_select_t *)resp.data.asBytes, sizeof(iso14b_card_select_t));
int status = resp.oldarg[0];
switch (status) {
case 0:
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(SUCCESS, " UID : " _GREEN_("%s"), sprint_hex(card.uid, card.uidlen));
PrintAndLogEx(SUCCESS, " ATQB : %s", sprint_hex(card.atqb, sizeof(card.atqb)));
PrintAndLogEx(SUCCESS, " CHIPID : %02X", card.chipid);
print_atqb_resp(card.atqb, card.cid);
is_success = true;
break;
case -1:
if (verbose) PrintAndLogEx(FAILED, "ISO 14443-3 ATTRIB fail");
break;
case -2:
if (verbose) PrintAndLogEx(FAILED, "ISO 14443-3 CRC fail");
break;
default:
if (verbose) PrintAndLogEx(FAILED, "ISO 14443-b card select failed");
break;
}
return is_success;
}
// SRx get and print full info (needs more info...)
static bool HF14B_ST_Info(bool verbose) {
clearCommandBuffer();
PacketResponseNG resp;
SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_CONNECT | ISO14B_SELECT_SR | ISO14B_DISCONNECT, 0, 0, NULL, 0);
if (!WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT)) {
if (verbose) PrintAndLogEx(WARNING, "command execution timeout");
return false;
}
iso14b_card_select_t card;
memcpy(&card, (iso14b_card_select_t *)resp.data.asBytes, sizeof(iso14b_card_select_t));
int status = resp.oldarg[0];
if (status < 0)
return false;
print_st_general_info(card.uid, card.uidlen);
return true;
}
// menu command to get and print all info known about any known 14b tag
static int CmdHF14Binfo(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (cmdp == 'h') return usage_hf_14b_info();
bool verbose = !(cmdp == 's');
return infoHF14B(verbose);
}
static bool HF14B_st_reader(bool verbose) {
bool is_success = false;
// SRx get and print general info about SRx chip from UID
clearCommandBuffer();
PacketResponseNG resp;
SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_CONNECT | ISO14B_SELECT_SR | ISO14B_DISCONNECT, 0, 0, NULL, 0);
if (!WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT)) {
if (verbose) PrintAndLogEx(WARNING, "command execution timeout");
return is_success;
}
iso14b_card_select_t card;
memcpy(&card, (iso14b_card_select_t *)resp.data.asBytes, sizeof(iso14b_card_select_t));
int status = resp.oldarg[0];
switch (status) {
case 0:
print_st_general_info(card.uid, card.uidlen);
is_success = true;
break;
case -1:
if (verbose) PrintAndLogEx(FAILED, "ISO 14443-3 ST ATTRIB fail");
break;
case -2:
if (verbose) PrintAndLogEx(FAILED, "ISO 14443-3 ST CRC fail");
break;
case -3:
if (verbose) PrintAndLogEx(FAILED, "ISO 14443-3 ST random chip id fail");
break;
default:
if (verbose) PrintAndLogEx(FAILED, "ISO 14443-b ST card select SRx failed");
break;
}
return is_success;
}
static bool HF14B_std_reader(bool verbose) {
bool is_success = false;
// 14b get and print UID only (general info)
clearCommandBuffer();
PacketResponseNG resp;
SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_CONNECT | ISO14B_SELECT_STD | ISO14B_DISCONNECT, 0, 0, NULL, 0);
if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT) == false) {
if (verbose) PrintAndLogEx(WARNING, "command execution timeout");
return false;
}
int status = resp.oldarg[0];
switch (status) {
case 0: {
iso14b_card_select_t card;
memcpy(&card, (iso14b_card_select_t *)resp.data.asBytes, sizeof(iso14b_card_select_t));
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(SUCCESS, " UID : " _GREEN_("%s"), sprint_hex(card.uid, card.uidlen));
PrintAndLogEx(SUCCESS, " ATQB : %s", sprint_hex(card.atqb, sizeof(card.atqb)));
PrintAndLogEx(SUCCESS, " CHIPID : %02X", card.chipid);
print_atqb_resp(card.atqb, card.cid);
is_success = true;
break;
}
case -1: {
if (verbose) PrintAndLogEx(FAILED, "ISO 14443-3 ATTRIB fail");
break;
}
case -2: {
if (verbose) PrintAndLogEx(FAILED, "ISO 14443-3 CRC fail");
break;
}
default: {
if (verbose) PrintAndLogEx(FAILED, "ISO 14443-b card select failed");
break;
}
}
return is_success;
}
static bool HF14B_ask_ct_reader(bool verbose) {
bool is_success = false;
// 14b get and print UID only (general info)
clearCommandBuffer();
PacketResponseNG resp;
SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_CONNECT | ISO14B_SELECT_CTS | ISO14B_DISCONNECT, 0, 0, NULL, 0);
if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT) == false) {
if (verbose) PrintAndLogEx(WARNING, "command execution timeout");
return false;
}
int status = resp.oldarg[0];
switch (status) {
case 0: {
print_ct_general_info(resp.data.asBytes);
is_success = true;
break;
}
case -1: {
if (verbose) PrintAndLogEx(FAILED, "ISO 14443-3 CTS wrong length");
break;
}
case -2: {
if (verbose) PrintAndLogEx(FAILED, "ISO 14443-3 CTS CRC fail");
break;
}
default: {
if (verbose) PrintAndLogEx(FAILED, "ISO 14443-b CTS card select failed");
break;
}
}
return is_success;
}
// test for other 14b type tags (mimic another reader - don't have tags to identify)
static bool HF14B_other_reader(bool verbose) {
uint8_t data[] = {0x00, 0x0b, 0x3f, 0x80};
uint8_t datalen = 4;
// 14b get and print UID only (general info)
uint32_t flags = ISO14B_CONNECT | ISO14B_SELECT_STD | ISO14B_RAW | ISO14B_APPEND_CRC;
clearCommandBuffer();
PacketResponseNG resp;
SendCommandMIX(CMD_HF_ISO14443B_COMMAND, flags, datalen, 0, data, datalen);
if (!WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT)) {
if (verbose) PrintAndLogEx(WARNING, "command execution timeout");
switch_off_field_14b();
return false;
}
int status = resp.oldarg[0];
PrintAndLogEx(DEBUG, "status %d", status);
if (status == 0) {
PrintAndLogEx(SUCCESS, "\n14443-3b tag found:");
PrintAndLogEx(SUCCESS, "unknown tag type answered to a 0x000b3f80 command ans:");
switch_off_field_14b();
return true;
} else if (status > 0) {
PrintAndLogEx(SUCCESS, "\n14443-3b tag found:");
PrintAndLogEx(SUCCESS, "unknown tag type answered to a 0x000b3f80 command ans:");
PrintAndLogEx(SUCCESS, "%s", sprint_hex(resp.data.asBytes, status));
switch_off_field_14b();
return true;
}
data[0] = ISO14443B_AUTHENTICATE;
clearCommandBuffer();
SendCommandMIX(CMD_HF_ISO14443B_COMMAND, flags, 1, 0, data, 1);
if (!WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT)) {
if (verbose) PrintAndLogEx(WARNING, "command execution timeout");
switch_off_field_14b();
return false;
}
status = resp.oldarg[0];
PrintAndLogEx(DEBUG, "status %d", status);
if (status == 0) {
PrintAndLogEx(SUCCESS, "\n14443-3b tag found:");
PrintAndLogEx(SUCCESS, "Unknown tag type answered to a 0x0A command ans:");
switch_off_field_14b();
return true;
} else if (status > 0) {
PrintAndLogEx(SUCCESS, "\n14443-3b tag found:");
PrintAndLogEx(SUCCESS, "unknown tag type answered to a 0x0A command ans:");
PrintAndLogEx(SUCCESS, "%s", sprint_hex(resp.data.asBytes, status));
switch_off_field_14b();
return true;
}
data[0] = ISO14443B_RESET;
clearCommandBuffer();
SendCommandMIX(CMD_HF_ISO14443B_COMMAND, flags, 1, 0, data, 1);
if (!WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT)) {
if (verbose) PrintAndLogEx(WARNING, "command execution timeout");
switch_off_field_14b();
return false;
}
status = resp.oldarg[0];
PrintAndLogEx(DEBUG, "status %d", status);
if (status == 0) {
PrintAndLogEx(SUCCESS, "\n14443-3b tag found:");
PrintAndLogEx(SUCCESS, "Unknown tag type answered to a 0x0C command ans:");
switch_off_field_14b();
return true;
} else if (status > 0) {
PrintAndLogEx(SUCCESS, "\n14443-3b tag found:");
PrintAndLogEx(SUCCESS, "unknown tag type answered to a 0x0C command ans:");
PrintAndLogEx(SUCCESS, "%s", sprint_hex(resp.data.asBytes, status));
switch_off_field_14b();
return true;
}
switch_off_field_14b();
return false;
}
// menu command to get and print general info about all known 14b chips
static int CmdHF14BReader(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (cmdp == 'h') return usage_hf_14b_reader();
bool verbose = (cmdp == 'v');
return readHF14B(verbose);
}
/* New command to read the contents of a SRI512|SRIX4K tag
* SRI* tags are ISO14443-B modulated memory tags,
* this command just dumps the contents of the memory/
*/
static int CmdHF14BReadSri(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) < 1 || cmdp == 'h') return usage_hf_14b_read_srx();
uint8_t tagtype = param_get8(Cmd, 0);
uint8_t blocks = (tagtype == 1) ? 0x7F : 0x0F;
clearCommandBuffer();
SendCommandMIX(CMD_HF_SRI_READ, blocks, 0, 0, NULL, 0);
// iceman: should download read data and print in client.
return PM3_SUCCESS;
}
// New command to write a SRI512/SRIX4K tag.
static int CmdHF14BWriteSri(const char *Cmd) {
/*
* For SRIX4K blocks 00 - 7F
* hf 14b raw -c -k 09 $srix4kwblock $srix4kwdata
*
* For SR512 blocks 00 - 0F
* hf 14b raw -c -k 09 $sr512wblock $sr512wdata
*
* Special block FF = otp_lock_reg block.
* Data len 4 bytes-
*/
char cmdp = tolower(param_getchar(Cmd, 0));
uint8_t blockno = -1;
uint8_t data[4] = {0x00};
bool isSrix4k = true;
char str[30];
memset(str, 0x00, sizeof(str));
if (strlen(Cmd) < 1 || cmdp == 'h') return usage_hf_14b_write_srx();
if (cmdp == '2')
isSrix4k = false;
//blockno = param_get8(Cmd, 1);
if (param_gethex(Cmd, 1, &blockno, 2)) {
PrintAndLogEx(WARNING, "block number must include 2 HEX symbols");
return 0;
}
if (isSrix4k) {
if (blockno > 0x7f && blockno != 0xff) {
PrintAndLogEx(FAILED, "block number out of range");
return PM3_ESOFT;
}
} else {
if (blockno > 0x0f && blockno != 0xff) {
PrintAndLogEx(FAILED, "block number out of range");
return PM3_ESOFT;
}
}
if (param_gethex(Cmd, 2, data, 8)) {
PrintAndLogEx(WARNING, "data must include 8 HEX symbols");
return PM3_ESOFT;
}
if (blockno == 0xff) {
PrintAndLogEx(SUCCESS, "[%s] Write special block %02X [ " _YELLOW_("%s")" ]",
(isSrix4k) ? "SRIX4K" : "SRI512",
blockno,
sprint_hex(data, 4)
);
} else {
PrintAndLogEx(SUCCESS, "[%s] Write block %02X [ " _YELLOW_("%s")" ]",
(isSrix4k) ? "SRIX4K" : "SRI512",
blockno,
sprint_hex(data, 4)
);
}
sprintf(str, "-ss -c %02x %02x %02x %02x %02x %02x", ISO14443B_WRITE_BLK, blockno, data[0], data[1], data[2], data[3]);
return CmdHF14BCmdRaw(str);
}
// need to write to file
static int CmdHF14BDump(const char *Cmd) {
uint8_t fileNameLen = 0;
char filename[FILE_PATH_SIZE] = {0};
char *fptr = filename;
bool errors = false;
uint8_t cmdp = 0, cardtype = 1;
uint16_t cardsize = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_hf_14b_dump();
case 'f':
fileNameLen = param_getstr(Cmd, cmdp + 1, filename, FILE_PATH_SIZE);
cmdp += 2;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
//Validations
if (errors) return usage_hf_14b_dump();
iso14b_card_select_t card;
if (get_14b_UID(&card) == false) {
PrintAndLogEx(WARNING, "No tag found.");
return PM3_SUCCESS;
}
// detect cardsize
// 1 = 4096
// 2 = 512
cardtype = get_st_cardsize(card.uid);
uint8_t blocks = 0;
switch (cardtype) {
case 2:
cardsize = (512 / 8) + 4;
blocks = 0x0F;
break;
case 1:
default:
cardsize = (4096 / 8) + 4;
blocks = 0x7F;
break;
}
if (fileNameLen < 1) {
PrintAndLogEx(INFO, "Using UID as filename");
fptr += sprintf(fptr, "hf-14b-");
FillFileNameByUID(fptr, SwapEndian64(card.uid, card.uidlen, 8), "-dump", card.uidlen);
}
uint8_t chipid = get_st_chipid(card.uid);
PrintAndLogEx(SUCCESS, "Found a " _GREEN_("%s") " tag", get_ST_Chip_Model(chipid));
// detect blocksize from card :)
PrintAndLogEx(INFO, "Reading memory from tag UID " _GREEN_("%s"), sprint_hex_inrow(SwapEndian64(card.uid, card.uidlen, 8), card.uidlen));
uint8_t data[cardsize];
memset(data, 0, sizeof(data));
uint8_t *recv = NULL;
int status = 0;
PacketResponseNG resp;
clearCommandBuffer();
SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_CONNECT | ISO14B_SELECT_SR, 0, 0, NULL, 0);
//select
if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, 2000)) {
status = resp.oldarg[0];
if (status < 0) {
PrintAndLogEx(FAILED, "failed to select arg0[%" PRId64 "] arg1 [%" PRId64 "]", resp.oldarg[0], resp.oldarg[1]);
goto out;
}
}
PrintAndLogEx(INFO, "." NOLF);
uint8_t req[2] = {ISO14443B_READ_BLK};
int blocknum = 0;
for (int retry = 0; retry < 5; retry++) {
req[1] = blocknum;
clearCommandBuffer();
SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_APPEND_CRC | ISO14B_RAW, 2, 0, req, sizeof(req));
if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, 2000)) {
status = resp.oldarg[0];
if (status < 0) {
PrintAndLogEx(FAILED, "retrying one more time");
continue;
}
uint16_t len = (resp.oldarg[1] & 0xFFFF);
recv = resp.data.asBytes;
if (check_crc(CRC_14443_B, recv, len) == false) {
PrintAndLogEx(FAILED, "crc fail, retrying one more time");
continue;
}
memcpy(data + (blocknum * 4), resp.data.asBytes, 4);
// last read.
if (blocknum == 0xFF) {
break;
}
retry = 0;
blocknum++;
if (blocknum > blocks) {
// read config block
blocknum = 0xFF;
}
PrintAndLogEx(NORMAL, "." NOLF);
fflush(stdout);
}
}
PrintAndLogEx(NORMAL, "");
if (blocknum != 0xFF) {
PrintAndLogEx(FAILED, "Dump failed");
goto out;
}
PrintAndLogEx(DEBUG, "systemblock : %s", sprint_hex(data + (blocknum * 4), 4));
PrintAndLogEx(DEBUG, " otp lock : %02x %02x", data[(blocknum * 4)], data[(blocknum * 4) + 1]);
PrintAndLogEx(INFO, " block# | data |lck| ascii");
PrintAndLogEx(INFO, "---------+--------------+---+----------");
for (int i = 0; i <= blocks; i++) {
PrintAndLogEx(INFO,
"%3d/0x%02X | %s | %s | %s",
i,
i,
sprint_hex(data + (i * 4), 4),
get_st_lock_info(chipid, data + (blocknum * 4), i),
sprint_ascii(data + (i * 4), 4)
);
}
PrintAndLogEx(INFO,
"%3d/0x%02X | %s | %s | %s",
0xFF,
0xFF,
sprint_hex(data + (0xFF * 4), 4),
get_st_lock_info(chipid, data + (blocknum * 4), 0xFF),
sprint_ascii(data + (0xFF * 4), 4)
);
PrintAndLogEx(INFO, "---------+--------------+---+----------");
PrintAndLogEx(NORMAL, "");
// save to file
size_t datalen = (blocks + 1) * 4;
saveFileEML(filename, data, datalen, 4);
saveFile(filename, ".bin", data, datalen);
// JSON?
out:
return switch_off_field_14b();
}
/*
static uint32_t srix4kEncode(uint32_t value) {
// vv = value
// pp = position
// vv vv vv pp
// 4 bytes : 00 1A 20 01
// only the lower crumbs.
uint8_t block = (value & 0xFF);
uint8_t i = 0;
uint8_t valuebytes[] = {0, 0, 0};
num_to_bytes(value, 3, valuebytes);
// Scrambled part
// Crumb swapping of value.
uint8_t temp[] = {0, 0};
temp[0] = (CRUMB(value, 22) << 4 | CRUMB(value, 14) << 2 | CRUMB(value, 6)) << 4;
temp[0] |= CRUMB(value, 20) << 4 | CRUMB(value, 12) << 2 | CRUMB(value, 4);
temp[1] = (CRUMB(value, 18) << 4 | CRUMB(value, 10) << 2 | CRUMB(value, 2)) << 4;
temp[1] |= CRUMB(value, 16) << 4 | CRUMB(value, 8) << 2 | CRUMB(value, 0);
// chksum part
uint32_t chksum = 0xFF - block;
// chksum is reduced by each nibbles of value.
for (i = 0; i < 3; ++i) {
chksum -= NIBBLE_HIGH(valuebytes[i]);
chksum -= NIBBLE_LOW(valuebytes[i]);
}
// base4 conversion and left shift twice
i = 3;
uint8_t base4[] = {0, 0, 0, 0};
while (chksum != 0) {
base4[i--] = (chksum % 4 << 2);
chksum /= 4;
}
// merge scambled and chksum parts
uint32_t encvalue =
(NIBBLE_LOW(base4[0]) << 28) |
(NIBBLE_HIGH(temp[0]) << 24) |
(NIBBLE_LOW(base4[1]) << 20) |
(NIBBLE_LOW(temp[0]) << 16) |
(NIBBLE_LOW(base4[2]) << 12) |
(NIBBLE_HIGH(temp[1]) << 8) |
(NIBBLE_LOW(base4[3]) << 4) |
NIBBLE_LOW(temp[1]);
PrintAndLogEx(NORMAL, "ICE encoded | %08X -> %08X", value, encvalue);
return encvalue;
}
static uint32_t srix4kDecode(uint32_t value) {
switch (value) {
case 0xC04F42C5:
return 0x003139;
case 0xC1484807:
return 0x002943;
case 0xC0C60848:
return 0x001A20;
}
return 0;
}
static uint32_t srix4kDecodeCounter(uint32_t num) {
uint32_t value = ~num;
++value;
return value;
}
static uint32_t srix4kGetMagicbytes(uint64_t uid, uint32_t block6, uint32_t block18, uint32_t block19) {
#define MASK 0xFFFFFFFF;
uint32_t uid32 = uid & MASK;
uint32_t counter = srix4kDecodeCounter(block6);
uint32_t decodedBlock18 = srix4kDecode(block18);
uint32_t decodedBlock19 = srix4kDecode(block19);
uint32_t doubleBlock = (decodedBlock18 << 16 | decodedBlock19) + 1;
uint32_t result = (uid32 * doubleBlock * counter) & MASK;
PrintAndLogEx(SUCCESS, "Magic bytes | %08X", result);
return result;
}
static int srix4kValid(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
uint64_t uid = 0xD00202501A4532F9;
uint32_t block6 = 0xFFFFFFFF;
uint32_t block18 = 0xC04F42C5;
uint32_t block19 = 0xC1484807;
uint32_t block21 = 0xD1BCABA4;
uint32_t test_b18 = 0x00313918;
uint32_t test_b18_enc = srix4kEncode(test_b18);
//uint32_t test_b18_dec = srix4kDecode(test_b18_enc);
PrintAndLogEx(SUCCESS, "ENCODE & CHECKSUM | %08X -> %08X (%s)", test_b18, test_b18_enc, "");
uint32_t magic = srix4kGetMagicbytes(uid, block6, block18, block19);
PrintAndLogEx(SUCCESS, "BLOCK 21 | %08X -> %08X (no XOR)", block21, magic ^ block21);
return 0;
}
*/
static int select_card_14443b_4(bool disconnect, iso14b_card_select_t *card) {
PacketResponseNG resp;
if (card)
memset(card, 0, sizeof(iso14b_card_select_t));
switch_off_field_14b();
// Anticollision + SELECT STD card
SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_CONNECT | ISO14B_SELECT_STD, 0, 0, NULL, 0);
if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT) == false) {
PrintAndLogEx(INFO, "Trying 14B Select SR");
// Anticollision + SELECT SR card
SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_CONNECT | ISO14B_SELECT_SR, 0, 0, NULL, 0);
if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT) == false) {
PrintAndLogEx(ERR, "connection timeout");
switch_off_field_14b();
return PM3_ESOFT;
}
}
// check result
int status = resp.oldarg[0];
if (status < 0) {
PrintAndLogEx(ERR, "No card in field.");
switch_off_field_14b();
return PM3_ESOFT;
}
apdu_frame_length = 0;
// get frame length from ATS in card data structure
iso14b_card_select_t *vcard = (iso14b_card_select_t *) resp.data.asBytes;
// uint8_t fsci = vcard->atqb[1] & 0x0f;
// if (fsci < ARRAYLEN(ats_fsc)) {
// apdu_frame_length = ats_fsc[fsci];
// }
if (card) {
memcpy(card, vcard, sizeof(iso14b_card_select_t));
}
if (disconnect) {
switch_off_field_14b();
}
return PM3_SUCCESS;
}
static int handle_14b_apdu(bool chainingin, uint8_t *datain, int datainlen, bool activateField, uint8_t *dataout, int maxdataoutlen, int *dataoutlen, bool *chainingout) {
*chainingout = false;
if (activateField) {
// select with no disconnect and set frameLength
int selres = select_card_14443b_4(false, NULL);
if (selres != PM3_SUCCESS)
return selres;
}
uint16_t flags = 0;
if (chainingin)
flags = ISO14B_SEND_CHAINING;
// "Command APDU" length should be 5+255+1, but javacard's APDU buffer might be smaller - 133 bytes
// https://stackoverflow.com/questions/32994936/safe-max-java-card-apdu-data-command-and-respond-size
// here length PM3_CMD_DATA_SIZE=512
if (datain)
SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_APDU | flags, (datainlen & 0xFFFF), 0, datain, datainlen & 0xFFFF);
else
SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_APDU | flags, 0, 0, NULL, 0);
PacketResponseNG resp;
if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT)) {
uint8_t *recv = resp.data.asBytes;
int rlen = resp.oldarg[0];
uint8_t res = resp.oldarg[1];
int dlen = rlen - 2;
if (dlen < 0) {
dlen = 0;
}
*dataoutlen += dlen;
if (maxdataoutlen && *dataoutlen > maxdataoutlen) {
PrintAndLogEx(ERR, "APDU: Buffer too small(%d). Needs %d bytes", *dataoutlen, maxdataoutlen);
return PM3_ESOFT;
}
// I-block ACK
if ((res & 0xf2) == 0xa2) {
*dataoutlen = 0;
*chainingout = true;
return PM3_SUCCESS;
}
if (rlen < 0) {
PrintAndLogEx(ERR, "APDU: No APDU response.");
return PM3_ESOFT;
}
// check apdu length
if (rlen == 0 || rlen == 1) {
PrintAndLogEx(ERR, "APDU: Small APDU response. Len=%d", rlen);
return PM3_ESOFT;
}
memcpy(dataout, recv, dlen);
// chaining
if ((res & 0x10) != 0) {
*chainingout = true;
}
} else {
PrintAndLogEx(ERR, "APDU: Reply timeout.");
return PM3_ETIMEOUT;
}
return PM3_SUCCESS;
}
static int exchange_14b_apdu(uint8_t *datain, int datainlen, bool activate_field, bool leave_signal_on, uint8_t *dataout, int maxdataoutlen, int *dataoutlen) {
*dataoutlen = 0;
bool chaining = false;
int res;
// 3 byte here - 1b framing header, 2b crc16
if (apdu_in_framing_enable &&
((apdu_frame_length && (datainlen > apdu_frame_length - 3)) || (datainlen > PM3_CMD_DATA_SIZE - 3))) {
int clen = 0;
bool v_activate_field = activate_field;
do {
int vlen = MIN(apdu_frame_length - 3, datainlen - clen);
bool chainBlockNotLast = ((clen + vlen) < datainlen);
*dataoutlen = 0;
res = handle_14b_apdu(chainBlockNotLast, &datain[clen], vlen, v_activate_field, dataout, maxdataoutlen, dataoutlen, &chaining);
if (res) {
if (leave_signal_on == false)
switch_off_field_14b();
return 200;
}
// TODO check this one...
// check R-block ACK
// *dataoutlen!=0. 'A && (!A || B)' is equivalent to 'A && B'
if ((*dataoutlen == 0) && (*dataoutlen != 0 || chaining != chainBlockNotLast)) {
if (leave_signal_on == false) {
switch_off_field_14b();
}
return 201;
}
clen += vlen;
v_activate_field = false;
if (*dataoutlen) {
if (clen != datainlen)
PrintAndLogEx(ERR, "APDU: I-block/R-block sequence error. Data len=%d, Sent=%d, Last packet len=%d", datainlen, clen, *dataoutlen);
break;
}
} while (clen < datainlen);
} else {
res = handle_14b_apdu(false, datain, datainlen, activate_field, dataout, maxdataoutlen, dataoutlen, &chaining);
if (res != PM3_SUCCESS) {
if (leave_signal_on == false) {
switch_off_field_14b();
}
return res;
}
}
while (chaining) {
// I-block with chaining
res = handle_14b_apdu(false, NULL, 0, false, &dataout[*dataoutlen], maxdataoutlen, dataoutlen, &chaining);
if (res != PM3_SUCCESS) {
if (leave_signal_on == false) {
switch_off_field_14b();
}
return 100;
}
}
if (leave_signal_on == false) {
switch_off_field_14b();
}
return PM3_SUCCESS;
}
// ISO14443-4. 7. Half-duplex block transmission protocol
static int CmdHF14BAPDU(const char *Cmd) {
uint8_t data[PM3_CMD_DATA_SIZE];
int datalen = 0;
uint8_t header[PM3_CMD_DATA_SIZE];
int headerlen = 0;
bool activate_field = false;
bool leave_signal_on = false;
bool decode_TLV = false;
bool decode_APDU = false;
bool make_APDU = false;
bool extended_APDU = false;
int le = 0;
CLIParserContext *ctx;
CLIParserInit(&ctx, "hf 14b apdu",
"Sends an ISO 7816-4 APDU via ISO 14443-4 block transmission protocol (T=CL). works with all apdu types from ISO 7816-4:2013",
"hf 14b apdu -s 94a40800043f000002\n"
"hf 14b apdu -sd 00A404000E325041592E5359532E444446303100 -> decode apdu\n"
"hf 14b apdu -sm 00A40400 325041592E5359532E4444463031 -l 256 -> encode standard apdu\n"
"hf 14b apdu -sm 00A40400 325041592E5359532E4444463031 -el 65536 -> encode extended apdu\n");
void *argtable[] = {
arg_param_begin,
arg_lit0("s", "select", "activate field and select card"),
arg_lit0("k", "keep", "leave the signal field ON after receive response"),
arg_lit0("t", "tlv", "executes TLV decoder if it possible"),
arg_lit0("d", "decode", "decode apdu request if it possible"),
arg_str0("m", "make", "<head (CLA INS P1 P2) hex>", "make apdu with head from this field and data from data field. Must be 4 bytes length: <CLA INS P1 P2>"),
arg_lit0("e", "extended", "make extended length apdu if `m` parameter included"),
arg_int0("l", "le", "<Le (int)>", "Le apdu parameter if `m` parameter included"),
arg_strx1(NULL, NULL, "<APDU (hex) | data (hex)>", "data if `m` parameter included"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, false);
activate_field = arg_get_lit(ctx, 1);
leave_signal_on = arg_get_lit(ctx, 2);
decode_TLV = arg_get_lit(ctx, 3);
decode_APDU = arg_get_lit(ctx, 4);
CLIGetHexWithReturn(ctx, 5, header, &headerlen);
make_APDU = headerlen > 0;
if (make_APDU && headerlen != 4) {
PrintAndLogEx(ERR, "header length must be 4 bytes instead of %d", headerlen);
CLIParserFree(ctx);
return PM3_EINVARG;
}
extended_APDU = arg_get_lit(ctx, 6);
le = arg_get_int_def(ctx, 7, 0);
if (make_APDU) {
uint8_t apdudata[PM3_CMD_DATA_SIZE] = {0};
int apdudatalen = 0;
CLIGetHexBLessWithReturn(ctx, 8, apdudata, &apdudatalen, 1 + 2);
APDUStruct apdu;
apdu.cla = header[0];
apdu.ins = header[1];
apdu.p1 = header[2];
apdu.p2 = header[3];
apdu.lc = apdudatalen;
apdu.data = apdudata;
apdu.extended_apdu = extended_APDU;
apdu.le = le;
if (APDUEncode(&apdu, data, &datalen)) {
PrintAndLogEx(ERR, "can't make apdu with provided parameters.");
CLIParserFree(ctx);
return PM3_EINVARG;
}
} else {
if (extended_APDU) {
PrintAndLogEx(ERR, "make mode not set but here `e` option.");
CLIParserFree(ctx);
return PM3_EINVARG;
}
if (le > 0) {
PrintAndLogEx(ERR, "make mode not set but here `l` option.");
CLIParserFree(ctx);
return PM3_EINVARG;
}
// len = data + PCB(1b) + CRC(2b)
CLIGetHexBLessWithReturn(ctx, 8, data, &datalen, 1 + 2);
}
CLIParserFree(ctx);
PrintAndLogEx(NORMAL, ">>>>[%s%s%s] %s",
activate_field ? "sel" : "",
leave_signal_on ? " keep" : "",
decode_TLV ? " TLV" : "",
sprint_hex(data, datalen)
);
if (decode_APDU) {
APDUStruct apdu;
if (APDUDecode(data, datalen, &apdu) == 0)
APDUPrint(apdu);
else
PrintAndLogEx(WARNING, "can't decode APDU.");
}
int res = exchange_14b_apdu(data, datalen, activate_field, leave_signal_on, data, PM3_CMD_DATA_SIZE, &datalen);
if (res != PM3_SUCCESS) {
return res;
}
PrintAndLogEx(NORMAL, "<<<< %s", sprint_hex(data, datalen));
PrintAndLogEx(SUCCESS, "APDU response: " _YELLOW_("%02x %02x") " - %s", data[datalen - 2], data[datalen - 1], GetAPDUCodeDescription(data[datalen - 2], data[datalen - 1]));
// TLV decoder
if (decode_TLV && datalen > 4) {
TLVPrintFromBuffer(data, datalen - 2);
}
return PM3_SUCCESS;
}
static int CmdHF14BNdef(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "hf 14b ndef",
"Print NFC Data Exchange Format (NDEF)",
"hf 14b ndef"
);
void *argtable[] = {
arg_param_begin,
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
CLIParserFree(ctx);
bool activate_field = true;
bool keep_field_on = true;
uint8_t response[PM3_CMD_DATA_SIZE];
int resplen = 0;
// --------------- Select NDEF Tag application ----------------
uint8_t aSELECT_AID[80];
int aSELECT_AID_n = 0;
param_gethex_to_eol("00a4040007d276000085010100", 0, aSELECT_AID, sizeof(aSELECT_AID), &aSELECT_AID_n);
int res = exchange_14b_apdu(aSELECT_AID, aSELECT_AID_n, activate_field, keep_field_on, response, sizeof(response), &resplen);
if (res) {
goto out;
}
if (resplen < 2) {
res = PM3_ESOFT;
goto out;
}
uint16_t sw = get_sw(response, resplen);
if (sw != 0x9000) {
PrintAndLogEx(ERR, "Selecting NDEF aid failed (%04x - %s).", sw, GetAPDUCodeDescription(sw >> 8, sw & 0xff));
res = PM3_ESOFT;
goto out;
}
activate_field = false;
keep_field_on = true;
// --------------- Send CC select ----------------
// --------------- Read binary ----------------
// --------------- NDEF file reading ----------------
uint8_t aSELECT_FILE_NDEF[30];
int aSELECT_FILE_NDEF_n = 0;
param_gethex_to_eol("00a4000c020001", 0, aSELECT_FILE_NDEF, sizeof(aSELECT_FILE_NDEF), &aSELECT_FILE_NDEF_n);
res = exchange_14b_apdu(aSELECT_FILE_NDEF, aSELECT_FILE_NDEF_n, activate_field, keep_field_on, response, sizeof(response), &resplen);
if (res)
goto out;
sw = get_sw(response, resplen);
if (sw != 0x9000) {
PrintAndLogEx(ERR, "Selecting NDEF file failed (%04x - %s).", sw, GetAPDUCodeDescription(sw >> 8, sw & 0xff));
res = PM3_ESOFT;
goto out;
}
// --------------- Read binary ----------------
uint8_t aREAD_NDEF[30];
int aREAD_NDEF_n = 0;
param_gethex_to_eol("00b0000002", 0, aREAD_NDEF, sizeof(aREAD_NDEF), &aREAD_NDEF_n);
res = exchange_14b_apdu(aREAD_NDEF, aREAD_NDEF_n, activate_field, keep_field_on, response, sizeof(response), &resplen);
if (res) {
goto out;
}
sw = get_sw(response, resplen);
if (sw != 0x9000) {
PrintAndLogEx(ERR, "reading NDEF file failed (%04x - %s).", sw, GetAPDUCodeDescription(sw >> 8, sw & 0xff));
res = PM3_ESOFT;
goto out;
}
// take offset from response
uint8_t offset = response[1];
// --------------- Read binary w offset ----------------
keep_field_on = false;
aREAD_NDEF_n = 0;
param_gethex_to_eol("00b00002", 0, aREAD_NDEF, sizeof(aREAD_NDEF), &aREAD_NDEF_n);
aREAD_NDEF[4] = offset;
res = exchange_14b_apdu(aREAD_NDEF, aREAD_NDEF_n, activate_field, keep_field_on, response, sizeof(response), &resplen);
if (res) {
goto out;
}
sw = get_sw(response, resplen);
if (sw != 0x9000) {
PrintAndLogEx(ERR, "reading NDEF file failed (%04x - %s).", sw, GetAPDUCodeDescription(sw >> 8, sw & 0xff));
res = PM3_ESOFT;
goto out;
}
res = NDEFRecordsDecodeAndPrint(response + 2, resplen - 4);
out:
switch_off_field_14b();
return res;
}
static command_t CommandTable[] = {
{"help", CmdHelp, AlwaysAvailable, "This help"},
{"apdu", CmdHF14BAPDU, IfPm3Iso14443b, "Send ISO 14443-4 APDU to tag"},
{"dump", CmdHF14BDump, IfPm3Iso14443b, "Read all memory pages of an ISO14443-B tag, save to file"},
{"info", CmdHF14Binfo, IfPm3Iso14443b, "Tag information"},
{"list", CmdHF14BList, AlwaysAvailable, "List ISO 14443B history"},
{"ndef", CmdHF14BNdef, IfPm3Iso14443b, "Read NDEF file on tag"},
{"raw", CmdHF14BCmdRaw, IfPm3Iso14443b, "Send raw hex data to tag"},
{"reader", CmdHF14BReader, IfPm3Iso14443b, "Act as a 14443B reader to identify a tag"},
{"sim", CmdHF14BSim, IfPm3Iso14443b, "Fake ISO 14443B tag"},
{"sniff", CmdHF14BSniff, IfPm3Iso14443b, "Eavesdrop ISO 14443B"},
{"sriread", CmdHF14BReadSri, IfPm3Iso14443b, "Read contents of a SRI512 | SRIX4K tag"},
{"sriwrite", CmdHF14BWriteSri, IfPm3Iso14443b, "Write data to a SRI512 | SRIX4K tag"},
// {"valid", srix4kValid, AlwaysAvailable, "srix4k checksum test"},
{NULL, NULL, NULL, NULL}
};
static int CmdHelp(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
CmdsHelp(CommandTable);
return PM3_SUCCESS;
}
int CmdHF14B(const char *Cmd) {
clearCommandBuffer();
return CmdsParse(CommandTable, Cmd);
}
// get and print all info known about any known 14b tag
int infoHF14B(bool verbose) {
// try std 14b (atqb)
if (HF14B_Std_Info(verbose))
return 1;
// try ST 14b
if (HF14B_ST_Info(verbose))
return 1;
// try unknown 14b read commands (to be identified later)
// could be read of calypso, CEPAS, moneo, or pico pass.
if (verbose) PrintAndLogEx(FAILED, "no 14443-B tag found");
return 0;
}
// get and print general info about all known 14b chips
int readHF14B(bool verbose) {
// try std 14b (atqb)
if (HF14B_std_reader(verbose))
return 1;
// try ST Microelectronics 14b
if (HF14B_st_reader(verbose))
return 1;
// try ASK CT 14b
if (HF14B_ask_ct_reader(verbose))
return 1;
// try unknown 14b read commands (to be identified later)
// could be read of calypso, CEPAS, moneo, or pico pass.
if (HF14B_other_reader(verbose))
return 1;
if (verbose) PrintAndLogEx(FAILED, "no 14443-B tag found");
return 0;
}